このエントリーをはてなブックマークに追加
ID 19245
file
creator
Tokue, Ikuo
Nanbu, Shinkoh
abstract
Dissociations after the A˜ 1B1→B˜ 1A1 photoexcitation of SiH2, SiHD, and SiD 2 were studied to investigate excited-state dynamics and effects of the initial vibrational state. The cross section (σ) for the photodissociation relative to SiH2(B˜)→Si( 1D)+H2 and the rovibrational population of the H2 fragment were computed using the wave packet propagation technique based on the three-dimensional potential energy surfaces (PESs) of the A˜ and B˜ electronic states and the transition dipole surfaces, which were reported in our previous paper [J. Chem. Phys. 122, 144307 (2005)]. The photodissociation spectrum consists of a broadband and a number of sharp peaks. For SiH2 and SiD2, the sharp peaks correspond to the resonance structure of the vibrational levels of the B˜ state and the broadbands are nearly independent of the photon energy. The broadband for SiHD increases steeply with the photon energy above 30 000 cm-1. The flux leaving the computational grid for SiH2 and SiD2 consists of at least two components, whereas that for SiHD consists of only a faster component. These large isotope effects were discussed based on the valley to the dissociation channel on PES and the difference in the position of the initial wave packet for three isotopomers.
journal title
Journal of Chemical Physics
volume
Volume 124
issue
Issue 11
start page
114308-1
end page
114308-10
date of issued
2006-03-20
publisher
American Institute of Physics
issn
0021-9606
ncid
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2006 American Institute of Physics.
relation url
department
Graduate School of Science