このエントリーをはてなブックマークに追加
ID 17069
file
creator
Fujimoto, Yoshinori
Yamasaki, Takeshi
Mochizuki, Yu
Kajihara, Hiroki
Ikuta, Yoshikazu
subject
Fetal Surgery
Immunohistochemistry
Astrocytes
Microglia
Spinal cord injury
NDC
Medical sciences
abstract
Background: Because the immature spinal cord was nerve growth permissive, we examined glial reactions that influence regeneration of the spinal cord in a fetal rat spinal cord injury model. Methods: Three, 7, 21, and 35 days after intrauterine surgery, offsprings were killed and the thoracic and lumbar spinal cords were carefully removed from the spinal column and then cut into 10 m longitudinal sections. These sections were stained with hematoxylin-eosin, anti-glial fibrillary acidic protein antibody (GFAP) as a marker of astrocytes, and anti-complement CR3 antibody (OX-42) as a marker of microglia. A cordotomy model in young adult rat was utilized as a control. Results: In the present study, collagen fibers and scar formation were seen in the severed spinal cords of mature rats, but scar formation was not seen in the fetal rat cordotomy group, regardless of spinal continuity. In the Control group, biological activity of GFAP-positive cells increased over time. In the fetal rat cordotomy model, activity elevated slightly immediately after cordotomy, and disappeared shortly thereafter. In the Control group, OX-42 positive macrophage-like cells proliferated over time. However, in the fetal rat cordotomy model, OX-42 positive macrophage-like cells were recognized on postoperative days 3 and 7, and then disappeared. At 5 mm from the cordotomy site, reactive microglia were recognized in the white matter of Control group spinal cords, but these microglia were not recognized in the fetal rat cordotomy model. Conclusions: In the present study, collagen fibers and scar formation were seen in the severed spinal cords of adult rats, but scar formation was not seen in the fetal rat cordotomy group. Lack of inflammation and scar formation thus appear advantageous for regeneration of the fetal spinal cord. Between fetal and mature rats, chronological changes in the immunohistochemical reactions of astrocytes and microglia following cordotomy were compared, and the results confirmed many differences. The results of the prese
journal title
European Spine Journal
volume
Volume 15
issue
Issue 2
start page
223
end page
233
date of issued
2006-02-02
publisher
Springer
issn
0940-6719
ncid
publisher doi
pubmed id
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
author
rights
Copyright (c) 2006 Springer-Verlag. "The original publication is available at www.springerlin.com"
relation is version of URL
http://dx.doi.org/10.1007/s00586-005-0933-3
department
Graduate School of Biomedical Science