このエントリーをはてなブックマークに追加
ID 37374
file
creator
Kosugi, Kentaroh
Nishi, Nobuyuki
NDC
Chemistry
abstract
Geometrical and electronic structures of the acetic acid-benzene cation complex, (CH3COOH)・(C6H6)+, are studied experimentally and theoretically. Experimentally, a vibrational spectrum of (CH3COOH)・(C6H6)+ in the supersonic jet is measured in the 3000-3680 cm-1 region using an ion-trap photodissociation spectrometer. An electronic spectrum is also observed with this spectrometer in the 12000-29600 cm-1 region. Theoretically, ab initio molecular orbital calculations are performed for geometry optimization and evaluation of vibrational frequencies and electronic transition energies. The vibrational spectrum shows two distinct bands in the O-H stretching vibrational region. The frequency of the strong band (3577 cm-1) is close to that of the O-H stretching vibration of acetic acid and the weak one is located at 3617 cm-1. On the basis of geometry optimizations and frequency calculations, the strong band is assigned to the O-H stretching vibration of the cis-isomer of acetic acid in the hydrogen-bonded complex (horizontal cis-isomer). The weak one is assigned to the vertical trans-isomer where the trans-isomer of acetic acid interacts with the π-electron system of the benzene cation. The weakness of the high frequency band in the photodissociation spectrum is attributed to the binding energy larger than the photon energy injected. Only hot vertical trans-isomers can be dissociated by the IR excitation. The electronic spectrum exhibits two bands with intensity maxima at 17500 cm-1 and 24500 cm-1. The calculations of electronic excitation energies and oscillator strengths suggest that charge transfer bands of the vertical trans-isomer can be observed in this region in addition to a local excitation band of the horizontal cis-isomer. We assign the 17500 cm-1 band to the charge transfer transition of the vertical trans-isomer and the 24500 cm-1 band to the π-π transition of the horizontal cis-isomer. The calculations also suggest that the charge transfer is induced through the intermolecular C…O=C bond formed between a carbon atom of benzene and the carbonyl oxygen atom of acetic acid.
journal title
The Journal of Chemical Physics
volume
Volume 114
issue
Issue 11
start page
4805
end page
4816
date of issued
2001-03-15
publisher
American Institute of Physics
issn
0021-9606
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2001 American Institute of Physics
relation is version of URL
http://dx.doi.org/10.1063/1.1349082
department
Graduate School of Science