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Continuity properties of Riesz potentials of functions in Orlicz classes
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In this thesis we study continuity properties of Riesz potentials of order o, 0 < a < n,
of a nonnegative measurable function f on R", which is defined by

Uaf(z) = [ lo =3I f(u)dy.

Here it is natural to assume that U, f # co, which is equivalent to

® [+ D" F )y < oo.

We are concerned with the behavior of Riesz potentials U, f near a given point, which
may be assumed, without loss of generality, to be the origin.

To obtain general results, we treat functions f satisfying an Orlicz condition with
weight of the form

/... 8(f @) (lsdy < .

Here ®,(r) and w(r) are positive monotone functions on the interval (0,c0) with the
following properties:

(pl) ®,(r) is of the form rPp(r), where 1 < p < oo and g is a positive monotone
function on the interval (0, 00); set ¢(0) = lin(l) @(r).

(p2) ¢ is of logarithmic type, that is, there exists A; > 0 such that

ATo(r) < o(r?) < A p(r) whenever r > 0.
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(wl) w satisfies the doubling condition; that is, there exists A; > 0 such that

AZlw(r) < w(2r) < Agw(r) whenever r > 0.

Riesz potentials may not, in general, be continuous at any point of R". But, it is
known that if p > 1 and

(2) ./01 [rn—-ap(p(r—l)] -1/(p-1) r—ld,r < 00,

then U, f is continuous everywhere on R™; in case ap > n, (2) holds by condition (¢2)
and the continuity also follows from well-known Sobolev’s theorem.

For simplicity, let w(r) = r?, where —n < § < ap — n, and £ be the nonnegative
integer such that £ < a —(n+ 3)/p < £+ 1. In this case, we treat functions f satisfying

) [ 26 @)lyldy < co.

In Chapter 2, we shall show that if (2) holds, then there exists a polynomial P, such
that

(4) lim [K (|=)]{Uaf () — Pi(x)] = 0
for any function f satisfying (1) and (3), where

( [proPtBp(r1)) e incase L<a—(n+B)/p<f+1
and n —ap < 0,

/¢
K(r) = | rPIP (/0' {ga(t‘l)]"”/”t“ldt) incase L<a—-(n+B8)/p<f+1

and n — ap =0,

| ( /: [cp(t‘l)]“”'/"t‘ldt> 7 ncase £=a—(n+B)/p.

Since lim,_,o 7 ~¢K(r) = 0, (4) implies that U, f is £ times differentiable at the origin.
Let Ro(z) = |z|*™™ and consider the remainder term of Taylor’s expansion:

Rat(3,9) = Ralz —y) = 3 Z[(D“Ra) ().

lul<e 7

Then U, f(x) — Py(z) will be written as

Uaef(z) = [ Roslw,v)fw)dy,

provided
a—n—{¢
d
fB(O’l) |yl fy)dy < oo,

= ———
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where B(z,r) denotes the open ball centered at z with radius r > 0.
In Chapter 3, we study the Holder continuity of Riesz potentials of functions f satis-

fying
©) [ @ f@)dy < o,

by applying the results in Chapter 2. Recently Edmunds and Krbec studied almost
Lipschitz continuity for Bessel potentials of order n/p+ 1 of functions f satisfying

[, f@)Pllog(e + () dy < oo

for some o > 0. In this chapter, we deal with Riesz potentials of order o, n/p < a <

n/p+ 1, and give extensions of those results. Our aim in this direction is to find & such
that

Uaf(z) — Uaf(0) = o(s(|z])) asz—0
when f satisfies (5), and our result implies the above mentioned result by Edmunds and
Krbec.

If (2) does not hold, then the potential may not be continuous anywhere, and we
study the fine limits of U, f with respect to the relative Orlicz capacity

Cus,(E;Q) = igf [ @p(ou))dy, B CGC,

where k is a nonnegative Borel measurable function on R", G is an open set in R™ and
the infimum is taken over all nonnegative measurable functions g on G such that

/m k(lz — y|)g(y)dy > 1 for every z € E.

In case k(r) = r*™", we write Co ¢, for Cie,. For simplicity, we write Crs,(E) = 0 if
Cr.s,(ENG; G) = 0 for every bounded open set G. If a property holds except for a set
E with Cie,(E) = 0, then we say that the property holds Cj ¢,-quasi everywhere. In
Chapter 4, we show that if f satisfies (1) and (3), then there exist a set E C R" and a
polynomial P, such that

[&(2])) " [Uaf(2) — Pe(z)] = 0

lim
z—0,2ER"-E

and o
> 2P (p(2)|Cag, (B5: By) < o0,

=1
where E; = {z € E:277 <|a| <27}, Bj = {z: 277! < |zg| < 27*?} and

1-1/
n(r) — gt (/: [tn—aw6+tpw(t—1)]-—1/(p—-1)t—ldt) P
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If in addition (2) holds, then the exceptional set E is empty and the above fine limit is
seen to be replaced by the usual limit similar to (4).

In Chapter 5, we are concerned with the existence of radial limits. We shall show that
if f satisfies (1) and (3), then there exist a set E* C 9B(0,1) and a polynomial P, such
that Coe,(E®) = 0 and

lim rn-aPtA/P(U, f(r€) — Py(r€)] =0  for any £ € 8B(0,1) — E*.

In Chapter 6, we deal with L?-mean limits for Taylor’s expansion of Riesz potentials
Uaf

q
©) i) (77 [ Uaf@) = Pafaltds) =0

for functions f satisfying (5) and for 0 < ¢ < oo satisfying 1/q¢ > 1/p— a/n; if 1/q =
1/p — a/n, then ¢ is called the Sobolev exponent. If (2) holds, then we know that (4)
holds and hence (6) trivially holds for x(r) = K(r). Thus we are mainly concerned
with the case where (2) does not necessarily hold. In Section 3 of Chapter 6, we shall
show that (6) holds for every zo except that in a set of Cj g,-capacity zero, where
k(r) = r*"k(r)". In view of the behavior at the origin of Bessel kernels, our results
can be considered as generalizations of the results by Meyers concerning Bessel potentials
of functions in LP(R").

If (6) holds for x(r) = 7%, then U,f is said to be LI-differentiable of order £ at xo,
where £ is a positive integer such that £ < o. In the final section we discuss quasi every
L"—diﬁ'erentia.bi]ii:y as a consequence of the proceeding results in case £ < o and in fact
show that U,f is LI-differentiable of order £ C,—,4,-quasi everywhere. In case a = ¢,
U.f is shown to be Li-differentiable of order £ aimost everywhere. If (2) holds, then U, f
is known to be ¢ times differentiable almost everywhere.




