On conformally flat twisted product manifolds

Yoshio Agaoka* and Byung Hak Kim**

*Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima
University, Higashihiroshima 739, Japan

**Department of Mathematics and Institute of Natural Sciences,
Kyung Hee University, Suwon 449-701, Korea

Abstract: We study the conformally flat twisted product manifolds $M = B \times_f F$ of Riemannian manifolds and investigate the conditions of M to be a warped product space.

Key words: twisted product manifolds, conformally flat, Einstein

Introduction

The warped product manifolds were defined by Bishop and O'Neill [2] to study the manifolds with negative curvature. The properties of warped products have studied from many points of view and this notion is used to construct a lot of examples for studying geometry ([1],[2],[4],[6], etc.).

Generalizing the idea of warped products, B.Y. Chen [3] defined the twisted products to construct a family of totally umbilical submanifolds with various properties. Machida and Sato [5], Ponge and Reckziegel [7] studied twisted products and twistor spaces in the case of pseudo-Riemannian manifolds. However the mathematical properties of the twisted product manifold are not studied enough yet.

In this paper, we are to study the conformally flat twisted product spaces $M = B \times_f F$ of Riemannian manifolds and investigate the conditions to be a warped product space, and other geometrical properties of each space.

1. Preliminaries

Let (B, g) and (F, \bar{g}) be *n*-dimensional and *p*-dimensional Riemannian manifolds and f a positive smooth function on $B \times F$. Consider the product manifold $B \times F$ with projections

$$\pi: B \times F \to B$$
 and $\sigma: B \times F \to F$.

The twisted product manifold $M = B \times_f F$ is by definition the manifold $B \times F$ with the Riemannian structure given by (see [3])

Received September 12,1997; Accepted October 13,1997

^{**} This research was supported by KOSEF 961-0104-019-2

(1. 1)
$$||X||^2 = ||\pi_*X||^2 + (f(b,p))^2 ||\sigma_*X||^2$$

for any vector X tangent to M at (b, p). If f depends only on B, this is the warped product of B and F in the sense of Bishop and O'Neill [2]. Let G be the Riemannian metric on M and $\dim M = m = n + p$.

For a local coordinate system (u^a) of B, the metric tensor g has the components (g_{ba}) . Similarly, for a local coordinate system (u^x) of F, \bar{g} has the components (\bar{g}_{yx}) . Then, with respect to the local coordinate system (u^a, u^x) of M, G has the components

$$(1.2) (G_{ji}) = \begin{pmatrix} g_{ba} & 0 \\ 0 & f^2 \overline{g}_{yx} \end{pmatrix}.$$

Throughout this paper, the ranges of indices are as follows:

$$i, j, k, \dots : 1, 2, \dots, n+p = m$$

 $a, b, c, \dots : 1, 2, \dots, n$
 $x, y, z, \dots : n+1, \dots, n+p$

unless otherwise stated.

Let ∇_b (resp. ∇_x) be the components of the covariant derivative with respect to g (resp. \bar{g}) and $\begin{Bmatrix} a \\ bc \end{Bmatrix}$ (resp. $\begin{Bmatrix} \bar{x} \\ yz \end{Bmatrix}$) the Christoffel symbol of g (resp. \bar{g}). Then the Christoffel symbols $\begin{Bmatrix} \tilde{k} \\ ji \end{Bmatrix}$ of G on M are given as follows

$$\left\{ \begin{array}{c} \tilde{a} \\ bc \end{array} \right\} = \left\{ \begin{array}{c} a \\ bc \end{array} \right\},$$

(1. 4)
$$\left\{ \begin{array}{l} \tilde{x} \\ yz \end{array} \right\} = \left\{ \begin{array}{l} \overline{x} \\ yz \end{array} \right\} + \frac{1}{f} \left(f_y \delta_z^x + f_z \delta_y^x - f^x \overline{\boldsymbol{g}}_{yz} \right),$$

(1. 5)
$$\left\{ \begin{array}{l} \tilde{x} \\ ya \end{array} \right\} = \frac{1}{f} f_a \delta_y^x,$$

(1. 6)
$$\left\{ \begin{array}{l} \tilde{a} \\ xy \end{array} \right\} = -f f a \overline{g}_{xy}$$

and the others are zero, where $f_a = \frac{\partial f}{\partial u^a}$ and $f_y = \frac{\partial f}{\partial u^y}$.

Let \tilde{R} , R and \bar{R} be the curvature tensors of M, B and F respectively, then we have

$$(1.8) \tilde{R}_{dxy}^z = \frac{1}{f} (\partial_d f_y) \delta_x^z - \frac{1}{f} (\partial_d f^z) \overline{g}_{xy} - \frac{1}{f^2} f_d f_y \delta_x^z + \frac{1}{f^2} f_d f^z \overline{g}_{xy},$$

(1. 9)
$$\tilde{R}_{dxb}^{z} = \frac{1}{f} (\nabla_{d} f_{b}) \delta_{x}^{z}, \quad \tilde{R}_{dxy}^{a} = -f (\nabla_{d} f_{a}) \overline{g}_{xy},$$

$$\tilde{R}_{xyz}{}^{a} = -f(\partial_x f^a)\overline{g}_{yz} + f(\partial_y f^a)\overline{g}_{xz} - f^a f_y \overline{g}_{xz} + f^a f_x \overline{g}_{yz},$$

$$\tilde{R}_{xyz}^{w} = \overline{R}_{xyz}^{w} + \frac{1}{f} \left[(\nabla_{x} f_{z}) \delta_{y}^{w} + (\nabla_{y} f^{w}) \overline{g}_{xz} - (\nabla_{x} f^{w}) \overline{g}_{yz} - (\nabla_{y} f_{z}) \delta_{x}^{w} \right]$$

$$- \frac{2}{f^{2}} \left[f_{x} f_{z} \delta_{y}^{w} + f_{y} f^{w} \overline{g}_{xz} - f_{x} f^{w} \overline{g}_{yz} - f_{y} f_{z} \delta_{x}^{w} \right]$$

$$+ \|f_{e}\|^{2} \left[\overline{g}_{xz} \delta_{y}^{w} - \overline{g}_{yz} \delta_{x}^{w} \right] - \frac{\|f_{v}\|^{2}}{f^{2}} \left[\overline{g}_{yz} \delta_{x}^{w} - \overline{g}_{xz} \delta_{y}^{w} \right],$$

and the others are zero.

The components of Ricci tensors are given by

(1.12)
$$\tilde{S}ab = Sab - \frac{p}{f}(\nabla_a f_b),$$

(1.13)
$$\tilde{S}_{ax} = -(p-1) \left(\frac{1}{f} \partial_a f_x - \frac{1}{f^2} f_a f_x \right),$$

(1.14)
$$\tilde{S}_{yx} = \overline{S}_{yx} - f(\triangle f)\overline{g}_{yx} - \frac{1}{f}(\overline{\triangle}f)\overline{g}_{yx} - \frac{(p-2)}{f}\nabla_{y}f_{x} + \frac{2(p-2)}{f^{2}}f_{y}f_{x} - (p-1)\|f_{e}\|^{2}\overline{g}_{yx} - \frac{(p-3)}{f^{2}}\|f_{w}\|^{2}\overline{g}_{yx},$$

where $\triangle f = \nabla_e f^e$, $\bar{\triangle} f = \nabla_x f^x$ and \tilde{S} , S and \bar{S} are the Ricci tensors of M, B and F respectively.

Let \tilde{K} , K and \bar{K} be the scalar curvatures of M, B and F respectively, then we have

$$(1.15) \quad \tilde{K} = K + \frac{1}{f^2} \overline{K} - \frac{2p}{f} (\triangle f) - \frac{2(p-1)}{f^3} (\overline{\triangle} f) - \frac{p(p-1)}{f^2} \|f_e\|^2 - \frac{(p-1)(p-4)}{f^4} \|f_x\|^2$$

2. Conformally flat twisted product manifold

Now we put

(2. 1)
$$\psi_{dy} = \frac{1}{f} \partial_d f_y - \frac{f_d f_y}{f^2}$$

and

(2. 2)
$$\psi_{yx} = \frac{1}{f} \nabla_{y} f_{x} - \frac{2f_{y} f_{x}}{f^{2}} + \frac{1}{2} \left(\|f_{e}\|^{2} + \frac{\|f_{v}\|^{2}}{f^{2}} \right) \overline{g}_{yx},$$

then the identities (1.8), (1.11), (1.13), (1.14) and (1.15) are reduced to

$$(2.3) \tilde{R}_{dzy}^{x} = \psi_{dy} \delta_{z}^{x} - \psi_{d}^{x} \overline{g}_{zy},$$

$$\tilde{R}_{wzy}{}^{x} = \overline{R}_{wzy}{}^{x} + \psi_{wy} \delta_{z}^{x} - \psi_{zy} \delta_{w}^{x} + \psi_{z}{}^{x} \overline{g}_{wy} - \psi_{w}{}^{x} \overline{g}_{zy},$$

(2. 5)
$$\tilde{S}_{dy} = -(p-1)\psi_{dy}$$
,

(2. 6)
$$\tilde{S}_{zy} = \overline{S}_{zy} - f(\triangle f)\overline{g}_{zy} - (p-2)\psi_{zy} - \psi_w{}^w\overline{g}_{zy},$$

(2.7)
$$\tilde{K} = K + \frac{1}{f^2} \overline{K} - 2p \frac{\Delta f}{f} - 2(p-1) \frac{\psi_w^w}{f^2},$$

where we have put

$$\psi_w^w = \frac{1}{f} || \overline{\Delta} f + \frac{p}{2} || f_e ||^2 + \frac{p-4}{2f^2} || f_v ||^2.$$

Assume that the twisted product manifold is conformally flat, that is, $\tilde{R}_{kji}^{\ \ h}$ of $M = B \times_f F$ satisfies (see[1])

$$(2. 8) \tilde{R}_{kji}{}^{h} = \frac{1}{m-2} \left(\tilde{S}_{ji} \delta_{k}^{h} - \tilde{S}_{ki} \delta_{j}^{h} + \tilde{S}_{k}{}^{h} G_{ji} - \tilde{S}_{j}{}^{h} G_{ki} \right) - \frac{1}{(m-1)(m-2)} \tilde{K} \left(G_{ji} \delta_{k}^{h} - G_{ki} \delta_{j}^{h} \right)$$

Using (1. 9) and (2. 8), we have

$$(2. 9) \frac{1}{f} (\nabla_d f_c) \delta_y^x = -\frac{1}{(m-2)} \left\{ S_{dc} - \frac{p}{f} (\nabla_d f_c) \right\} \delta_y^x - \frac{1}{(m-2)} \tilde{S}_y^x g_{dc} + \frac{1}{(m-1)(m-2)} \tilde{K} g_{dc} \delta_y^x.$$

If we contract (2. 9) with respect to x and y, then we get

(2.10)
$$\frac{2p}{f}(\triangle f) = pK + \frac{n}{f^2} \left\{ \overline{K} - \frac{2(p-1)}{f} (\overline{\triangle} f) - p(p-1) \| f_e \|^2 - \frac{(p-1)(p-4)}{f^2} \| f_x \|^2 \right\} - \frac{np}{(m-1)} \tilde{K},$$

and that

(2.11)
$$\frac{2p(p-1)(n-1)}{(m-1)f}(\triangle f) = \frac{p(1-p)}{(m-1)}K + \frac{n(1-n)}{(m-1)f^2}\overline{K} + \frac{2n(n-1)(p-1)}{(m-1)f^3}(\overline{\triangle}f) + \frac{pn(n-1)(p-1)}{(m-1)f^2} \|f_e\|^2 + \frac{n(n-1)(p-1)(p-4)}{(m-1)f^4} \|f_x\|^2$$

with the help of (1.15), or equivalently

$$p(p-1)K = \frac{n(1-n)}{f^2}\overline{K} - \frac{2p(p-1)(n-1)}{f}(\triangle f) + \frac{2n(n-1)(p-1)}{f^3}(\overline{\triangle} f) + \frac{pn(n-1)(p-1)}{f^2} \|f_e\|^2 + \frac{n(n-1)(p-1)(p-4)}{f^4} \|f_x\|^2.$$

If we use (1.10) and (2.8), then we get

$$(2.12) -f^2 \psi_z^a \overline{g}_{yx} + f^2 \psi_y^a \overline{g}_{zx} = \frac{f^2}{m-2} \left(\tilde{S}_z^a \overline{g}_{yx} - \tilde{S}_y^a \overline{g}_{zx} \right).$$

Contracting (2.12) with respect to x and z, we obtain

(2.13)
$$\tilde{S}_{va} + (m-2)\psi_{va} = 0$$

if $p \neq 1$. Using (2.5) and (2.13),

$$(2.14)$$
 $\psi_{ya} = 0$

if $n \neq 1$, and that $\tilde{S}_{ya} = 0$. Since

$$\psi_{dy} = \frac{1}{f} \partial_d f_y - \frac{f_d f_y}{f^2} = \partial_d \partial_y \log f$$

 $\psi_{ya} = 0$ means that f is the product of certain functions f^* on B and \bar{f} on F. Therefore, if we denote the fibre with the metric $g_{xy}^* = \bar{f}^2 \bar{g}_{xy}$ by F^* , then we have

Theorem 2. 1. If the twisted product manifold $M=B\times_f F$ of the Riemannian manifolds B and F is conformally flat and $p \neq 1$, $n \neq 1$, then M is the warped product space $B \times_{f^*} F^*$ of B and F^* .

If we assume that $M = B \times_f F$ is conformally flat and $n \neq 1$, then the identities (1. 7), (2. 8) and (2.11) give rise to

$$R_{dcb}{}^{a} = \frac{1}{(m-2)} \left(S_{cb} \delta_{d}^{a} - S_{db} \delta_{c}^{a} + S_{d}{}^{a} \mathbf{g}_{cb} - S_{c}{}^{a} \mathbf{g}_{db} \right)$$

$$- \frac{p}{(m-2)f} \left(\delta_{d}^{a} \nabla_{c} f_{b} - \delta_{c}^{a} \nabla_{d} f_{b} + \mathbf{g}_{cb} \nabla_{d} f^{a} - \mathbf{g}_{db} \nabla_{c} f^{a} \right)$$

$$- \frac{1}{(m-1)(m-2)} \tilde{K} \left(\mathbf{g}_{cb} \delta_{d}^{a} - \mathbf{g}_{db} \delta_{c}^{a} \right)$$

and

(2.16)
$$\overline{K} = \frac{f^2}{n(1-n)} \left\{ \frac{2p(p-1)(n-1)}{f} \left(\triangle f \right) + p(p-1)K - \frac{pn(n-1)(p-1)}{f^2} \| f_e \|^2 \right\}.$$

If we substitute (2.16) into (1.15), then the scalar curvature \tilde{K} of M is reduced to

(2.17)
$$\tilde{K} = \frac{(m-1)(n-p)}{n(n-1)} K - \frac{2p(m-1)}{nf} (\triangle f).$$

So, contracting (2.15) with respect to b and c, and using (2.17), it follows that

(2.18)
$$S_{cb} = \frac{1}{n} K g_{cb} + \frac{(n-2)}{nf} (\triangle f) g_{cb} - \frac{(n-2)}{f} (\nabla_c f_b).$$

Hence, if n = 2, then $S_{cb} = \frac{1}{n} K g_{cb}$, that is, B becomes an Einstein space if K is constant. Since 2-dimensional Einstein space is a space of constant curvature, we have

Theorem 2. 2. Let $M=B \times_f F$ be the conformally flat twisted product manifold. If the scalar curvature K of B is constant and $\dim B=2$, then B is the space of constant curvature.

Assume that B is a space of constant curvature and $n \ge 3$. Then B becomes an Einstein space and that (2.18) is reduced to

$$(2.19) \nabla_c f_b = \frac{1}{n} (\triangle f) g_{cb} .$$

This means that f is the concircular function.

Conversely, if f is the concircular function, then the equations (2.18) and (2.19) imply that B is an Einstein space. Therefore if we substitute $S_{cb} = \frac{1}{n} Kg_{cb}$, (2.17) and (2.19) into (2.15), then we get

(2.20)
$$R_{dcb}{}^{a} = \frac{1}{n(n-1)} K(g_{cb} \delta_d^a - g_{db} \delta_c^a),$$

because m = n + p. Hence we have

Theorem 2. 3. Let B be a Riemannian manifold with dimension $n \ge 3$ and the twisted product manifold $M=B\times_f F$ is conformally flat. Then B is the space of constant curvature if and only if f is the concircular function.

Acknowledgement. The authors would like to express their thanks to the referee for his careful reading and helpful suggestions.

1 1

References

- 1. A. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987.
- 2. R. L. Bishop and B. O'Neill, *Manifolds of negative curvature*, Trans. Amer. Math. Soc. 149 (1969), 1-49.
- 3. B. Y. Chen, Totally umbilical submanifolds, Soochow J. Math. 5 (1979), 9-37.
- 4. B. H. Kim, Warped product spaces with Einstein metric, Comm. Korean Math. Soc. 8 (1993), 467-473.
- 5. Y. Machida and H. Sato, Twistor spaces for real four-dimensional Lorentzian manifolds, Nagoya Math. J. 134 (1994), 107-135.
- 6. B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1981.
- 7. R. Ponge and H. Reckziegel, *Twisted products in pseudo-Riemannian geometry*, Geom. Dedicata 48 (1993), 15-25.