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Tilings of the 2-dimensional sphere by congruent right triangles
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Abstract : We classify all spherical tilings consisting of congruent right triangles. There
exist five sporadic types and four series of such tilings. We also exhibit the figures of
these tilings.
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Introduction

The purpose of this paper is to classify all tilings of the 2-dimensional sphere by
congruent right triangles. Such classification is already studied in the previous papers
Sommerville (6] and Davies [3]. But, Sommerville studied only “regular” tilings in the case
of scalene triangles, and in the paper Davies [3], regrettably, detailed proof is not stated
there. Hence, it is desirable to give a complete proof of the classification of spherical
tilings, and we study in this paper tilings consisting of congruent “right” triangles.

The case where the isometry group acts transitively on geometric objects of tiles of the
sphere is studied deeply in the paper Griinbaum and Shephard [4]. But in the present
paper, we do not consider the group action on the sphere, and classify spherical tilings
purely in combinatorial way, under the condition that the sphere is tiled by only one type
of right triangles. As a result, we show that there exist five sporadic types and four series
of such tilings, about half of which are obtained by “twisting” standard tilings in a sense.
(For details, see Theorem 1.1 and the explanation following it.)

We now explain the contents of this paper. In §1, we state the main result and explain
the construction of each tiling. In §2, we first classify spherical tilings by right equilateral
or isosceles triangles. In §3, we treat tilings with small number of faces, and in §4, we
determine the combinatorial type of vertices appearing in spherical tilings. Using these
results, we classify tilings by right scalene triangles in §5 and §6.

In this paper, we always assume that no vertex of any triangle lies on the interior of an
edge of any other triangle, and we identify two tilings if they are mapped to each other by
a rotation or a reflection.

The main part of this paper is the first named author’s master’s thesis (Faculty of
Science, Hiroshima University, 1996).
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1. Main theorem

In this section, we state our main theorem (Theorem 1.1), and summarize some
preliminary facts on spherical triangles which we use in this paper. We first fix our
notations.

We denote by a, 8, 7 the angles of a spherical triangle. (In this paper, we consider
only triangles with 0< @, B, 7 <= .) Assume that the sphere is tiled by several copies of
one triangle, and express the number of vertices, edges, faces of this tiling by V, E, F,
respectively. If a vertex on the sphere is surrounded by angles a,#,y with numbers &, |,
m, respectively, we say that the type of this vertex is

ka+18 + my =2

(We ignore the order of a, B . v appearing in the vertex in this expression.) Of course,
there may be various types of vertices in the tiling.

Using these notations, we state the main theorem of this paper. The meaning of the
symbol in the left column and the explicit construction of each tiling are explained below.

TueoREM 1.1. Spherical tilings by congruent triangles with a= /2 are exhausted by
the following:

F E vV B 14 type of vertex
B+r=mr
Fg 8 12 6 0<B, 7<nm ) da, 2B + 27
| B—7|<m/2
Fie 16 24 10 3x/8 3x/8 4q, a + 48
Fug 48 72 26 /4 /3 4a, 88, 67
4a, 8B, 67,
TFys 48 72 26 n/4 n/3 s+ 4f
Fig0 120 180 62 /5 r/3 4a , 108, 67
Gz(nnza) 2n 3n n+2 2n/n /2 4a nf3
TCE‘:E"E?,) 4n 6n 2n +2 x/n x/2 a5 2a+ npf
Hg, (n=Dm o 4a, 2n7,
nz3) 8n 12n 4n +2 5n " 48 +27
THi6n-3 _ _ _ (n—-1)m i da, 4B+ 27,
(nag) | 16n=8 24m—12  8n-—2 on—1 n—1 28 + 2nY
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(Note that the tiling Fg contains one continuous parameter.)

Next, we exhibit the figures of these tilings as follows: (The figures of Ha4, Fus, Fi20
are also exhibited in[1; p.16].)

o0&

Fg (B=7=n/2) Fy Fie

Fyg

G4 TGay Hoy
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H40 TH40

Figure 1
Now, we state the explicit construction of each tiling briefly.

Fg : We first project the regular octahedron to the circumscribed sphere, and next
move four vertices on the equator up and down by the same angle alternately.

Fy4g, F12¢ : These are the standard tilings obtained by projecting regular polyhedra to
the circumscribed sphere and by dividing faces suitably.

TF,45 : Rotate the south hemisphere of Fyg along the equator with the angle 7/4.

G2, : This tiling is obtained by drawing the equator and # longitudes having the same
angle.

TGy, - Rotate a half part of G4, along-one longitude with the angle /2.

Hg,, : We first construct a tiling consisting 2»n rhombuses with angles 2x/n, (n—1) x/n,
2x/n, (n—1) n/n, by attaching #» angles 27 /% to the north and south poles. Next,
we divide rhombuses into four triangles by drawing two diagonal lines.

THign-s : By using the rhombuses with angles 27/ 2n—1), 2 (n—1) n/ 2n—1), 22/ 2n—-1),
2(n—1)x/(2n—1), we construct a half tiling of the sphere, attaching » and n—1
angles 27x/(2n—1) to the north and south poles respectively in a consecutive
way. Next, we prepare two copies of this figure and patch them together such
that four poles do not meet. (See Figure 10 in the proof of Proposition 5.4.)
Finally, we divide rhombuses into four triangles in the same way as Hg,,.

Fi6 : In constructing the tiling H3o, delete all long diagonal lines of rhombuses.
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RemARrk. In the above table, the tiling Gg is a special case of Fg with B =7 ==n/2. We
may also consider the tilings TGg, H, and TH,, in the above construction. But, these are
equal to Gg, TG and H,,, respectively. The tiling H,, can be constructed from the
regular hexahedron, and by dividing the triangles in H,, into two parts, we obtain the
tiling F,q. The tilings H,, and TH, also can be constructed from regular icosahedron.

‘Now, we state some facts on spherical triangles for later use. The following result is
well known.

ProposiTioN 1.2 (cf. [7; p.62]). The angles «a, B . v of a spherical triangle satisfy the
following inequalities:

rla+p+7,
a+p<<nr+7y, B+r<m+a ¥+a<lnm+ .

Conversely, if a» B, ¥ satisfy these inequalities, then there exists a spherical triangle
with angles o, B, 7.

We note that the shape of a triangle is uniquely determined by @. 8. ¥ . For example,
the length of an edge is determined by the cosine rule.

We assume that the radius of the sphere is always 1. Then, in this situation, the area of
this triangle is expressed as

S=a+ﬂ+y—7r.

Since the sphere is tiled by this triangle, the number of faces of the tiling is equal to
F=4x/S =4x/(a+ Btry—=m ). We often use this formula in this paper.
In the rest of this paper, we always assume a = /2, unless otherwise stated.

2. Spherical tilings by right equilateral or isosceles triangles

In this section, we classify spherical tilings by congruent right equilateral or isosceles
triangles. In the case of right equilateral triangles, we have

Tueorem 2.1. The tiling Fg with B =7y = 7/2 (= G8) is the unique tiling of the sphere
by right equilateral triangles.

Proor. Since the area of this triangle is equal to S = Q@+ g+ vy -~ 7 =3x/2- 7 =
n/2, we have F =47/S5=8. Then, by using the fact that the type of all vertices is 4a =

2w, we can easily show that this tiling is obtained by projecting the regular octahedron to
the circumscribed sphere. q. e. d.
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In the case of right isosceles triangles, we have

Tueorem 2.2. Tilings by right isosceles (but not equilateral) triangles of the sphere are
exhausted by Fyg, H,, , G,,(n =3 or n>5) and TG,,(n >3).

Proor. We divide the proof into the following two cases according as the type of
isosceles triangles:

I. The case g =y (*+x/2),
II. The case a=7y ==/2(*8).

We first consider the case I. Assume that there exists a vertex of type ka + I8 =
27 (0<k<4, 0<I). By using the formula S= @ +28 -~ n =25~ n/2 and F=4x/S, we
have B = (F+8) n/4F. Substituting this into ka +18 =2, we have I=2F(4-k)/(F+8).
Then, by using the conditions F >0, 0 <k<4 and I >0, it is easy to see that the triple of
integers (k, I, F) satisfying this equality is one of the following:

k l F
1 0 6 24
11 0 7 56
111 1 2 4
v 1 4 16
v 1 5 40
vi 2 3 24
vil 4 0 undetermined.

(We omit the case F=S8 because in this case B is equal to x/2.) By drawing the figures
below, we know that vertices of type i1, v, vi1 cannot exist.

R
R

w
w\/ ™

Figure 2
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Next, vertices of type iii also cannot exist because the angle £ does not satisfy the
condition 28 < x + a in Proposition 1.2. Hence, the remaining vertices are 1, iv and vii.

If the tiling contains only one type of vertices, then the ratio of the number of @ and
B is 1 1 2, which implies k1 I =1 2. But this is not the case for 1, iv, vii, and hence
the tiling contains at least two types of vertices. Since vertices of type 1 and iv cannot
exist simultaneously, possible combination of vertices is 1 and vii, or iv and vii. And by
drawing development maps exhibited below, we know that for each case, there exists a
unique tiling of the sphere, which corresponds to Hz4 or Fig.

BB
B B
ﬂﬂ ﬂﬂ'g a lB’Bﬂ
aaﬂﬂaa ,Ba Bﬂﬂﬂ aﬂ
a 'Blgﬂﬂaa
B
AN/ NPT aﬂﬂ ﬂﬂa
FINE Bﬁﬂ;ﬂ A7 N 5
NEANZ IRV,
a \ a ﬁﬂaa B Bﬂﬂﬂ ﬂ
B|8 B
BB

Figure 3
Next, we consider the case Il . In this case, we have @ =y = /2 + B . Assume that

there exists a vertex of type ka +IB =2x (0<rk<4, 0<!). By drawing the following
figures, we know that k cannot be equal to 1 nor 3.

Figure 4
Hence, types of vertices must be one of the following:

4a=2r, 2a+pB=2r, g =2x (b ¢>3, q+4).
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In addition, from the above figure, we know that two a's in the vertex of type 2a +pp =
27 must be adjacent. If the tiling contains only one type of vertices, we have k: I=2 [ 1
because the ratio of the number of @ and B is 2 . 1. But from the above expressions, this
case does not occur, and hence the tiling contains at least two types of vertices.

Now, we show that two types of vertices 2a + p8 =2 and g8 = 2x cannot exist
simultaneously. In fact, if these two types both exist, we have 2p=g¢ and F=4r/ (2a +p
— x) =4p. We denote by x and y the number of vertices of type 2¢ + PR = 2m and ¢B8 =
2r appearing in the tiling, respectively. Then, since the number of 3 appearing in the
sphere is equal to F, we have px + ¢y =F, which implies x + 2y =4. Therefore, we have
x =2 and y=1. We draw the following development map by starting from the vertex of
type 2a +pB =2x . Since the number of vertices of this type is 2, two dot points in this
figure must coincide, which is a contradiction. Hence, two vertices 2@ +p8 =2z and qB
=2x cannot exist simultaneously.

Figure 5

Therefore, remaining combinations are the following:

(i) 4@ =27 and 2a +pg =21 (p>3),
(i) 4¢ =27 and g8 =2z (¢=3 or g >5).

For each case, by drawing a development map, we can easily show that there exists
uniquely a tiling of the sphere, which corresponds to TGyp or Gog, (For each case, the
sphere is tiled by lunes consisting of two triangles.) q. e. d.

3. Spherical tilings by right scalene triangles with small number of faces

In this section, we determine spherical tilings by right scalene triangles with small
number of faces. We assume that angles a(= /2), B, 7 are mutually distinct, and we

often use this property in drawing development maps. The purpose of this section is to
prove the following theorem, giving the minimum number of faces of such tilings.
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TueoREM 3.1. For spherical tilings by right scalene triangles, the number of faces
satisfies the inequality F > 8. The equality F =8 holds if and only if the tiling is equal to
Fg for some B, y satisfying0< g,y <nx, B+ y=nx and 0< | B—7 | < n/2.

To prove this theorem, we prepare two lemmas.

Lemma 3.2. There exists no 3-valent vertex in spherical tilings by right scalene
triangles.

Proor. By drawing a development map, we can easily show that the type of 3-valent
vertex is @ + 8 + y =2z . In particular, we have 8 + ¥y = n + a, which contradicts
Proposition 1.2. q. e. d.

The next lemma can also be easily proved by drawing suitable development maps.

Lemma 3.3. If there exists a 4-valent vertex, then the type of this vertex is 4@ =2x or
2R +2y =2rx.

Proor of TueoreM 3.1. Each face contains three edges, and each edge is contained in two
faces. Hence, we have E=3F/2. Together with Euler’s formula, we have F=2V—-4. Next,
we denote by V, the number of k-valent vertices (k>3). Then, we have

V= Vit Vit-oeee + Vi (B>1>00eee >m),
F=(kV,t 1Vt t+mV,) /3.

Combining these equalities, we have

(6—m) V> (6—F) Vit (6=1) V- + (6-m) V,
=6V-3F=12>0,

which implies m=3, 4, 5. But, from Lemma 3.2, we have m= 3, and hence, m=4 or 5.
Then, from the inequality (6—m) V >12, we have V >6, which implies F > 8. In the case
of F=28, we have E=12 and V=6. In particular, if # > 6, we have V,=0. Hence, from
the equalities

V= V4+ V5=6,
F=(4V4+5Vs)/3 =8,

we have V4 =6 and V5=0. Therefore, from Lemma 3.3, the vertices of this tiling are of
type 4 = 2x and 23 + 2y = 2z, and both types must actually appear. Then, the
uniqueness of the tiling with F =8 can be proved easily by drawing a development map
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starting from the vertex 4@ = 2x . Clearly, we have B + y = 7, and the inequality
| B=7 | <=x/2 follows immediately from Proposition 1.2. q. e. d.

4. Combinatorial type of vertices

In this section, we determine the combinatorial type of vertices, appearing in spherical
tilings by right scalene triangles. In the rest of this paper, we always assume F>8, except
in Lemma 4.2. The purpose of this section is to prove the following proposition, which
plays a fundamental role during the classification in §5 and §6.

ProposiTioN 4.1. The type of vertices of spherical tilings by right scalene triangles with
F>8 is one of the following:

[4] 4a=2r,
[B] 2a+2pp=2nr (»>2),
[B] 2a+2qy =2 (¢>2),

[l a+(2p-1)p+7 =22 (h>2),
[C] a+p+(2-1) y =21 (¢>2),

[D] 2pg+2y=2x (r>2),
[D] 2B +2qy =2=x (4>2),
[E] 2pg=2r (»>3),
[E] 2qy =2x (g>3).

Remark. (1) Since each type contains only one parameter except [A], two kinds of
vertices of the same type cannot exist simultaneously. For example, 2p3 +2y =2p3 +2y
=2x implies p=p.

(2) Actually, odd-valent types [Cland [C] do not appear in spherical tilings by right
scalene triangles. We prove this fact during the classification in §6 (Proposition 6.7).

We prove this proposition by combining several lemmas. For this purpose, we first
consider a situation where one vertex is surrounded by general (not necessary right)
congruent scalene triangles with angles 2, #, v. (We do not assume that this triangle
tiles the whole sphere.)

Lemma 4.2. The type of this vertex is

20 t2qu=2n (p, ¢>0)
or 212+ @2¢-1p+v=2x (pqg=>1),

by changing the angles suitably.
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Proor. For a 3- or 4-valent vertex, as in Lemmas 3.2 and 3.3, we can easily prove that
the typeis A + #+ v =2x, 43 =2x or 2) +2¢ =2x, by changing the angles A, #, v
suitably. Hence, the lemma holds in this case.

Now we consider a k-valent vertex with 2> 5. Since three edges of a triangle have
different length, any edge is of type (a) or (b) in the following figure. We assume that
edges of type (a) do not appear around this vertex. Then, by drawing triangles around
this point, we know that k is a multiple of 3. (See the figure below.)

LD &

(a) (b)
Figure 6
We put k=31 Then, we have I({ + #+ v)=2x, and hence, S= A + ¢+ v —x =(2-1))
/1> 0, which implies /=1. This contradicts the assumption %> 5, and therefore, there
exists an edge of type (a) around this vertex. Then, we can drop two triangles containing

this edge, and obtain a #—2-valent new combinatorial type of vertex, by changing the value
of angles suitably.

B Y

Figure 7
Repeating this procedure several times, we finally arrive at a 3- or 4- valent vertex.

Hence, the type of the original vertex is obtained by adding 24, 2¢# or 2y to the type of
3- or 4-valent vertex. Therefore, in the case of odd-valent vertex, its type is expressed as

2~ + 2¢-Dp+ (2r-1)y =2x.
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We may assume p>¢q >r>1. Then, we have

22 =20p-NA-2(g N pr=Cr-1) (A+ g+ y)>2r-1r,
and hence, we have

(B3-2nnx>2(p-nNA+2(g—-np >0.

Therefore, we have r =1, and the type of odd-valent vertex must be (2p—1)A + (2¢—1) ¢
+ v =27z . In the case of even-valent vertex, starting from the form 2pA +2qu + 2ry =
2n (p>q>r>0), we can prove r =0 in the same way. q. e. d.

Now, we return to the tiling by right scalene triangles with F> 8. As for odd-valent
vertices, we have the following lemmas.

Lemma 4.3. Vertices of type 3a+ (2p— 1) B+ 7y =27 and3a+ 8+ (2g-1) y=2nr
do not appear in the tiling.

Proor. Assume that a vertex of type 3a + (2p— 1) B + v =2r exists. Then, from this
equality, we have a+ g+ vy — = =2 (1-p) B >0, which contradicts the assumption p
= 1. The second type can be treated in the same way. q. e. d.

LemMa 4.4. Assume that there exists a vertex of type
a+(2p-1)p+2g- 1)y =2z (p>q¢>1).
Then, we have p >2 and q=1.

Proor. From the assumption, we have (2p—1) 8 + (2¢—1) ¥ =3x/2. On the other hand,
from the formula F=4r/(a + Btr— n ), we have Btr= (F+8)x/2F. If p=gq, then
we have from these equalities (p—2) (F+8) =—12, which implies p=1 and F=4. But this
contradicts the assumption F > 8. Hence, we have p =+ ¢ Then, from the above two
equalities, we have

_ (2-9F-4(2¢-1) _

A 20-9F

_A4Cp-D)+ (p-2)F
B 2(0-9F '

Substituting into ¢+ 8<x+ 7y and y + a< z + 8 in Proposition 1.2, we have

4
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(F+4)p+4¢>2F+4,
4p+ (F+4) g <2F+4.

From these inequalities, we have

2F+4— 4gq 2F+4—(F+4)q
1 <r< 1 ,

which implies ¢< (2F+4) / (F+8) <2. Therefore, we have g=1 and p > 2. q. e. d.

Combining these three lemmas, it follows that the type of odd-valent vertex is [Cla +
2p-1)p+y=2x (p>2) or [C] a+ B+ (2¢-1) y =2z (¢ >2) because the coefficient
of @ cannot exceed 4. This completes the proof of Proposition 4.1 for odd-valent case.

For even-valent vertices, we can prove the following lemma in the same way as Lemma

4.4.
Lemma 4.5. Assume that there exists a vertex of type
2B +2qy =21 (p>q>1).

Then, we have p > 2 and gq=1.

Then, Proposition 4.1 for even-valent case follows immediately from Lemmas 4.2 and
4.5.

5. Classification of spherical tilings by right scalene triangles with F>8. 1
Now, using these results, we classify spherical tilings by right scalene triangles with F
>8. We divide the proof into two cases:

1. The case where the right angle @ appears only in vertices of type [A] 4a=2x.
. The case where there is a vertex containing @ which is not of type [A].

In this section, we treat the case I, and prove the following theorem.
THEOREM 5.1. Assume F>8 and the right angle appears only in vertices of type [A] 4a
=2m . Then, the tiling by right scalene triangles is equal to F g, Fy54, TH;g, g (n>3) or

Hy, (n>4).

Note that in the case I, any triangle is contained in one rhombus, and hence, the sphere
is tiled by these F/4 congruent rhombuses with angles 23, 2y, 23, 27 .
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Figure 8

To prove the above theorem, we must prepare several lemma and propositions. First,
note that, from Proposition 4.1, types of vertices are expressed as 4a¢ =2z and 2pg +
2qY =2z (p, ¢ >0) because o appears only in type [A].

Lemma 5.2. Except the type 4a = 2, there exist at least two types of vertices of the
form 2pR +2qy =2x .

Proor. If the type of vertices of the form 2pB +2¢y =2z uniquely exists, we have p=g¢
because the number of B and 7 appearing in the tiling must coincide. But, this type of
vertices does not appear in Proposition 4.1. g. e. d.

Hence, the tiling must contain at least two types of the following vertices, except [A]
4a =2r.

[D] 2pB+2y =2x (r>2),
[D7] 28 +2qy =2x (¢>2),
[E] 2pB=2n (r>3),
[ET] 29y =2=n (g>3).

Proposition 5.3. If the tiling contains vertices of type [E] 2p8 =2x (p>3) and [E]
29y =2r (¢ >3) simultaneously, then it is equal to Fyq or Fy,,.

Proor. From the assumption, we have 8 = n/p and y = n/q We may assume p>gq by
the symmetry of 8 and y. Then, we have S= a+ B3+ y —x = (2p+ 29— pg) n/2pq>0.
Hence, we have (p—2) (g—2) <4, which implies (p, ) = (4, 3) or (5, 3).1If (p, 9 = (4, 3),
then we have g = n/4, ¥y = n/3, S= n/12 and F=48. Similarly, if (p, ¢9) = (5, 3), we
have 8= xn/5, vy = /3, S= x/30 and F=120. For both cases, we can easily show that
vertices of type [D] and [D’] cannot exist, and using this fact, we can uniquely construct
the following development maps consisting of rhombuses with angles 28, 2y, 23, 27 .
(We put B=2g, C=27 in the following figure.)
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clC
C
B/B C B\B
A8 Clc By
c c BB C
c C
C N I c
B
B B C|C B
B\B C B/B
C
cYc
Figure 9
These tilings correspond to F4g and Fj2q, respectively. q. e. d.

ProrosiTioN 5.4. Assume that the tiling does not contain vertices of type [E] nor [E7].
Then it is equal to THy g, o(n >3).

Proor. From the assumption and Lemma 5.2, there exist vertices of type [D] 2pp +2y
=2x and [D] 28 +2qy =2, and other types of vertices do not appear except [A]
- 4a =2x . By the symmetry, we may assume ¢ > p > 2. Then, from these equalities, we
have 8= (¢-1)n/(pg-1),y = (p~1)n/(pg-1), and F=4r/(a+ B+ y—x)=8(pg-1)
/ (2p+ 2¢g—pg—3) >0. Hence, we have (p—2) (¢—2) <1, which implies p=2. If g=2, then
we have B = 7, and this contradicts the assumption. Hence, we have ¢ > 3. Then, from
the above equality, we have g = (g—1)n/(2g-1), y = n/(2¢—1) and F=164-8. Starting
from the vertex of type 28 +¢-2y =2, we can draw the development map by rhombuses
with angles 23, 2y, 283, 27 uniquely as follows:

Py

’ B ’
P3 C 7 ¢ Ps

Figure 10



16 Yukako Ueno and Yoshio AGAOKA

(Here, we identify P; and P/ and we put B= 2p and C=2y, as above.) By construction,
this tiling is THygg4-s. q. e. d.

For remaining cases, the tiling must contain one of the vertices of type [E] and [E’]. By
the symmetry of 8 and Y, we may assume that a vertex of type [E‘] exists, but [E] does
not.

ProposiTion 5.5. Assume that the tiling contains vertices of type [D] 2pg + 2y =2x
(0>2) and [E] 2q7 =27 (g>3). Then we have p=2, >4 and the tiling is equal to
Hg,

Proor. From the equality F=4x /(a+ g8+ y — ), we have g + y = (F+8) n/2F.
Combining with the equalities 2p8 +2y =2qy =2x, we have F=8pg/ (2p+2¢q—pg—2) >0.
Hence, we have (p—2) (¢g—2) <2, which implies p=¢=3 or p=2. If p=¢=3, then we have
B =2r/9 and y = n/3. Hence, the sphere can be tiled by the rhombus with angles
47/9, 2n/3, 4n/9, 2x/3. It is easy to check that the possible types of vertices are
3°28 +2y =2x and 3-2y =2z in this situation. But, as the following figure shows, we
cannot construct a tiling in this case.

B C
CC Bl|sc Bj3B
C B|B C|B C
clc Bl2c B|1B
41C B{B C|B
B
7B Ci|C B
B 6C B
C
Figure 11

(The numbers of vertices indicate the order of drawing.) In the case p=2, we have B=
(g—1)x/2q, y = n/q and F=8gq In this situation, if g=3, we have B = v = =n/3. Hence,
we have ¢ >4. It is easy to see that the types of vertices except [A] are exhausted by [D]
48 +2y =2x, [D7] 28 + (¢g+1)y =2r (this type exists only in the case g=odd) and
[E’] 29y =2 . From the assumption, a vertex of type 2gy =2x actually exists, and we
draw a development map consisting rhombuses by starting from the vertex q* 2y = 2x .
Since vertices containing four #’s must be of type 228 +2y =2, the development map
necessary becomes the following form, which shows the uniqueness of the tiling. (Hence,
as a result, vertices of type 23 + (g+1)y =2x do not appear.)
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Figure 12

Clearly, this tiling corresponds to Hg, q. e d

Now, to complete the proof of Theorem 5.1, we have only to consider the case where the
tiling does not contain vertices of type [D] nor [E]. For this case, we have the following
proposition.

ProposiTION 5.6. There is no tiling consisting of only three types of vertices [A] 4a =
2n, [D] 28 +2py =27 (p>2) and [ET] 29y = 27 (¢>3).

Proor. In this case, combined with the equality g + y = (F+ 8) x/2F, we have B =
(g-pn/q v = n/qand F=8¢/ (¢g—2p+2) >0. We denote by Vi, Va, V3 the number of
vertices of type 4a =2r, 28 +2py =2z and 29y =2r, respectively. Then, since the
number of B and y appearing in the tiling must be equal, we have 2V, =2pV,+2¢V3=F
=8¢/ (¢—2p+2). From these equalities, we have V3=4 (1-p)/ (g—2p+ 2) <0, which is a
contradiction. Hence, this case does not occur. q. e. d.

6. Classification of spherical tilings by right scalene triangles with F>8. II
In this section, we treat the case II, and prove the following theorem.

Tueorem 6.1. Assume F>8 and there is a vertex containing @ which is not of type [A]
4a=2m . Then, the tiling by right scalene triangles is equal to TFyg.
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First, we state the following combinatorial proposition. We often use this proposition in
drawing development maps of tilings.

ProposiTiON 6.2. In spherical tilings by congruent right scalene triangles, same angles
appearing in a vertex are consecutively adjacent.

By using Proposition 4.1, we can easily prove this proposition, and we left the proof to
the reader.

Now, to prove Theorem 6.1, we must prepare several lemmas concerning the coexistence
of types of vertices. We first remind that from the assumption in Theorem 6.1, there exists
at least one type of vertices among the following:

[B] 2a+2pB=2=x (p>2),
[B] 2a+2qy =2x (g>2),
[l a+@p-1)p+try=2zx (p>2),
[C] atp+(2¢-)y=2x (q>2).

Lemma 6.3. Two types [B] 2a +2p8 =2x (p>2) and [B] 2a +2qy =2r (> 2)
cannot exist simultaneously.

Proor. From these equalities, we have g = n/2p, ¥ = mn/2q Hence, we have S= «a + B
+ v — = (p+qg—pg) n/2pg>0, from which we have (p—1) (g—1) <1. This contradicts the

assumption p, ¢ > 2. q. e. d.

Lemma 6.4. Two types [C] a+ (2p-1) g+ v =2z (p>2) and [C] a+ B+ (2¢-1)7y

=2x (¢>2) cannot exist simultaneously.

Proor. From these two equalities, we have B = (3¢—3) x/ (4pg—2p—29), y = (3p—3) x/
(4pg—2p—2¢q) . If p=g¢, then we have B = ¥ =3m/4p, which is a contradiction. Hence, we
have p+gq, and by the symmetry, we may assume p>q. Then, substituting to g+ y = (F+
8) 7/2F, we have F=4 (2pqg—p—q) / (2p+ 2q—pg—3) >0, from which we have (p—2) (¢—2)
< 1. Therefore, we have ¢=2, p>3, 3 =3n/(6p—4) and y = (3p—3) =/ (6p—4). In this
situation, we can easily check that among the types [A] ~ [E’], only three types [A] 4a
=2, [(Ja+ (2p-1)3+ v =2z and [C] a+ B +3y =2x can exist. Then, by drawing
the development map from the vertex @+ 3+ 3y =2x, we can easily show that this case
does not actually occur in the case p> 3, and hence two types[C] and [C]do not exist
simultaneously.
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Figure 13

(The numbers of vertices indicate the order of drawing.)
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q. e. d.

Lemma 6.5. Two types [B] 2a +2py =2z (p>2) and [C] a+ (2¢-1)g+ 7 =2x

(¢ >2) cannot exist simultaneously.

Proor. From these equalities, we have 8 = (3p—1)x/2p(2¢—1), ¥y = n/2p. Hence, we
have S= a+ g+ v - = (2p+q-pg—1) n/p(2¢—1) >0, from which we have (p—1) (¢-2)
< 1. Hence, we have ¢=2 and B = (3p—1) n/6p, F=12p. In this situation, we can easily
show that possible types of vertices are [4] 4a=2x, [B] 2a +2py =2z, [C] a+3p
+ ¥ =2z and [E] 4py =2x (p>2), and other types cannot appear. We denote by V7,
Vo, V3, V4 the numbers of these vertices appearing in the tiling, respectively. Then, since

numbers of a,B,7 in this tiling are equal to F=12p, we have

4V1+2 V2+ V3=3 V3=2pV2+ V3+4PV4=12P,

and from these equalities, we can easily show that V; >0. Hence, a vertex of type (4] 4«
=2m exists. Then, starting from this vertex, we draw a development map. But, we arrive
at the contradiction as the following figure shows, and hence this case does not occur.

?

b4 4

ala

o,
™ X <

Figure 14
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By changing B and ¥ in this lemma, we have the following lemma.

Lemma 6.6. Two types [B] 2a+2pB3 =2x (p>2) and [C] a+ B+ (2¢g-1)y =2=
(g >2) cannot exist simultaneously.

Using these lemmas, we prove the following proposition.

ProposiTioN 6.7. There is no vertex of type [C] nor [C’] in the tiling of case 1I.

Proor. Assume there exists a vertex of type [C]. Then, by Lemmas 6.4, 6.5, there is no
vertex of type [B”] nor [C7]. Hence, vertices containing both @ and 7 must be of type

[C]. Using this fact, we draw a development map by starting from the vertex of type [C]
at (2q—1)ﬁ + vy =27 . But, as the following figure shows, this case does not occur.

Figure 15

The case [C’] can be treated in the same way, by using Lemmas 6.4 and 6.6. q. e. d.

From this proposition, we know that tilings of case II consist of only even-valent
vertices.

Under these preliminaries, we now prove Theorem 6.1. By Proposition 6.7, the type of
vertices containing @ is [A], [B] or [B7], and from Lemma 6.3, we may assume that
there is a vertex of type [B] 2a +2p8 =2x (p>2), and the type [B’] does not exist.
Then, from this equality, we have B = =x/2p, and possible types of vertices are

[A] 4a=2~r,
[B] 2a+2pB=2r,
[D] 2qp +2y =2m,
[D] 28 +2ry =2=x,
[E] 4pB=2~r,
[E] 2sy =2r.

(b, g r>2,5>3),

Now, we assume that there exists a vertex of type [E7] 2sy =2z . Then, we have y =
n/s, S= (2p+ s—ps) w/2ps>0, from which we have (p—1) (s—2) <2. Therefore, we have p
=2 and s=3, which implies g = n/4, v = n/3, S= x/12 and F=48. In this situation,
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possible types of vertices are 4, 2a +4p3, 88 and 67 . Then, starting from the vertex of
type [B] 2a + 45 =27, we can uniquely draw the development map of this tiling as
follows:

a Y7 a
@ a Y Y a a
a 717 a
B o la B
DK e——AT—Lp
Bla A a(g
Y _ala N
Y I4

X4 A y
777 aﬁﬁaa ﬂﬂﬂaa Ba 4 Y
Y Y a ﬁaaﬁ Igaaﬂ a Y Y
7 B ” aﬂli Ay B Y
7 y—alay 4

alB

Bﬂaa ﬁﬂﬂﬂ N

ﬁ :8 ala ﬁ /3’

a Y17 a
a a 4 4 a a
a Yl a
Figure 16

Clearly, this tiling is equal to TFyg.

Next, we consider the case where the type [E’] does not appear. In this case, if a vertex
of type [D7] exists, then we have r=2. In fact, from the equality 2B +2ry =2x, we have
y = (2p—1) n/2pr. Hence, S= (2p+r—pr—1)x/2pr>0, which implies (p—1) (r—2) < 1.
Hence, we have r =2 and ¥ = (2p—1)x/4p. In addition, if a vertex of type [D] exists, then
from the equality 2gB8 + 27 =2x, we have 2¢g—1=2p, which is a contradiction. Hence, the
type [D] does not appear, and possible types of vertices are [A] 4a =2x, [B] 2a+2pB3
=9x, D] 28 +4y =2z and [E] 4pp =2x. We draw a development map starting from
the vertex [B] 2a + 2p@ = 2x . Then, as the following figure shows, this case does not
occur.
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a

aﬂﬂ a‘7
A . 2 g
,8“ 77‘3
aﬁﬂ a?
Figure 17

Therefore, vertices of type [D7] do not exist. Then, the remaining possible vertices are
[A], [B], [D] and [E]. In this situation, starting from the vertex [B] 2a +2pR =2z, we
draw a development map. But as the following figure shows, this case also does not occur.

Figure 18

Hence, combining these cases, the tiling must be of type TFyg, and we complete the proof

of Theorem 6.1. q. e. d.

Combining Theorems 2.1, 2.2, 3.1, 5.1 and 6.1, we complete the proof of Theorem 1.1.
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