このエントリーをはてなブックマークに追加
ID 28890
file
creator
Kaneko, Kunihiko
NDC
Physics
abstract
Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the relaxation-time course. The former behavior is explained by the eigenvalue distribution of a Jacobian matrix around the equilibrium state that depends on the distribution of kinetic coefficients of reactions. The latter behavior is associated with kinetic constraints rather than metastable states and is due to the absence of catalysts for chemicals in excess and the negative correlation between two chemical species. Examples are given and generality is discussed with relevance to bottleneck-type dynamics in biochemical reactions as well.
journal title
Physical Review E
volume
Volume 80
issue
Issue 4
start page
041931-1
end page
041931-7
date of issued
2009-10-30
issn
1539-3755
ncid
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2009 American Physical Society.
relation url
department
Graduate School of Science



Last 12 months's access : ? times
Last 12 months's DL: ? times


This month's access: ? times
This month's DL: ? times