このエントリーをはてなブックマークに追加
ID 31168
file
creator
Hanabata, Yoshitaka
Ohsugi, Takashi
subject
acceleration of particles
cosmic rays
Magellanic Clouds
gamma rays: galaxies
NDC
Astronomy. Space sciences
abstract
Context. The Large Magellanic Cloud (LMC) is to date the only normal external galaxy that has been detected in high-energy gamma rays. High-energy gamma rays trace particle acceleration processes and gamma-ray observations allow the nature and sites of acceleration to be studied.

Aims. We characterise the distribution and sources of cosmic rays in the LMC from analysis of gamma-ray observations.

Methods. We analyse 11 months of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope and compare it to tracers of the interstellar medium and models of the gamma-ray sources in the LMC.

Results. The LMC is detected at 33σ significance. The integrated >100 MeV photon flux of the LMC amounts to (2.6 ± 0.2) × 10-7 ph cm-2 s-1 which corresponds to an energy flux of (1.6 ± 0.1) × 10-10 erg cm-2 s-1, with additional systematic uncertainties of 16%. The analysis reveals the massive star forming region 30 Doradus as a bright source of gamma-ray emission in the LMC in addition to fainter emission regions found in the northern part of the galaxy. The gamma-ray emission from the LMC shows very little correlation with gas density and is rather correlated to tracers of massive star forming regions. The close confinement of gamma-ray emission to star forming regions suggests a relatively short GeV cosmic-ray proton diffusion length.

Conclusions. The close correlation between cosmic-ray density and massive star tracers supports the idea that cosmic rays are accelerated in massive star forming regions as a result of the large amounts of kinetic energy that are input by the stellar winds and supernova explosions of massive stars into the interstellar medium.
journal title
Astronomy & Astrophysics
volume
Volume 512
start page
A7-1
end page
A7-15
date of issued
2010
publisher
EDP Sciences S A
issn
0004-6361
ncid
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2010 The European Southern Observatory
relation url
department
Graduate School of Science