このエントリーをはてなブックマークに追加
ID 48645
file
creator
Kuribayashi, Taka-aki
Masanari, Misa
Yamanaka, Masaru
Wakai, Satoshi
subject
Deep-sea
Growth environment
5′-Nucleotidase
NaCl tolerance
Shewanella
abstract
Shewanella species are widely distributed in sea, brackish, and fresh water areas, growing psychrophilically or mesophilically, and piezophilically or piezo-sensitively. Here, membrane-bound 5′-nucleotidases (NTases) from deep-sea Shewanella violacea and brackish water Shewanella amazonensis were examined from the aspect of NaCl tolerance in order to gain an insight into protein stability against salt. Both NTases were single polypeptides with molecular masses of ~59 kDa, as determined on mass spectroscopy. They similarly required 10 mM MgCl2 for their activities, and they exhibited the same pH dependency and substrate specificity for 5′-nucleotides. However, S. violacea 5′-nucleotidase (SVNTase) was active enough in the presence of 2.5 M NaCl, whereas S. amazonensis 5′-nucleotidase (SANTase) exhibited significantly reduced activity with the same concentration of the salt. Although SVNTase and SANTase exhibited high sequence identity (69.7%), differences in the ratio of acidic to basic amino acid residues and the number of potential salt bridges maybe being responsible for the difference in the protein stability against salt. 5′-Nucleotidases from these Shewanella species will provide useful information regarding NaCl tolerance, which may be fundamental for understanding bacterial adaptation to growth environments.
description
This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [No. 26240045], a grant from the Japan Society for the Promotion of Science [No. 25-1446], and The Salt Science Research Foundation [No. 1655].
journal title
Extremophiles
volume
Volume 21
issue
Issue 2
start page
357
end page
368
date of issued
2017-01-03
publisher
Springer Verlag
issn
1431-0651
1433-4909
publisher doi
pubmed id
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
author
rights
This is a post-peer-review, pre-copyedit version of an article published in Extremophiles. The final authenticated version is available online at: https://doi.org/10.1007/s00792-016-0909-8
relation url
department
Graduate School of Biosphere Science