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Abstract : Robust stabilization for a class of nonlinear dynamical systems with uncertainties is
investigated. Based on the stabilizability of a nominal system (i.e. the system in the absence of
uncertainty), a class of continuous state feedback controllers for uncertain dynamical systems are
presented. Compared with those reported in the control literature, such a class of state feedback
controllers are non-saturation type, have a rather simple form, and can guarantee practical
stability and asymptotic stability of uncertain dynamical systems in terms of the choice of gain
control function. Particularly, no chattering will appear in implementation for the control. A
numerical example on the robust stabilization of a simple pendulum is given to demonstrate the
utilization of the results.

As an application of the results presented in this paper, the robust control problem of robot
manipulators is also discussed, and a simpler robust control law for n—link robot manipulators is
derived.

Key words : Uncertain dynamical systems, state feedback synthesis, Lyapunov functions,
practical stability, asymptotic stability, robot manipulators.

1. Introduction

Robust stabilization of dynamical systems with significant uncertainties has been widely
researched over the last decade, and a number of new approaches have been proposed for
synthesizing state feedback controllers which lead to some desired performance, e.g. asymptotic -
stability, ultimate boundedness, etc., of the state of an uncertain dynamical system [1, 2]. For
nonlinear and time varying dynamical systems with significant uncertainties described only in
terms of bounds on their possible sizes, it seems that the so called Lyapunov minimax approach [3]
be one of the most effective approaches for stabilizing controller synthesis.

The Lyapunov minimax approach is generally based on the stabilizability of a nominal system
(i.e. the system in the absence of uncertainty). Roughly speaking, a Lyapunov function of the
stable nominal system is employed as a Lyapunov function candidate for the actual uncertain
dynamical systems, and a control law is then chosen such that the Lyapunov function decreases
along every possible trajectory of uncertain dynamical systems.
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By employing the Lyapunov minimax approach, some types of state feedback controllers have
been proposed to guarantee the desired performance (see, e.g. [3]-[12]). Particularly, in [3] a class
of saturation—type state feedback controller has been proposed such that uniform asymptotic
stability of uncertain nonlinear systems can be guaranteed. In [4], a continuous state feedback
controller guaranteeing uniform ultimate boundedness of uncertain nonlinear systems is presented.
In [5], another class of practically stabilizing controllers are also proposed. Moreover, in [6,7] a
class of asymptotically stabilizing continuous controllers with a more complicated form are
proposed.

In this paper, we discuss the problem of robust stabilization of uncertain nonlinear dynamical
systems. Based on the stabilizability of a nominal system, a class of continuous state feedback
controllers for uncertain nonlinear dynamical systems are presented. Compared with the state
feedback controllers reported in the control literature, such a class of state feedback controllers are
non-—saturation type, have a rather simple form, and can guarantee the practical stability and
asymptotic stability of uncertain nonlinear dynamical systems by choosing different gain control
functions. Particularly, becouse of the simplity of the controller proposed in this paper, no
chattering will appear in implementation for the control. A numerical example on the robust
stability of a simple pendulum is given to demonstrate the synthesis procedure of state feedback
controller presented in this paper, and the results of its simulation show that this controller is
rather easily implemented, and no chattering will appear for the control.

As an application of the results presented in this paper, we also discuss the problem of robust
control of robot manipulators. Based on the development of [16], we derive a simpler robust
control law for n—link robot manipulators by making use of the method developed in the paper.

The paper consists of the following parts. In Section 2, the problem to be tackled in this paper is
precisely stated and some necessary assumptions are introduced. In Section 3, we propose a class
of state feedback controllers and discuss some relative problems. An illustrative example on
pendulum is also given in this section. In Section 4, as an application of the results presented in
Section 3, we discuss the problem of robust control of robot manipulators. Finally, the paper is
concluded in Section 5 with a brief discussion of the results.

2. Problem Formulation

Consider an uncertain nonlinear dynamical system, which satisfies the so—called matching
condition, described by the following differential equations:

% = f(x.0)+ Blr.fu+ ExD] x(1g) = x° M

where ¢t € R is the time, x(f) € R" is the state vector, x(f) € R is the control vector, {(x,?)
represents the system uncertainties and is assumed to be bounded in magnitude, usually in its
Euclidean norm denoted by | - || . The corresponding system without uncertainty, called nominal
system, is described by
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dx

= f(x,0)+ B(x,t)u, x(t,)=x° (2)
where ) : R" X R*— R" and B(*) : " X R*—R""" are known. Moreover, the so called unforced
nominal system of dynamical system (2) is defined by

dx
= =), )= (3)

Throughout this paper, we will consider the uncertain dynamical system described in (1). When
the assumption of matching conditions is not satisfied, some standard techniques have also been
developed (see, e.g. [13,14,15]).

Before giving our main results, we introduce for system (1) the following standard assumptions.

Assumption 2.1 The known functions f(*) : R X R*— R" and B() : R" X R*—R""", as well
as the unknown function {(-) : R* X R"— R" are continuous, uniformly bounded with respect to
time; and locally uniformly bounded with respect to the state x. {() € = o Where 2 is a specified
set.

Assumption 2.2 The uncertainty {(-) is bounded in Euclidean norm by a known function, i.e.
there exists a nonnegative continuous function p(-) : R" X R'— R"such that

|ECx,2)| < p(x,1) 4)

forall ()€ R"X R andforall {()e 3.
In addition, the function o (*) : R" X R'— R’ is assumed, without loss of generality, to be
uniformly bounded with respect to time, and locally uniformly bounded with respect to the state x.
Assumption 2.3 The origin x = 0 is uniformly asymptotically stable in the large for the
unforced nominal system (3). More specifically, there is a family of Lyapunov functions R(x, t) for
dynamical system (3). That is, there are an C ' -function V (*) € R(x, t) :R" X R~ R’ and strictly
increasing continuous scalar functions y; (*) R*— R"=1,2,3, which satisfy

7,(0)=0, i=12,3
limy,(0)=co, i=1,2

such that for all (x,#) € (x, £) :R" X R"

71(Ixl) < V1) < v, ()
dV(x,t)
5 VoV 1) £ (x,1) < =75l
Remark 2.1 Here, Assumption 2.1 is a technical assumption for mathematical
completeness. Assumption 2.2 defines the uncertainty band (in general state dependent) for {(x,?).
Assumption 2.3 shows that the nominal system must be internally stable in the sense that there

exists a Lyapunov function. Indeed, in order to guarantee robust stability of uncertain dynamical
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systems, their nominal systems must be stabilizable. It is under such an assumption that we can
discuss the robust stability of dynamical systems with uncertainties.

Now, the question is to synthesize a class of state feedback controllers u(¢) that can guarantee
the stability of nonlinear dynamical system (1) in the presence of the uncertainty {(x,f) € ..

In the next section, we will concern the concept of practical stability. Therefore, we introduce
the following definition [5].

Definition 2.1 The uncertain dynamical system described by (1) is said to be practically
stabilizable, if, given any d > O there is a control law p(-) : R" X R™— R” for which given any
initial time ¢, € R, any initial state x’€ R" and any uncertainty { € 2, the following conditions
hold:

(1) Existence of solution.

dx

o = f(x,t)+ B(x,t)[ p(x, 1)+ E(x, t)] )
possesses a solution x(*) : o, ] = R\ x (8) =x°, 8, > 1,

(ii) Uniform boundedness. Given any r > 0 and any solution x (*): [, t,] = R',x () = x°,of (5)
with ||x"]||< 7, there is a constant d (r) > O such that

|x()| < d(r), forall ret,,z]

(ili) Extension of solution. Every solution x (*) : [, t,]— R, x (&) = x°of (5) can be continued
onto [z, ).

(iv) Uniform ultimate boundedness. Given any d>d, any r > 0, and any solution x(*):
(£, ) = R, x (t;) = x°, of (5) with ||x’|| < r, there exists a finite time T(d, r) <o, possibly
dependent on r but not on £,, such that

|x(t)|sd, forall t=¢,+T(d,r)

(V) Uniform stability. Given any d > d, and any solution x (*): [ty,0) = R, x () = *° of
(5), there is a constant 8 (d ) > 0, such that |[x?| < § (d ) implies that

|x()|<d, forall 12t

In the rest of this section, we introduce three lemmas which will be used in the proofs of our
main results.

Lemma 2.1. Let V(-):R" X R*— R"be a Lyapunov function candidate for a given continuous
dynamical system

% = F(x(1),1) (6)
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with the following properties:

Yillxl) < V(x.1) < v, (1)

ﬂ’%t_) + VIV (x,t)F(x,t) < =7, (Il + 2¢

where € > 0 is a constant, the functions 7;, i =1,2,3, are defined in Assumption 2.3. Then, if
2e <liminfy,(r):=1 (7)
every solution x(¢; x°%¢,) of dynamical system (6) is both uniformly bounded and uniformly

ultimately bounded. More precisely, one has the following results.
(1) Uniform boundedness. 1fx(*): [t, t,]— R',x (t,)= x° is a solution of the system, then

)

<r = |x(r)|<d(r), Vielt,t]

where

"o R), ifr<R
d(r)= {(v,l 1.)(R) ifrs
(v oy, )r), ifr>R

and
R=17](2¢)
Furthermore, the solution has a continuation over [, o).

(ii) Uniform ultimate boundedness: 1If x (): [tp, ) = R" x (t;) = x°- is a solution of the
system,then for givend > (y,1 o v, )(R)

x| <d, Vtz1,+T(d,r)

where
0, ifr<R
[v.()-7.®)] /[r;(R)-2¢], ifr>R

T(J,r)z{

and
— R -
R= (72 °71)(d)
Proof: This lemma is a compact form of the theorem proved in [4].

Lemma 2.2. Let V(-,*) R* X R"— R'be a Lyapunov function candidate for the given
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continuous dynamical system described by (6), and with the following properties:

7.l < Ve <. (Iel)
VD) L g1y (e, 1) P 1) <~ (Il + ()

ot

where the function ;, i =1,2,3, are defined in Assumption 2.3 , and ¥(*) is a continuous function
satisfying

lim [ y(T)dr <y <oo

1 Jiy

where ¥ is any constant. Then, the dynamical system described by (6) is uniformly asymptotically
stable. That is, for any solution x ¢) := x(t; t o, x °) of (6),

lim|x(¢)| =0

Proof: (see Appendix A).

Lemma 2.3. Let V(-) R® X R'— R'be a Lyapunov function candidate for dynamical system
(6) with the following properties:

(All) < Vi(x0) < (A )

aV(atc 1), V'V (x,1)F(x,t) < =20V (x, 1) + 28|

where A

'min ? max ?

o, and € are positive scalar constants satisfying

a>ER. @®)
Then , the solution x (+):[#, ) = R’, x (t,)= x° of dynamical system (6) is globally exponentially
stable in the sense that

|x(2)] < o ||x "exp{ ( /ém ](t —t, )} )

Proof: (see Appendix B).

Remark 2.2 It is worth noting that if (8) is satisfied, there may also be some estimate
inequalities with other forms on ||x(#)||. But in this paper, we will use the estimate inequality (9).

In addition, corresponding to Lemma 2.1 we also introduce the following definition.

Definition 2.2 If the scalar function s : (*) : R'— R’, defined in Assumption 2.3 is bounded,
then we define a constant ¢ satisfying

liminfy,(r):=1 <o (10)
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3 Robust State Feedback Synthesis
3.1 State feedback controller guaranteeing practical stability
Based on the Lyapunov stability theory, we propose the following state feedback controller:

u(t) = p(x,t) (11a)

where

p(x,1) =—k(t)p*(x,1)B' (x,)V V(x,1) (11b)

where k(z) > 0 is a chosen continuous function and called the control gain function.

Remark 3.1 It is obvious from Assumptions 2.1 to 2.3 that the state feedback controller
proposed in (11) is uniformly continuous. It is worth noting that compared with the controllers
reported in the control literature, the controller (11) possesses a rather simple form. Therefore, in
practical control problems, it is easier to be implemented. Since the proposed controller is not
saturation-type, no chattering will appear in implementation for the control.

Remark 3.2 It is worth noting that the similar state feedback controllers have been proposed
in [5] and [22]. The controllers proposed in [5] and [22] can only guarantee uniform ultimate
boundedness (or practical stability) of uncertain dynamical systems. But, for state feedback
controller (11) proposed in this paper, we introduce a control gain function (), and by
appropriately selecting it, one may obtain better transient behavior for closed—loop dynamical
system (1), (11), i.e. one can guarantee not only uniform ultimate boundedness but also asymptotic
stability of uncertain dynamical systems which will further be shown in the following illustrative
example.

Thus, we have the following theorem which shows the practical stability and asymptotic
stability of closed-loop dynamical system (1), (11).

Theorem 3.1 Consider dynamical system (1) satisfying Assumptions 2.1 to 2.3. Then, for
every {(*) € 2, the closed-loop nonlinear dynamical system described by (1) and (11) has the
following properties:

(1)If the control gain function k (¢) is chosen such that & (¢) is finite for all time, and satisfies

1 ~
—=2e</
e £< (12)

where ¢ is a constant and ¢ is defined in Definition 2.2,then, closed—loop dynamical system
(1), (11) is practically stable.
(11) If the control gain function k (¢) is chosen such that
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lim ——dT <K<oo (13)
naadl 4k(T )
where K is any constant, then, closed-loop dynamical system (1),(11) is uniformly
asymptotically stable.
Proof: Let x(t) := x(t; to, x°) be a solution of closed-loop dynamical system (1), (11).
Furthermore, employing the same Lyapunov function as given in Assumption 2.3, we have the
Lyapunov derivative £(-):R" X R — R for closed-loop dynamical system (1), (11) given by

dV(x,t)
ot

£(x,1):= +VIV(x,1)x

aV(x f)

P Viv(x, 0 f(x.1) + B(x.t) p(x,1) + E(x,1)]} (14)

From Assumptions 2.2 and 2.3 and (11b) we further have

£(x,1) < =y,(|xl) - k()P (x.1)|B" (x.1)V V(% 0)[
(x.)V, V(x1)

I N
2Jk(t) | 4k(r)

A 4k(,) as)

= =75(Ixl) - | VK@)

Therefore, from (15) we can obtain the following two analysis results:

(@) Ifk(¢) is selected such that inequality (12) is satisfied, one can apply directly the results of
Lemma 2.1. From Assumption 2.1 and Lemma 2.1, it is obvious that the requirements on (i)
existence of solution, (ii) uniform boundedness, (iii) extension of solution, and (iv) uniform
ultimate boundedness (see Definition 2.1) are satisfied, and one has the qualitative estimate results
similar to ones given in Lemma 2.1 on uniform boundedness and uniform ultimate boundedness.

Finally, for uniform stability, we easily prove it by making use of a proof method similar to that
of Corollary presented in [4].

Therefore, we can conclude that closed-loop nonlinear dynamical system (1), (11) is practically
stable for every () € .

(b) If k (¢) is chosen such that (13) is satisfied, then it follows from Lemma 2.2 that closed-
loop dynamical system (1), (11) is uniformly asymptotically stable. |

As a special case, we consider the problem of robust stabilization of uncertain dynamical
systems with linear nominal part described by

ax(t) _

» = Ax(t)+ Blu(t) + &(x.0)] . x(t,) = x° (16)
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where A€ R and B € R are constant matrices.
For dynamical system (16), we introduce the following standard assumption.

Assumption 3.1 The pair (A, B) given in (16) is completely controllable.

It follows from Assumption 3.1 that for any symmetric positive definite matrix Q € R™" the
algebraic Riccati quation of the form

A"P+PA-PBB'P=-Q A7)

has a solution P € R"™", which is also symmetric positive definite.
Here,we propose the following state feedback controller for dynamical system(16)

u(t) = p,(x,t) + p,(x,1) (18a)

where
pt) = =3 B x(1) asb)
pi(x,t) =—k(t)p*(x,)B" P x(r) (18c)

Remark 3.3 The control (18) consists of two parts p: (*) and p: (-). Here, p: (*) is linear state
feedback controller which stabilizes the nominal system, and p: (*) is continuous nonlinear state
feedback controller which is used to compensate for the nonlinear system uncertainties in
dynamical system (16) to produce some types of stability results. It is interesting to note that if
system uncertainties are bounded by a constant, i.e. o =constant, the compensation control (18c)
is reduced to a linear form.

Thus, from controller (18), we have the following corollary which shows practical stability and
asymptotic stability of dynamical system (16).

Corollary 3.1 Consider dynamical system (16) satisfying Assumption 2.2 and Assumption 3.1.
Then, closed-loop dynamical system (16), (18) has the following properties:
(1) If the control gain function k (¢) is chosen such that 1/k (t) is finite for all time, and satisfies
(12), then closed—loop dynamical system (16), (18) is practically stable.
(1) If the control gain function k (¢) is chosen such that inequality (13) is satisfied, then the
closed-loop dynamical system (16), (18) is uniformly asymptotically stable.

Proof: Applying the state feedback controller (18) to (16) yields

ax(t) _
dt

For the nominal dynamical system of (19), that is,

(A - %BBTP) x(t) + B py(xut) + E(x.1)] (19)
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dx(t) _

1 T)
4 (A L BEP) x(1) oo

we define a scalar function V(*): R" — R" as follws.

V(x)=x"Px

where P is the solution of the algebraic Riccati equation (17).
Firstly, by the Rayleigh principle [17], we have

Aia (P S V(%) S A (P 1)
Secondly, for nominal dynamical system (20), we have |

@ = ~x"0x < =y, (Ol (22)

It is clear from (21) and (22) that one can take the bounding functions ¥; () to be

¥.(r) = A’min(P)rz (23a)
Y2 (r) = Ay (P (23b)
y3(r) = A’min(Q)r2 (230)

where Amsx (*) and Ami (*) denote the maximum and minimum eigenvalues of the matrix (*) ,
respectively.

Therefore, by making use of a method similar to that in the proof of Theorem 3.1, from (23) we
can obtain the results given in this corollary. [ |

3.2 State feedback controller guaranteeing exponential stability

In this subsection, we consider a class of uncertain nonlinear dynamical systems whose
unforced nominal system is exponentially stable, and whose uncertain perturbations satisfy the so-
called cone condition. For such a class of uncertain nonlinear dynamical systems, we can
synthesize a class of state feedback controllers with a simple form such that the exponential
stability of the dynamical system can be guaranteed.

Assumption 3.2 The origin x = 0 is an exponentially stable equilibrium point of unforced
nominal system (3). More specifically, there exists a C'-function V():R" X R"— R’ which satisfies

(Al < V(x1) < Ao’
aV(x,t)

T L VIV (x0)f (x.0) S 20V (x.1)

for all (x,t) R" X R, where Ami, Amax, and o are positive scalar constants.
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Assumption 3.3 The uncertainty {(*) : R* X R— R"is bounded in Euclidean norm by a
known function, and satisfies

|&(x.0)| < Bllx (24)

where [ is a nonnegative constant.
Under Assumptions 3.2 and 3.3, we propose the following state feedback controller:

u(t) = p(x.t) (25a)

where

P(x,1) = —kB" (x,1)V  V(x,1) (25b)

where k is a positive constant and selected such that the following relation is satisfied:

2
a = ﬁ2 >0
4k).

= (26)
Thus, we have the following theorem which shows exponential stability of closed-loop
dynamical system (1), (25).

Theorem 3.2 Consider dynamical system (1) satisfying Assumptions 2.1, 3.2, and 3.3.
Then, closed-loop nonlinear dynamical system (1), (25) is exponentially stable. More precisely,
we have

|x(2)] < A “x A ||exp{ a(t—t )} 27)

Proof: Let x(¢) be the solution of closed-loop dynamical system (1), (25). Then, the Lyapunov
derivative £ (*):R" X R’ — R for the solution x(¢) is given by

£(x1) = )+VTV(x i

8V(x t)
ot

From Assumptions 3.2 and 3.3, we further have

+VIV(x,t){ f(x.8) + B(x, ) B(x,1) + E(x,1)]} (28)

£(x,1) € 20V (x,1) = F|B" (x, OV, V(x, ) + B|B (x,1)V V(x, )l

= —2aV(x,1)~| VE |B" (x.0)V V(x.0)| - i_uxn + i||x||2
2k 4k

< —-20V(x,1) + 2&|x* (29)
where



104 Hansheng Wu and Koichi Mizukami

By making use of Lemma 2.2, from (29) we obtain

1 ~
()] < i x(t, )Hexp{—(a - ; . )(t -~ to)} (30)
It is obvious from (30) that if we select a control gain parameter k such that

2
a=a- P >0
4%,

then, closed-loop dynamical system (1), (25) is exponentially stable. |

3.3 An illustrative example

In order to demonstrate the utilization of the approach, we consider a simple pendulum which
was analyzed in [4,5]. However, it will be shown in this paper that the desired asymptotic stability
can actually be guaranteed by using a simpler state feedback controller. A pendulum of length ¢ is
subjected to a control moment u (per unit mass). The point of support is subject to an uncertain
acceleration v, with |v(#)|< pf = constant (see Fig.1).

Fig.1 Illustrative exampie. Pendulum

Letting x; = 6 and x2 = 6 , one obtains the state equations

240~ (31a)
) — _gsin(, ) + ute) - o) ) a1b)

where o > 0 is a given constant. In order to satisfy Assumtion 2.3, by employing a linear state
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feedback controller one can create a new unforced nominal system for which the zero state is the
only uniformly asymptotically stable equilibrium state. Thus, we let

u(r) = —bx, (1) = cx, (1) + p(x(t).1) (32)
where b and c are positive constants, and p(*) is a control of type (11). The system equation is then
dx(t) _

= F(0)+ Blp(x(0).0) + &x(0),0)]

where

f(x) = |:—bx1 —-cx, — aSin(xl ):|

B=[0 1]
cos(x, )
Ex.t)=-v(t)—,—
The new unforced nominal system has x= 0 as its only equilibrium state. It is readily seen that
the function given by

V(x,t)= (b + %cz )xf +cx,x, + x5 + 2a(1 — cos(x, ))

is a Lyapunov function with

Yi(lxl) = A (Pl
A x| +2a(1—cos(|x])), | <
n(uxm:{ (P +2a(1 ~cos(al) [+l<7

A (P +4a x| > =
7s(lxl) = nllxd
where
b+ l c? l c
P = 12 2
—C 1
2

n:= min{E c, c}

b= b+amin(%l—)-j >0

X xl
It is obvious that
cos(x, )

_ T\« A
vn)—,~(<p

[€Cx.0)| = cos(x, )| (33)
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Here, we select a control gain function as
k(t)=k exp[0.0S(t —t, )] (34)

where k is any positive constant. It is obvious that the control gain function given in (34) satisfies
condition (13). Therefore, it follows from Theorem 3.1 that

p(x,t) = —k exp[0.05(t — 1, )](,6|cos(xl )|)2 (ex, +2x,) | (35)

Controller (35) will guarantee the asymptotic stability of dynamical system (32). In order to

illustrate this, a simulation is given with the following parameters

=30, p=50,
a=1.0, b=2.0, c=2.0

For this simulation, we also assume that the uncertainty v is represented by
v= ¢ psin(-x,)

The results of simulation of this example for the different parameter k are depicted in Fig.2. It is
shown from Fig.2 that closed-loop nonlinear system (32), (35) is indeed uniformly asymptotically
stable and no chattering will appear for the control. In addition, the results of our simulation also
show that uncertain system (32) without controller (35) is not asymptotically stable.

From Fig.2(c), we can observe that for a smaller k, the control has its lower magnitude. Thus,
one can select an appropriate parameter of control gain function to prevent control saturation for
practical control problems. Of course, as a trade-off, the system will have a slower rate of
convergence to its equilibrium state (see Fig.2(a)and Fig.2(b)).

2.5 I T v T T T

2.0

1.5

1.0

State Variable x, (t)

0.5

0.0

1 L 1 1 i

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Time

Fig.2 (a) Responses of state variable x,(¢) with k = 0.08,0.10,0.12 and initial state x,(0)=2.0.



Robust State Feedback Synthesis and Robot Control 107

15 T T T T T T
1.0 } 7
e
o 0.5 .
2
0
]
5 0.0 |
>
]
+~
E -4
2 -0.5
-1.0 } 1
-1.5 | .

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Time

Fig.2 (b) Responses of state variable x,(¢) with k= 0.08,0.10,0.12 and initial state x,(0)=1.5.

l.O T T T T T T

0.5

0.0

-0.5

-1.0

-1.5 1 .

-2.0 [ §

Control Law u(t)

-2.5 k= 0.08

_3.0 - -4
k=0(0

~-3.5 - J
—k =0.12

1 | H 1 1 1

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Time
Fig.2 (c) The time response of the control law (40) for k= 0.08,0.10,0.12
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4 Application to Robust Control of Robot Manipulators

Consider the following Euler-Lagrange dynamical equations for an n-link robot [18].

M(q)i+C(q,9)g+9g(q)=1 (36)
where

geR, TeR

Furthermore, following the development in [16], when the Lagrangian dynamical equations are

linearly parameterizable, one can have

M(q)§+C(q.9)q+9(q)=Y(9.4.4)0 =7 (37)

where 6 € R’ is the unknown parameter vector whose deviation from a known nominal 6, is given
by

6] =lle -6 < (38)

where p€ R is a known positive constant.
The nominal control vector 7o is defined by

Ty = Mo(q)a + Co(q’q)v + go(‘]) —Kr
=Y(q,4,v,a)0, — Kr (39)

where the quantities v, a, and r are given by
v=¢'-Ag, a=0
r=g+A3, §=q-¢ (40)

where ¢° is a given twice continuously differentiable reference trajectory, and the gain matrices K
and A are positive definite (diagonal) matrices.
The control input = in terms of the nominal control vector 7o is given by

T=1,+Y(q,9,0,a)u (41)

where u is an additional control input that will be synthesized for robustification to the parameter
uncertainty represented by 8. Then, substituting (41) into (36) yields

M(q)# + C(q.q)r + Kr = ¥(¢,¢,v,a)(6 +u) 42)

For system (42), following [4], Spong [16] proposed a continuous state feedback controller of the
form
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—pY'r/|Y"r|, if|rTr|>e
u(t) =

-pY'r/e, if|YTr|<e (43)

which guarantees uniform ultimate boundedness for system (42).
On the other hand, following [6], Yaz [19] proposed another continuous state feedback
controller of the form
Y'rp
[+ 7 exp(~.)

u(t) = — >0, 7,>0 44)

which results in the exponential stability for system (42). It is obvious that controller (43) is
saturation-type, and can only guarantee uniform ultimate boundedness. Though controller (44) can
guarantee exponential stability, but it has a complicated structure. In this paper, following the
approach developed in Section 3, we will propose the following continuous state feedback
controller guaranteeing some types of stability results of system (42).

u(t)=—k(t)p*Y'r (45)

where k(2) is the control gain function.
Thus, we have the following theorem which shows that some types of stability results of system
(42) can be acheived under a simple continuous state feedback controller (45).

Theorem 4.1 Consider system (42). Then, for any @ satisfying (38),closed-loop system (42),
(45) has the following properties:
(1) If the control gain function k() is chosen such that 1/k(f) is finite for all time, and satisfies
(12), then closed-loop dynamical system (42), (45) is practically stable.
(i1) If the control gain function k(t) is chosen such that inequality (13) is satisfied,
then closed-loop dynamical system (42), (45) is uniformly asymptotically stable.

Proof: The proof is similar to that of Theorem 3.1, so we will merely sketch the argument.
Following the same discussion as that given in [16], we define a Lyapunov function candidate
for system (42) as

V= %rTM(q)r +gAKG (46)

A simple calculation shows that along solution trajectories of system (42),

av

= —r"Kr+2§" AKr — 25" AKAG + rTY{é + u}
t

=—x"Qx+1" Y{é + u} 47)

where
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r K KA
x=|_|, 0=
[q} [AK 2AKA]

The first term on the right-hand side of (47) is negative definite since A K A > 0, and

K—KA QAKAY'AK=(1/2) K >0[16] as is also shown in [20]. Furthermore, from (38) and
(45) we have

DV < A (@I + Y o - k()p? Yo

dt
1 (48)
4k(t)

To complete the proof, it suffices to notice the following (see [16]).With class-K functions ou(*)
and o »(*) such that

< —Ain (QUI +

o, ()1 < M(q) < a,(|xl)1

it can be shown that there exist class-K functions () and y,(*) such that

4 (||x||) SV(x,t) <7, (||x||) (49)
Thus, from (48) and (49) we have known that Assumption 2.3 is satisfied with
liminf y,(s) = (50)
where
¥3(8) = Apin (Q)s”
Then, from Theorem 3.1 one can easily obtain the results given in this theorem. |

Remark 4.1 State feedback controller (45) proposed in this paper is continuous, and can
guarantee practical stability and asymptotic stability of robot system (42) by choosing different
gain functions. It is obvious that controller (45) has a rather simpler structure than (43) and (44),

and is more easily implemented. In addition, for controller (45), we may select an appropriate

control gain function k(#) such that the closed-loop system has better transient behavior.
5 Conclusion

In this paper, the problem of robust stabilization for a class of nonlinear dynamical systems with
uncertainties has been discussed. By Lyapunov approach, we propose a class of state feedback
controllers with a rather simple structure, which can guarantee practical stability and asymptotic
stability of uncertain dynamical systems by choosing different control gain functions. Such a class
of state feedback controllers are easily implemented, and no chattering will appear in
implementation for the control. As an application of the results developed in this paper, we also
discuss the problem of robust control of robot manipulators and propose a simpler robust control



Hansheng Wu and Koichi MizukaMi 111

law for n-link robot manipulators.

A numerical example of robust stability of a simple pendulum is given to demonstrate the
utilization of the results. It is shown from this numerical example that the results obtained in this
paper are effective for a class of uncertain nonlinear dynamical systems, and can be expected to
have some further applications.

Appendix A: Proof of Lemma 2.2

By the continuity of dynamical system (16), it is obvious that dynamical system (6) has a
continuous solution x (t; : to, x°).

It follows from the properties of the Lyapunov function that

<1, (I*])-I 7a(x@)az+ [ wieye (D

Therefore, from (A1) we can obtain the following two results. First, taking the limit as ¢
approaches infinity on both sides of the inequality (A1), we have

0<7,(|x°) - hmJ' ¥s(Jx(z)|)dr +lim j w(r)dz (A2)

t—oo0 t—re0

It follows from (A2) and the property of y(¢) that
<7:(ll) - tim [ vs (=) 7
ie.

lim J:) 1s((@)de <v,(|<°)) + ¥ (A3)

1—e0

On the other hand, from (A1) we also have

0 <,(lx@)l) < 72 (%] + j w(1)dt (A4)

Since the function y (*) is continuous and satisfies the inequality of the lemma, we can define a
constant as follows:

Y= sup '[t

1€[ty,e0)1" 0

y/(r)drl (AS)

It follows from (A4) and (A5) that
07, () < v (|°]) + ¥ (A6)
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which implies that x(+) is uniformly bounded. Since x(-) has been shown to be continuous, it

follows from (6) that x(*) is uniformly continuous. Therefore, y, (||x]|) is uniformly continuous.
Applying the Barbalat lemma [21] to the inequality (A3) yields

lim ;(J) =0 (A7)
Since ys(*) is a positive definite scalar function, it is obvious from (A7) that we can have
lim [x(r)]=0
That is, dynamical system (6) is uniformly asymptotically stable. |
Appendix B: Proof of Lemma 2.3
Let x(¢) be the solution of system (6), and V() denote V(x(¢),f). Then we have
av(t) V(1) o
= 2 +V _V(x,t)f(x,t
o= Z L VIV (x0) f(x)
SN2
< —20V(2)+28|] (A8)

From (A8) we can obtain the inequality on V(¢) as follows.

V(0) = (Apae5(5o)) exp{-201(r - 1,)}

+ [ 28exp{-2a(t - D)}x(o)[ d= (A9)

Here, we define an auxiliary function S(#) as follows.

COR2(C

x(t0 )")2 exp{—2a(t -1, )}

1
‘2 exp{—2a(t — 24t A10
+[ 28 exp{-2a(i - )}x(0) dr} (A10)
Then, comparing (A9) with (A10) we have
S(t) 2 \V(t) 2 Ao ||x(0)] (All)
It follows from (A11) that we have
O] 1 (A12)
S(t) A‘min

Differentiating (A10) yields

ds(t)

_ [0/
e oS(1) + S(0) &|lx(r)

S—aS(t)+xi||x(t)|| (A13)

mi
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Moreover, from (A13) we obtain an inequality on S(¢) as follows.

S(H)<A

(to)lexp{-a—1,)}

+—’J exp{-a(r - 7)}|x(7)|d7 (A14)

'min

It follows from (A11) and (A14) that

[x(2)] Ao "x ”exp{—a(t ~t, )}

mm

+-E- [ expl-ate - Dfx(o)lde A13

min

In order to make use of Bellman-Gronwall's inequality, we rewrite (A15) as follows.

||x(t>||exp{a(r—ro)}siﬂllx(ro)\h;zf;!; expla(t —1)}|x(r)|d

'min

Then, by Bellman-Gronwall's inequality, we obtain the inequality (9). It follows from (9) that
system (16) is exponentially stable. H
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