Bernstein type theorems for some types of parabolic k-Hessian equations
Use this link to cite this item : https://ir.lib.hiroshima-u.ac.jp/00038523
ID | 38523 |
file | |
title alternative | ある種の放物型 k-Hessian 方程式に対する Bernstein 型定理
|
creator |
Nakamori, Saori
|
NDC |
Mathematics
|
abstract | We are concerned with the characterization of entire solutions to the parabolic k-Hessian equation of the form −utFk(D2u) = 1 in Rn ×(−∞, 0]. We prove that for 1 ≤ k ≤ n, any strictly convex-monotone solution u = u(x, t) ∈ C4,2(Rn × (−∞, 0]) to −utFk(D2u) = 1 in Rn × (−∞, 0] must be a linear function of t plus a quadratic polynomial of x, under some growth assumptions on u.
|
language |
eng
|
nii type |
Thesis or Dissertation
|
HU type |
Doctoral Theses
|
DCMI type | text
|
format | application/pdf
|
text version | ETD
|
relation references | Saori Nakamori and Kazuhiro Takimoto; Uniqueness of boundary blowup solutions to k-curvature equation; Journal of Mathematical Analysis and Applications, 399 (2013), 496-504. (doi: 10.1016/j.jmaa.2012.10.021)
Saori Nakamori and Kazuhiro Takimoto; A Bernstein type theorem for parabolic k-Hessian equations; Nonlinear Analysis: Theory, Methods & Applications, 117 (2015), 211-220. (doi: 10.1016/j.na.2015.01.010)
|
relation references URL | http://doi.org/10.1016/j.jmaa.2012.10.021
http://doi.org/10.1016/j.na.2015.01.010
|
grantid | 甲第6738号
|
degreeGrantor | 広島大学(Hiroshima University)
|
degreename Ja | 博士(理学)
|
degreename En | Doctor of Science
|
degreelevel | doctoral
|
date of granted | 2015-06-22
|
department |
Graduate School of Science
|
Last 12 months's access : ? times
Last 12 months's DL: ? times
This month's access: ? times
This month's DL: ? times