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Abstract
We prove that a conformal transformation ¢ : (M, g*) — (M, g) with Ric,. = Ric, preserves Riemannian
curvature tensors. Moreover, in a fibred Riemannian space, if any horizontal mapping covering is a Ricci-
invariant conformal transformation and the total space is Einstein, then each fibre is a totally geodesic
submanifold of the total space.

1. Introduction

Let M be an m-dimensional Riemannian manifold with metric tensor g. A diffeomorphism ¢ : M — M is
called a conformal transformation if there is a positive function p on M such that °g= p~g. In this case, we
express ¢ as ¢: (M,g') > (M,g), where g* = p™g. If pis constant, then ¢ is called a homothety [3,4,6]. A
classical theorem of Liouville determines all possible conformal transformations between the Euclidean
space. As a generalization, we call a conformal transformation ¢ : (M, g') — (M, g) a Liouville transformation
if Ric,. = Ric,[3], where Ric, is the Ricci curvature with respect to g. In [2,5], they proved that a globally
defined Liouville transformation of a complete Riemannian manifold is a homothety.

In this paper, we study the local properties of Liouville transformations by use of adapted coordinates
and fibred Riemannian spaces. We prove that

Theorem 1. Ler ¢: (M, g') —(M,g) (g' = p'zg) be a conformal transformation with Ric,. = Ric,. Then
¢ preserves Riemannian curvature tensors. That is R.=R, where Ryis the Riemannian curvature tensor with

respect 1o g.

On the other hand, in a fibred Riemannian space (M, B,G, ), the horizontal mapping covering is a
transformation between fibres. If any local horizontal mapping covering in a fibred Riemannian space is an
isometry (resp. conformal mapping), then we call it a fibred Riemannian space with isometric fibre (resp.
conformal fibre). It is well known that [2] a necessary and sufficient condition for a fibred Riemannian space

have isometric fibre (resp. conformal fibre) is
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(‘[x‘ Gv)v =0 (resp. pGV)

for any vector field X in B, p a function on M and X"is a lift of X. In a fibred Riemannian space with
isometric fibre (resp. conformal fibre), each fibre is a totally geodesic (resp. totally umbilical) submanifold of
the total space and vice versa [2]. From these facts, we have

Theorem 2. In a fibred Riemannian space, if any local horizontal mapping covering is a Ricci-invariant
conformal transformation and the total space is a non-Euclidean Einstein space, then each fibre is a totally
geodesic submanifold of the total space.

Throughout this paper, the ranges of indices are as follows:
ijk-:1L2,-sn+p=m,
ab,c,-:12,--,n,

By, in+l-m,

unless otherwise stated.
2. Fibred Riemannian space

Let (M, B,G,7) be a fibred Riemannian space, where (M, G) is the total space with a projectable
Riemannian metric G, B the base space and 7 the projection M — B of maximum rank everywhere. We
suppose that the dimensions of M and B are m and n respectively. The fibre at any point Q in M is of
dimension p = m - n and denoted by F(Q) or simply by F. We suppose that each fibre is connected. The
horizontal and vertical parts of a tensor field T are denoted by T and TV respectively. Let h =(h,,,“) and
L= (LC,,” ) be the components of the second fundamental tensor and the normal connection of each fibre
respectively. For a basis {E,,, Cﬂ} of the tangent space of M and {E", C"} dual to {Eb, Cﬂ} , it is well known
that [2,5]

1) V,E%=T,EfE'-L,°EC"a+L," ,C/E"s—h",C/'C"s,

2) LE'=0, LC*=2L,"E’-P,*C*,

where I"is the Christoffel symbol of the Riemannian metric of B, £ the Lie derivation with respect to E, and
P is defined by

[Er’ Cﬁ] = Pcﬁucu

for the bracket operatoin [, ].
3. Proof of Theorem 1

Let ¢:(M.g") > (M.g) (9" = pg) be a conformal transformation. The geometric objects {R, S, K, I'}

-
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are the Riemannian curvature, Ricci curvature, scalar curvature, and the Christoffel symbol of (M, g)

respectively. {R", S*, K", I""} are the corresponding objects of (M, g*). Then we have [1]
3.1

R*’tﬁh = Rkjnh + p—l(slflvjpi - Sl'hvkp. +gjivkph - gkiVj ph) "p_zpd)l(a:gji - al‘hgk.')’
3.2) S‘!i = Sji + (m - 2)p_lvjpi + p_lgjivlpl - (m - l)p-zplplgji'
(33) K =pK+2m'pV,p' —pp.

If we assume that §”;i = S, then we get

1
(34) Vp= Zp’plg”"

For an arc length u of a p-curve, if we take an adapted coordinate system (i, "), then the metric ds? of M is
given by

(3.5) ds"=du*+ {p'(u)}zgs2

where ds’ = f,du’du’ is the metric form of the p-hypersurface M of M. Along the p-curve, from (3.4), we
get

(3.6) 2pp” =(p’)"
The general solution of (3.6) is given by

(3.7  p=(Au+B),

where A and B are constants. If M is complete, then p= B?, that is ¢ is a homothety. Hence it has a meaning
only in the case of local version. For an adapted coordinate, the metric of M is given by
(3.8)

ds® = du’ +4A’(Au+ B)*ds’.
Then the Christoffel symbols of M are given by
rl=r=r'=o

I;'=—-4A’(Au+B)f,
ho A gk

""" Au+B "
r}ih=rﬁh-

3.9

Hence, the non-zero component of the curvature tensor R of M is

Rkjih = E(jih - 4A4(6:f;'i _a,hfk:)
The Riemannian metric of (M, g*) is given by

2
(3.10) ds” =pds* = ! 2 44

du® + ds’,
(Au+ B " T (AurB’

that is

. 1

_ . 4A’
(Au+ B I

9, = mfﬁ-
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So, the Christoffel symbols of ds* are given by

*l[i=r*lhl=0, F*1'|=— 2A >
Au+ B
A
] I''i' =4A*(Au+B)f,, I =- h
3.1 i (Au+ B)f, 1 Au+36'

I",-".- = _jhi.
Therefore, we can calculate the non-zero component of the curvature tensor of (M, g*) as
(3.12) R'"= Ekﬁh + I -rhred

=R, —44(81f, 81,

Thus we complete the proof of Theorem 1.
4. Proof of Theorem 2

From (2.1), we have
@1 Vv, x'=v,(x"E,)

= (9, X")E's + X"{I,E,'E's — L,"E, C'a +L,"yC,  E's = b, *C,/ C'a }.

Let $ be the Ricci tensor of (M, G). By use of (2.2) and (4.1), we obtain
AV

42 (£.8)=(£.9)

=(,c Sk)c”®ck.

X/a; "h

Since

@3 £, 8,=XVS5,+SV.X'+S,V.X,

x/9; "

we have

@4 (£,5,)C"C" = (X'V,8,)C"s ® C'e + 5L, X =S, 5h X" + 8, L, X" — 5, 1" X"
by substituting (4.1) into (4.3) and taking account of (4.2). In a fibred Riemannian space, if any local

~,\V
horizontal mapping covering is a Ricci-invariant conformal transformation, then ([xL SV) = 0. Therefore the
condition that the metric G on M is Einstein and the equations (4.2) and (4.4) imply Theorem 2.
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