このエントリーをはてなブックマークに追加
ID 51541
file
creator
abstract
The quantum fluctuations of a physical property can be observed in the measurement statistics of any measurement that is at least partially sensitive to that physical property. Quantum theory indicates that the effective distribution of values taken by the physical property depends on the specific measurement context based on which these values are determined and weak values have been identified as the contextual values describing this dependence of quantum fluctuations on the measurement context. Here, the relation between classical statistics and quantum contextuality is explored by considering systems entangled with a quantum reference. The quantum fluctuations of the system can then be steered by precise projective measurements of the reference, resulting in different contextual values of the quantum fluctuations depending on the effective state preparation context determined by the measurement of the reference. The results show that mixed-state statistics are consistent with a wide range of potential contexts, indicating that the precise definition of a context requires maximal quantum coherence in both state preparation and measurement.
journal title
Physical Review A
volume
Volume 102
start page
062215
date of issued
2020-12-22
publisher
American Physical Society
issn
1050-2947
1094-1622
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
© 2020 American Physical Society
relation url
department
Graduate School of Advanced Science and Engineering



Last 12 months's access : ? times
Last 12 months's DL: ? times


This month's access: ? times
This month's DL: ? times