Immunophenotype, Histopathology and Clinical Stage: Their Predictive Value in the Prognosis of non-Hodgkin’s Lymphomas

Deodatus M. MTASIWA1), Nobutaka IMAMURA1), Tominari INADA1), Yasuo TAKIMOTO1), Kosuke OKADA2), Koji NANBA3), Hideki ASAOKU4) and Atsushi KURAMOTO1)

1) The Department of Internal Medicine, Research Institute for Nuclear Medicine and Biology, Hiroshima University, Hiroshima 734, Japan
2) Division of Blood Transfusion, Hiroshima University Hospital, Hiroshima
3) Department of Health Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima
4) Department of Internal Medicine, Hiroshima Red Cross Hospital, Hiroshima

ABSTRACT

The relationship between immunophenotype, histopathology and clinical stage in influencing prognosis was evaluated in 99 cases of non-Hodgkin's lymphoma (NHL). All cases were histopathologically classified according to the system of the international conference on working formulation (WF), immunologically analysed by flow cytometry with a panel of monoclonal antibodies and clinically staged by the Ann Arbor scheme. Eighty eight percent of T- and 87.7% of B-phenotype NHLs respectively received combination chemotherapies with or without radiotherapy. Early stages I and II showed higher response rates (86% for T- and B-NHL) compared to the advanced ones III and IV (58% for T-NHL and 65% for the B-NHLs), p<0.05. Higher overall survival rates were observed in low and intermediate grade NHLs, p < 0.05. The early stages further showed relatively higher survival rates in T- than in B-phenotype of intermediate grade NHL. Low grade NHL had the highest survival rates in both early and advanced stages, whereas the survival rate was the lowest in high grade NHL irrespective of the clinical stages. Immunophenotype, pathological grade and clinical stage jointly displayed varied predictive values in the prognosis of NHL. Since the present prognostic models are based on histological and staging criteria only, the results suggest that, phenotype should be included in the classification systems or prognostic models for the NHLs, thus facilitating the establishment of effective lineage specific therapies.

Key words: Immunophenotype, Histology, Clinical stage, Prognosis of NHL

Non-Hodgkin's Lymphomas (NHLs) are morphologically, immunologically and clinically heterogeneous diseases classifiable by the morphologic or cytological criteria employed by several systems13,31,38, including that of the International Conference on Working Formulation (WF)45). Although lymphomas are generally known to be neoplasms of the immunocompetent cells, only a few systems, such as the Lukes-Collins classification31) satisfactorily address this concept. In addition, various immunologically well established clinicopathological entities of NHLs19,42,46,49) are not sufficiently considered in these systems.

Clinical staging in the Ann Arbor criteria4) which includes B-symptoms and site involved, age of the patient, therapy applied and several other factors, has been shown to influence the response and survival in NHL further to the effect of histological subtype11,12,14,16,27,34,36,37). However, most classification systems13,38,45 and prognostic models5) are based on histological or staging criteria only. Likewise, since the contribution of immunophenotype on prognosis is still not obvious, it is not considered in these systems at all. Besides this, therapy in NHL is determined by histological sub-type4,11,12,14,16,27,34,48) and clinical stage19,28,34,44). While histological classification still preserves its influence on the choice of therapy, staging based on the Ann Arbor criteria is being challenged by the recently proposed prognostic models15,24,42,48), and the role of immunophenotype continues to be controversial7,27,28,30,38,41).

In this study, the joint effect of immunophenotype, histopathological grade and clinical stage on prognosis of NHL was evaluated.
PATIENTS AND METHODS

1. **Patient population.** Ninety nine patients histologically diagnosed as having non-Hodgkin’s lymphoma were studied. All were attending the clinic of the Department of Internal Medicine (Hematology-Oncology) at Hiroshima University between 1980-1988. Patients with adult T-cell leukemia/lymphoma and aggressive natural killer cell leukemia/lymphoma were excluded because these entities are not diagnosed histologically.

2. **Histopathology.** Fresh tumor or involved lymph node biopsy specimens obtained prior to initial therapy were used for the histological diagnosis after obtaining consent from the subjects. The results were adjusted to the classification of the WHO.

3. **Immunophenotyping.** Fresh cells from the above specimens were used in immunofluorescence either by flow cytometry for the cells which reacted with monoclonal antibodies (MoAbs) or by fluorescence microscope in order to detect cytoplasmic immunoglobulins (clgs). Spontaneous sheep erythrocyte rosette formation (E), Fc gamma and mu receptors (EA) and complement receptor (EAC) assays by phase contrast microscope, and an indirect cytoplasmic immunofluorescence test for detecting terminal deoxynucleotidyl transferase (TdT), were performed in the 10% of the cases according to the previously described method of Imamura et al.

4. **Cell Separation.** Solid biopsy specimens obtained prior to therapy from consented patients, were finely minced in RPMI 1640 and filtered through a nylon mesh to prepare cell suspensions. Mononuclear cells from marrow, peripheral blood or effusion were isolated by a density gradient technique (Ficoll/sodium metrizoate d=1.077g/cm³), with or without extended centrifugation. Positive reaction was defined when the expression was observed in more than 50% of the tumor cells. Percentage of positive cells was adjusted to the classification of the WHO.

5. **Monoclonal Antibodies.** The monoclonal antibodies (MoAbs) used in this study are shown in Table 1 according to cluster designation (CD). All were obtained either commercially or through the courtesy of Ortho Diagnostic Systems K.K. (Tokyo), Japan Scientific Instrument Co. (Tokyo), and Fujisawa Pharmaceutical Co. (Osaka).

6. **Indirect Immunofluorescence Testing.** Cells were incubated with 10μl of MoAbs for 45 min at 4°C, washed twice with RPMI 1640 to remove unbound antibodies, re-incubated with fluorescein isothiocyanate (FITC)-conjugated F(ab')2 fragment of sheep antimouse Ig reactive with gamma or mu (Tago, Burlingame, CA) for 30 min at 4°C, then washed again twice ready for analysis. Non-specific binding of FITC-conjugated F(ab')2 fragment of antimouse Ig was checked by preincubating cells with medium or non-reactive MoAbs.

7. **Flow cytometric analysis.** Positive cells were analysed by a fluorescence-activated cell sorter (FACS IV, Becton Dickinson, Mountain View, CA.) with a focused 488 nm Argon Laser (Spectra-Physics, Mountain View, CA). Fluorescent signals above 520 nm were collected by the analysis of 10,000 cells. Red cells were excluded by size distribution. Positive reaction was defined when the expression was observed in more than 50% of the tumor cells. Percentage of positive cells was adjusted by subtracting cells with non-specific fluorescence, usually less than 1%, as described previously.

8. **Clinical and demographic data.** Physical, blood and bone marrow examinations were supported by chest X-ray, gallium scintillation (⁶⁷Ga), computed tomographic scanning or lymphography. Ann Arbor criteria was used in clinical staging of the disease at presentation.

Protocols included the following agents: daunorubicin, cyclophosphamide, vincristine and prednisolone. CVP with or without extended RT was applied in all low grade and early stage (I and II) NHLs. CHOP with or without extended RT was applied in all low grade and early stage (I and II) NHLs.
field RT was used in intermediate grade and advanced stage (III and IV) NHLs as well as large cell immunoblastic (IBL) of the high grade. N4-behenoyl-1-D-arabinofuranosylcytosine (BHAC) was included in modified CHOP protocol for the treatment of lymphoblastic lymphoma (LBL) which has a tendency of turning leukemic in its early state. Two cases in this group had bone marrow transplantation following their first complete remission. Both died after four years, one from a relapse and the other from sepsis while in complete remission. Methotrexate was used with CHOP as CHOP-M for the small non-cleaved cell (SNC). Both LBL and SNC have a poor prognosis, and have been immunologically shown to possess exclusively T- and B-phenotypes, respectively. They are also grouped as high grade NHLs by the WF.

Complete remission (CR) referred to the disappearance of all known disease maintained for one month, and partial remission (PR) as a reduction of over 50% of the disease also maintained for one month. Restaging was carried out to confirm the CR or PR state. Distribution differences for the prognostic factors and their association with response were analysed unilaterally by Chi-square test. Censored cases were included in the analysis of actuarial survival, which was defined as the time between date of first evaluation following induction therapy and the date of last follow-up or of recordable death. Survival curves were plotted by the method of Kaplan and Meier, and compared by log-rank test to assess the effect of each prognostic factor.

RESULTS

1. **Histology and Phenotypic features.** Table 2 shows immunophenotypic distribution of each histopathology for the 99 cases of NHL. All subtypes of NHLs which histologically had a follicular pattern and those with SNC were exclusively B-phenotype, whereas LBL was exclusively T-phenotype. Cells of all cases defined as B-NHLs tested positive for the pan B and/or mature B-cell antigens; CD19, CD20, CD21 and CD24 respectively, including either of the sIggs and/or clg. Both light chains and were equally common, whereas and were more common than the other heavy chains. EA and EAC assays were carried out in 10% of the cases. Cells of all cases defined as T-NHLs were positive for either pan T or mature T-cell antigens; CD2, CD3, CD5, CD7 and CD4 or CD8. E-rosette was tested in 10% of the cases. One case of small lymphocytic cell type had a strongly positive (more than 90%) E-rosette test. LBL type was positive for immature antigens, CD1 and TdT. In like antigens were positive in NHL cases with B-phenotype more than those with T-phenotype, whereas the reverse was true for CD38 antigen positivity in T-NHL more than in the B-NHL cases.}

<table>
<thead>
<tr>
<th>Histological Subtype</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low grade</td>
<td></td>
</tr>
<tr>
<td>Small lymphocytic</td>
<td>1</td>
</tr>
<tr>
<td>Follicular small cleaved</td>
<td>4</td>
</tr>
<tr>
<td>Follicular mixed</td>
<td>6</td>
</tr>
<tr>
<td>Intermediate grade</td>
<td></td>
</tr>
<tr>
<td>Follicular large</td>
<td>1</td>
</tr>
<tr>
<td>Diffuse small cleaved</td>
<td>7</td>
</tr>
<tr>
<td>Diffuse mixed</td>
<td>5</td>
</tr>
<tr>
<td>Diffuse large</td>
<td>8</td>
</tr>
<tr>
<td>High grade</td>
<td></td>
</tr>
<tr>
<td>Immunoblastic</td>
<td>13</td>
</tr>
<tr>
<td>Lymphoblastic</td>
<td>2</td>
</tr>
<tr>
<td>Small non-cleaved</td>
<td>4</td>
</tr>
<tr>
<td>WF: working formulation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Characteristics of patients by phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age-Range</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Stage I or II</td>
</tr>
<tr>
<td>III or IV</td>
</tr>
<tr>
<td>Pathology-Low</td>
</tr>
<tr>
<td>Intermediate</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td>Curtative chemotherapy</td>
</tr>
<tr>
<td>+ Radiotherapy</td>
</tr>
</tbody>
</table>

2. **Clinical characteristics.** Table 3 shows distribution of clinical features for the NHL according to T- and B-phenotype. Ninety three percent of the cases with low grade NHL were B-phenotype. Intermediate grade NHL comprised the majority of the studied population with T-NHL having more cases than B-NHL. Cases of high grade NHL were equally distributed between those with T- and B-phenotype. T- and B-NHLs comprised of an equal number of cases having early stages (I and II) and advanced stages (III and IV), whereas cases of NHL with advanced stages were more than those with early stages in both T- and B-NHLs. Eighty percent of T- and 87.7% of B-NHLs received combination chemotherapy of curative intent.

3. **Response.** Table 4 shows that 75% of T- and 84% of B-NHLs achieved a CR or PR. NHL with early stages showed higher response rate in both T- and B-NHLs than those of advanced stages, p<0.05 by chi-square test. Cases of NHL with either T- or B-
Table 4. Response results by phenotype

<table>
<thead>
<tr>
<th>Features</th>
<th>T=33</th>
<th>B=36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage-I or II</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>III or IV</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Pathology- Low</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Intermediate</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Curative chemotherapy + Radiotherapy</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>%</td>
<td>86.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Response rates are significantly higher in the early stages compared to advanced ones for the T- and B-NHLs (p < 0.05)

CR: complete remission PR: partial remission

4. Survival. Fig. 1 shows the overall survival in each pathological grade of NHL according to their clinical stage at presentation. Cases having early stages showed the highest survival rate in low grade NHL (Fig. 1a), and the rate was higher in the intermediate grade NHL (Fig. 1b) where median survival was not reached (p<0.05 log rank). But survival rate of these cases was very low in high grade NHL (Fig. 1c) where median survival was below 36 months. Cases having advanced stages showed high survival rate in low grade NHL only.

Fig. 2, indicates the overall survival in intermediate grade (Fig. 2a) and high grade (Fig. 2b) NHL according to the immunophenotype. In intermediate grade NHL (Fig. 2a), those with T-phenotype showed a slightly higher survival rate than B-phenotype, especially after 36 months, though not significant by log rank test, whereas in high grade NHL (Fig. 2b) both cases with T- and B-phenotype showed similarly low survival rates and the median was about 24 months.

Fig. 3, shows the comparative survival between T- and B-NHL cases having early stages (Fig. 3a) and
in which mediam survival was being not reached those with advanced stages (Fig. 3b) of intermedi­
NHL in which the median survival was about 36 months. This difference was not significant by log
rank test. In advanced stages (Fig. 3b) both T- and
B-NHL cases showed low survival rate. The results indicate that pathological grade, clinical
stage and immunophenotype support each other in predicting the survival of NHL cases. Influence
of immunophenotype was muffled by the broad based pathological grading in low and high grade
NHL. To overcome this, evaluation of the effect of
immunophenotype based on individual histological
subtypes would be essential.

DISCUSSION

Findings from this study emphasize the interrela­
tion between immunophenotype by flow cytom­
etry applying MoAbs, histopathological grade according to the WF and clinical stage by the Ann
Arbor criteria in predicting prognosis for the
NHLs.

Institutional variations in the prognosis of NHL
have been documented within and outside
Japan6·27·38·41. The classification system of the
WF43 and the staging model based on Ann Arbor
criteria5 have been applied in order to minimize
the prognostic variations and facilitate comparabil­
ity. Histologic subtypes according to WF, with and
without phenotypic predilection are almost equally common inside and outside
Japan1·6·12·13·18·28·30·32·34·38·40·41. Except for a few
studies6·18·27·30·31·38·41, the immunophenotyping or the
immunological concept of NHL is not taken into
consideration by the most widely used classification systems3,38 including the WF43 or other prognos­
tic models5·10·24·42·48 for the NHL. Likewise, other
immunologically well established entities of
NHL19·25·27·28·30·31·38·40 are not adequately represented in
most of the widely used classification sys­
tems13·38. This study reviewed the role of
immunophenotype in relation to the pathological grade and clinical stage of NHL.

Cases were almost equally distributed between T­
and B-phenotype in all pathological grades except
for low grade NHL (93% B-phenotype). Advanced
stages and intermediate grade NHL comprised a
majority of the cases studied. Therapy was initiat­
ed according to the histological subtype or patho­
logical grade and clinical stage, and was similar for
both T- and B-NHL except in SNC and LBL which
have exclusive phenotypes. Overall cases showed
good responses to initial therapy. Cases with early
stages showed higher response rates than those
with advanced stages, p<0.05. Responses were
good in both pathological grades. On the other
hand, cases with low grade NHL (93% B­
phenotype) had the highest survival rate compared
to the other two grades in both early and advanced
clinical stages. Survival rate was the lowest in high
grade NHL irrespective of the clinical stage. The
high grade NHLs comprised SNC and LBL which
have exclusive phenotypes and poor prognosis. In
intermediate grade NHL survival rate was higher in
the early stages, and was further shown to be
higher in T-NHL than B-NHL. Early stage, partic­
ularly stage I is rare in T-NHL. Thus the above
results thus suggest that: phenotype, pathological
grade and initial clinical stage jointly influenced the
survival of these NHL cases.

In NHL, pathological grading by the WF and
clinical staging according to the Ann Arbor criter­
ia are applied in models which predict the
prognosis5·16·18·25·34·36·45, and in determining ther­
apeutic regimens4·11·13·14·32·46·44. The WF43 is solely
based on histomorphology whereas systems such as
that of Lukes-Collins53 use morphological or cyto­
logical criteria to reflect the immunological concept
of NHL. None applies immunophenotyping. On the
other hand, investigations of the clinical value of
phenotype in NHL have given heterogeneous
results5·35·30·41, making it difficult to develop clas­
sification systems or determine initial therapy on
the basis of immunophenotype. Recently, several
studies have proposed new prognostic
differences in survival between T- and B-phenotype. Cases with early
stages showed higher response rates than those
with advanced stages, p<0.05. Responses were
good in both pathological grades. On the other
hand, cases with low grade NHL (93% B­
phenotype) had the highest survival rate compared
to the other two grades in both early and advanced
clinical stages. Survival rate was the lowest in high
grade NHL irrespective of the clinical stage. The
high grade NHLs comprised SNC and LBL which
have exclusive phenotypes and poor prognosis. In
intermediate grade NHL survival rate was higher in
the early stages, and was further shown to be
higher in T-NHL than B-NHL. Early stage, partic­
ularly stage I is rare in T-NHL. Thus the above
results thus suggest that: phenotype, pathological
grade and initial clinical stage jointly influenced the
survival of these NHL cases.

In NHL, pathological grading by the WF and
clinical staging according to the Ann Arbor criter­
ia are applied in models which predict the
prognosis5·16·18·25·34·36·45, and in determining ther­
apeutic regimens4·11·13·14·32·46·44. The WF43 is solely
based on histomorphology whereas systems such as
that of Lukes-Collins53 use morphological or cyto­
logical criteria to reflect the immunological concept
of NHL. None applies immunophenotyping. On the
other hand, investigations of the clinical value of
phenotype in NHL have given heterogeneous
results5·35·30·41, making it difficult to develop clas­
sification systems or determine initial therapy on
the basis of immunophenotype. Recently, several
studies have proposed new prognostic

![Fig. 3. Overall survival for the T- and B-phenotype in intermediate grade NHL](image-url)
models10,24,38,42,48 to replace the Ann Arbor staging criteria. Only a few of these studies6,27,38-40, however, included immunophenotypic analysis. In this study, phenotypic analysis was carried out by flow cytometry applying a panel of MoAbs. Phenotypic distribution within the WF by histologic subtype or pathological grade was similar to other reports38,41. All cases with low grade NHL were B-phenotype, except one case of small lymphocytic cell type which was strongly positive to E-rosette test. Cases were similarly distributed between T- and B-phenotypes for each histological subtype in the intermediate and high grade NHLs, except for the follicular large cell type (B-phenotype: one case), LBL and SNC. Immunophenotype, pathological grade and clinical stage at presentation displayed an interrelationship in predicting prognosis for the NHL. Precise immunophenotyping in NHL will lead to the recognition of the varieties of NHLs and improve the predictability of prognosis. These would be used to determine corresponding therapies which could be lineage specific for the T- and B-NHLs.

ACKNOWLEDGEMENTS

Our thanks to Misses. K. Tanaka and H. Ota, as well as Ms. Y. Ohno and K. Yamamoto for technical assistance, Drs. M. Ohtaki and T. Hashimoto (Department of Biometrics, Research Institute for Nuclear Medicine and Biology, Hiroshima University) for the statistical analysis, and Ms. H. Sumida for preparing the manuscript.

(Received June 22, 1990) (Accepted October 18, 1990)

REFERENCE

Pathol. 40: 995–1015.