Tectonic Evolution of the Sambagawa Schists and its Implications in Convergent Margin Processes

アクセス数 : 394
ダウンロード数 : 85

今月のアクセス数 : 9
今月のダウンロード数 : 2
File
JSHUC_9-3_495.pdf 81.6 MB 種類 : fulltext
Title ( eng )
Tectonic Evolution of the Sambagawa Schists and its Implications in Convergent Margin Processes
Creator
HARA Ikuo
SHIOTA Tsugio
HIDE Kei
KANAI Kenji
GOTO Masumi
SEKI Sachiyo
KAIKIRI Kenji
TAKEDA Kenji
MIYAMOTO Takami
SAKURAI Yasuhiro
OHTOMO Yukiko
Source Title
Journal of science of the Hiroshima University. Series C, Geology and mineralogy
Volume 9
Issue 3
Start Page 495
End Page 595
Abstract
The Sambagawa schists as high P /T metamorphic rocks are a member of Mesozoic accretionary complexes developed in the southern front of the Kurosegawa-Koryoke continent of Southwest Japan. The Mesozoic accretionary complexes are divided into four megaunits developed as nappes, Chichibu megaunit II, Sambagawa megaunit, Chichibu megaunit I and Shimanto megaunit in descending order of structural level. The Chichibu megaunit II consists of three accretionary units developed as nappes, late early Jurassic unit, late middle Jurassic unit and latest Jurassic unit (Mikabu unit) in descending order of structural level. The Chichibu megaunit I consists of five accretionary units developed as nappes, late middle Jurassic unit (Niyodo unit), late Jurassic unit, Valanginian unit, Barremian unit and Albian unit in descending order of structural level. The Shimanto megaunit, which just underlies the Chichibu megaunit I, is Cenomanian-Turonian accretionary unit and Coniacian-Campanian accretionary unit. The schists, which underlie the Chichibu megaunit II, all have been so far called the Sambagawa schists. These are divided into six units, Saruta unit, Fuyunose unit, Sogauchi unit, Sakamoto unit, Oboke unit and Tatsuyama unit in descending order of structural level, which show different tectono-metamorphic history and different radiometric ages from each other. The Sakamoto unit, Oboke unit and Tatsuyama unit have been assumed with reference to their radiometric ages and structural relations to belong to the late middle Jurassic accretionary unit of the Chichibu megaunit I (high pressure equivalent of the Niyodo unit), the Cenomanian-Turonian accretionary unit of the Shimanto megaunit and the Coniacian-Campanian accretionary unit of the Shimanto megaunit respectively in this paper. The upper member of the Sambagawa schists, Saruta unit, Fuyunose unit and Sogauchi unit, is therefore called the Sambagawa megaunit in this paper.
The northern half and the southern half of the Sambagawa megaunit are intercalated as nappes between the Chichibu megaunit II and the Oboke unit and between the Chichibu megaunit II and the Sakamoto unit respectively. The constituent units of the Chichibu megaunit II, Sambagawa megaunit and Shimanto megaunit clearly show a downward younging age polarity, as compared with each other with reference to the oldest one of radiometric ages ( = metamorphic ages) of each unit. The Chichibu megaunit II and the Chichibu megaunit I show the same radiometric ages as compared between them with the same fossil age. The Saruta unit, Fuyunose unit and Sogauchi unit have therefore been assumed to be high pressure equivalent of Valanginian unit, that of Barremian unit and that of Albian unit of the Chichibu megaunit I respectively. These high pressure units were exhumed, separating the Chichibu supermegaunit into the Chichibu megaunit II and the Chichibu megaunit I and thrusting up onto the Chichibu megaunit I.
On the basis of the growth history of amphibole in hematite-bearing basic schists of the Sambagawa megaunit, it has been assumed that the highest temperature metamorphism of the Fuyunose unit occurred, when it had been coupled with the Saruta unit which was exhuming, and that of the Sogauchi unit did through its coupling with the Fuyunose and Saruta units which were exhuming. In the subduction zone which was responsible for the formation of the Sambagawa megaunit, namely, the peak metamorphism of a newly subducted unit appears to have occurred when it had been coupled with previously subcreted units which were exhuming. It has been also clarified that the subduction of a new unit occurred mixing the lower pressure part of the pre-existing subcretion unit as tectonic blocks. There is a distinct difference in the oldest one of radiometric ages between constituent units of the Sambagawa schists, showing a downward younging age polarity. The oldest one of radiometric ages of each unit appears to approximate to the age of the ending of peak metamorphism and to the age (Eh age) of the beginning of its exhumation. Such the tectonics of the Sambagawa megaunit would be explained in term of two-way street model. Because the age (Sub age) of the beginning of the subduction of each unit can be assumed from its fossil age, the average velocity of the subduction and that of the exhumation of the Sambagawa megaunit in Shikoku have roughly been estimated to be ca. 0.9 mm/year and ca. 2.0 mm/year respectively. Deformation of quartz, whose style depends strongly upon strain rate, resulted in type I crossed girdle without conentration in Y even in the depth part of more than 10kb of the subduction zone, which was placed under temperature condition of much higher than 500°C, unlike the cases of magma-arcs where quartz c-axis fabrics with maximum concentration in Y are found in gneisses produced under temperature condition of lower than 500°C. Quartz deformation in the depth part of 15-17kb of the subduction zone appears to have occurred as dominant prism slip.
The hanging wall of the Kurosegawa-Koryoke continent, which was placed at the depth of ca. 15-17 kb, thrust onto the Saruta unit at the depth of ca. 10-11 kb, accompanying intermingling of constituent rocks of the former and the latter and also mixing of various depth parts of the latter. The highest temperature metamorphism of the Saruta unit, which appears to have occurred under metamorphic condition of lower P /T than under that related to the formation of the general type of high P /T type metamorphic rocks, is ascribed to a contact metamorphism related to the overthrusting of the Kurosegawa-Koryoke continent. The thrusting of the Kurosegawa-Koryoke continent is ascribed to its collision with the Hida continent.
The coupling of the previously subcreted Saruta unit with the newly subcreted Fuyunose unit occurred accompanying nearly isobaric cooling of the former. The great exhumation of the Saruta nappe (I + II) and Fuyunose nappe schists with great volume began together with the subcretion of the Sogauchi unit. The beginning age of the exhumation of the Sambagawa schists with great volume appears to coincide with that of the subduction of the Kula-Pacific ridge in Kyushu-Shikoku, which has been assumed by Kiminami et al. (1990). Namely, their great exhumation occurred with the progress of the subduction of the Kula-Pacific ridge with an eastward younging age polarity. The exhumation units, which were developed after the Mikabu unit, clearly show an eastward younging age polarity. Namely, these comparable with the Saruta unit, Fuyunose unit and Sogauchi unit are not found in central Japan and the Kanto Mountains. Rock deformation in the deformation related to the exhumation of the Sambagawa schists and their underlying schists appears to have commonly been of flattened type in mean strain.
During the Ozu phase when the Kula-Pacific ridge subducted to the greater depth, the collapse of the Kurosegawa-Koryoke continent took again place, accompanying that of the pile nappe structures of the Sambagawa megaunit, Chichibu megaunit I and Oboke unit, and the thermal gradient along the plate boundary greatly changed, giving rise to medium P/T type metamorphism in the subduction zone (formation of the Tatsuyama nappe schists).
The geological structures of the Sambagawa megaunit consist thus of two types of pile nappe structures, pre-Ozu phase pile nappe structures and Ozu phase pile nappe structures. The former is structures related to the coupling of the exhuming units ( = previously subcreted units) with the newly subcreted unit. The latter is structures showing the collapse of the former. The Ozu phase pile nappe structures are further divided into the pile nappe structures formed during the earlier stage (Tsuji stage) of the Ozu phase and these formed during the later stage (Futami stage). The former is disharmonic with reference to movement picture with the latter: The deformation related to the formation of the former, accompanying exhumation of the Oboke nappes, appears to contain a component of northward displacement, while that for the latter does a component of southward displacement. After the Ozu phase deformation the Sambagawa megaunit suffered the Hijikawa-Oboke phase folding, forming a series of sinistral en echelon upright folds.
The relationship between the above-mentioned tectonic events of the Sambagawa megaunit and its surroundings and their radiometric ages is summarized as follows:

[Original table is skipped. For more details, please refer to the full text.]
Language
eng
Resource Type departmental bulletin paper
Publisher
Hiroshima University
Date of Issued 1992-08-10
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 0075-4374
[NCID] AA00706718