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Abstract. : In this note, we present a different version of Lyapunov theorem for descriptor
systems by introducing several new definitions.
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1. Introduction

Consider a linear time-invarant descriptor system

Ei() =Ax(D), (1a)
y(H)=Cx(p), (1b)

where x€ R" is the state, y € R'is the output. E is a square matrix of rank »r<< un. We
assume that the system (1)is regular, that is, det (sE—A)is not identically zero. We also
assume that the response of the system (1) is impulse-free, that is, deg [det(sE— A) |=rank E.

It is well known that there exist two nonsingular matrices M, H such that system (1)
can take the form

L 0f]2:(9) A Az| | 2 (0)

= , (2a)
0 0ff 22(» Az Azz| | 2 (9)
and
o oY (2b)
y= s
L 2 (1)
where [21(8) 25(0)1=xT() H T and
I, 0 An Az
MEH= , MAH= , CH= [Cl Cz]. (3)
0 0 A2 Az
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In a recent paper [1], a new generalized Lyapunov theorem for descriptor systems is
proposed by extending the theorem due to Lewis [2].

In this note, we present a different version of the Lyapunov theorem for descriptor
systems by introducing several new definitions and a generalized Lyapunov equation.

2. Stability Analysis of Descriptor Systems
Definition 1.[3] The system (1) is called asymptotically stable if
rank [sE— Al =n, for all Re(s) >0. (4)
Definition 2. A matrix A is called a generalized stable matrix corresponding to E, simply,
the generalized stable matrix, if the condition (4) is satisfied.
Remark 1. It is different from the general definition of stable matrix that a generalized

stable matrix A does not necessarily satisfy the condition of Re (A; (4)) <0, for all
eigenvalues A ;(A) of A.

Example 1.
10 —2 —3
E= , A=
00 4/3 3
Since A1,2(A)=1{—1,2}, A is not a stable matrix. However, since
s+2 3 s+2/3 0
rank ( ) =rank ( ) =2, except for s =—2/3,
—4/3 —3 —4/3 —3

A is really a generalized stable matrix.
Definition 3.[3] The system (1) is called finite dynamic detectable if

rank [sET— AT, CT]=n, for all Re(s) > 0. (5)
Lemma 1. The system (1) is asymptotically stable if and only if

rank [sI,— Aol =, for all Re(s) >0, (6)
where Ao=A11— A1242" Az1.

Note that A2—21 exists asebecu the response of the system (1)is assumed to be impulse-free.
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Proof. Since

sl, —A1n — A

M(sE— A) H= , (7)
—An — Az
and
I, —Ap2A%" ||sl, —A11 — Az I, 0 s, —Ag O
= . (8)
0 _Aé% _A21 _AZZ _A2_21A21 In'r 0 In‘r

the proof follows from Definition 1 directly.
Lemma 2. The system (1) is finite dynamic detectable if and only if
rank [sI,— A} , CJ]=r, for all Re(s) >0, (9)
where Ag=A11— A12423A21, Co=C1— C2Az3Az1.
Proof. Since

sl, —AfL —Ad cf

[HT(sET— A MT, HTCT) = , (10)
—Alz —Asm CF
and
I, —ARhAT | |s,—af —ad cf L 0 0
—A23 AL Lo, Az3CH
0 — A3 —A,  —Az CF 0 0 L

s, —Ad 0 cf

the proof follows from Definition 3 directly.

Definition 4. A matrix P is called a generalized positive semidefinite (definite) matrix,
denoted by P>0(P>0), if x"ETPx>0(>0), for all x such that Ex#0.
Let us introduce a generalized Lyapunov equation as follows.
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) ATP+PTA+CTc=0, (12a)
i) ETP=PTE, ' (12b)
Defining
P11 Pp
M TpH= , (13)
Py1 Py

we can obtain some properties on the generalized positive semidefinite (definite) matrix P
from i), that is, P is a lower-triangular block matrix of P;2=0 and P{1=P1120 (>0)
after the transformation (13).

Theorem 1. Suppose that the descriptor system (1) is regular and impulse-free. Then,

(i) if A is a generalized stable matrix then the generalized Lyapunov equation (12)’
admits a generalized positive semidefinite solution P>0,

(ii) if there is a generalized positive semidefinite matrix P satisfying (12) and the
system (1) is finite dynamic detectable, then A is a generalized stable matrix.

Proof. Making transformation to the generalized Lyapunov equation (12a) by using the
relations (3), (13), we have

Afi A || P O P P |4 Aw| [da dc
+ + =0, (14)
Ay Az || Pa1 Pee 0 P ||Az Az GG GG

(14) can be partitioned into

Pi1A1+ P Ag + AL Pry+ Azl P14+ G G =0, (15a)
PiAz1+ ArsPii+ Ada P+ CF G =0, (15b)
PypAgs+ Agh Pon+ Cf Co=0. (15¢)

(15c¢) is a Lyapunov-like equation and has a solution Pss. Furthermore,
Py1=—Az7 [A1} P+ Paj Ao+ C7 C1] (16)
according to (15b). Substituting(16) into(15a) and making some manipulations, we obtain
Ag Py1+ Py Ag+ Gy Go=0, (17)

where Ag=A1;— A12453 A1, Co= C1— C3A73 Ag1. Therefore,
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(i) if A is a generalized stable matrix, Lemma 1 and standard Lyapunov theorem ensure
that (17) has a unique solution Pj; > 0. Hence, there exists a generalized positive
semidefinite solution of (12).

(ii) That there is a generalized positive semidefinite matrix P satisfying (12) implies
that (17) has a solutionP1; >0. Furthermore, the system (1) is finite dynamic detectable
means that (Ag Cp) is a detectable matrix pair from Lemma 2. Therefore, Ag is stable,
which means that A is generalized stable matrix according to Lemma 1 and Definition 2.
Remark 2. Different from the standard Lyapunov theorem for state space systems, here
the generalized positive semidefinite matrix P satisfying (12) may not be unique since the
solution of (15¢) may not be unique.

3. Conclusion

By introducing the concepts of the generalized stable matrix, the generalized positive
semidefinite (definite) matrix and the generalized Lyapunov equation, we have introduced
a different version of the Lyapunov theorem for descriptor systems.
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