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A note on growth estimates for positive solutions
of nonlinear elliptic inequalities
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Abstract : We give some upper bounds for positive solutions of nonlinear elliptic inequalities
specified below. Comparison principles are considerably used to analyze these problems.
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1. Introduction

Consider the simple sublinear elliptic equation
Au=p(x)u®, xeR", (1. 1)

where ¢ € (0, 1) and p is positive and continuous. Then, it is easily seen from Jensen’s inequality
that the spherical mean & (7), r > 0, of a positive solution « of (1. 1) satisfies

[2(n]™° <[u(0)]° +(1-0) jo'j;(r/s)”-‘ (maxlxlz, p(x))dtds, r20. (1.2

In particular, min__ [u(x)]'"° is bounded by the right hand side of (1. 2). On the other hand, it can
be shown that, occasionally, (1. 1) has a positive solution u such that u'~° behaves like a positive
constant multiple of the right hand side of (1. 2) as |x] = r — . For example, the function
(1+ X)) solves (1. 1) with p(x) given by

p(x) = N 2G|x|2 -
1-o A-0)1+x*)

Accordingly we can conclude that (1. 2) gives an effective bound for positive solutions of (1. 1).
In the present paper we try to extend this fact for more general elliptic inequalities. In Section 2,
first we treat the semilinear inequality

N N
(L—c)u= Y a(x)Dju+Y b,(x)Du—c(x)u
i=1

i, j=1

< px)f(u), xeQ, (1.3)
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where € is an exterior domain, L is an elliptic operator, and p € C(L) is positive. In Section 3 we
consider the quasilinear inequality

. D
Mu= dlv[(l—ﬂﬁ} < p(x)f(u), xeR", (1.4)

where 0 < a < 1/2, and p € C(R") is positive. When 0 < a < 1/2, M is often referred to as the
generalized mean curvature operator. In these inequalities we always assume that N > 2, and
f € C (0, =) is positive. Other detailed hypotheses are specified later.

Several works treated the problem of finding effective estimates for positive solutions of
inequalities like (1. 3) or (1. 4). The cases of ¢ > 1, and ¢ > 1 and p(x) > 0 in (1. 1) were studied
in [2] and [4], respectively. Other related results are also found in the papers [1, 3, 5].

2. Semilinear inequalities

First we investigate the semilinear inequality (1. 3). Throughout this section we assume the
following:

(H) a, b, c € C(Q) for all i, j, the symmetric matrix (aij(x)) is positive definite at each
x € Q,and ¢(x) > 0in Q.

(H) f € C'(0, ), f"(u) = 0 for u>0, and

F(u)= Ifs) u>0,

exists.

Condition (H,) means that fis a so-called sublinear function at u = 0.

We introduce notation by means of which our results are formulated. For x = (x) € Q, x # 0,
we put

N
Ax) =4 2 a;(x)x,x;.

ij=1

Let D,, p*, P, and c* be continuous functions satisfying for large r

1 N
D.() S ygin )Z(ai,.<x>+xibi(x))
and
. p( x) . c(x)
p (2 ||— A)’ p(r)Zﬂggp(x), C(r)>r|§1|f_1§ A’

respectively. We also employ the function K, (r) defined by

K(r)—rexp(j (s) ) r2r,
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where r, > 0 is an arbitrarily fixed constant such that {x: |x| > r, } C Q. For example, if L= A,
the above functions can be taken to be those satisfying

A(x)=1, D.(r)=N, K.(r)=pos.const. 7™,

and
p(N=prz max p(x), c'(nz max c(x).
THEOREM 2.1.  Suppose that there is a positive function w(r) satisfying

W+l (D -w=c (w2 p (), r2, @1
-

wi(ry)>0; w'(r)=20, r>r,. 2.2)
Then, positive solutions u of (1. 3) satisfy

minixl:r F(u(x))
<

lirrn_) iup W) oo, 2.3)
PROOF. Put v(x) = F(u(x)), x € Q. Then we get
Lv(x) = Lu_ _ A Zaij(x)D,.uDju

f@) [f@F 5

< c(x)L + p(x) Lc(x)v(x)+ p(x), xe€l.

f@w)

Here the trivial inequality

ds
Flu(x))’

is employed. On the other hand, w(|x|) satisfies the inequality

v(x) 2 J-:(x) ’
Lw(r)—c(x)w(r)2 p(x), |x|=r=r,.

Indeed, in view of w'(r) > 0, we have

L(Lw(r) — c(x)w(r))

A(x)
=w"(r)+ '1" L 2((1()6) + xb(x)) —1|w'(r)- c(x) w(r)
r Ax) T ” A(x)
> W () + (D= DW= (w(r) 2 p’(r) 2 22
r A(x)

forlxl =r >,
Now, to prove (2. 3) we suppose to the contrary that it never holds. Accordingly we have
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. . v
lim sup (v — mw) = lim sup w(— - m) = oo Q2.4
w

x| Jsl>e
for all m > 0. Choose m > 1 large enough so that
D,(v—-mw)<0, [x=r,
and
v-mw<0 atsomex, |x|>r, (2.5)

where D, denotes the directional derivative along to the outer normal vector n at x on the sphere
x| = r,. This is possible by (2. 2). Combining this property with (2. 4) we see that the function
v — mw takes a local minimum at some point x, |x| > r,. We may assume v(x ) — mw(Jx]) < O by
(2. 5). However this leads us to a contradiction because

0< L(v—mw)(X) < c(X)(V(X) — mw(x])) + (1 - m)p(X) < 0.

This completes the proof.

Consider the case in which

J' B K*(r)[fr IC{ (s)) ds]dr < oo, (2. 6)

«(s
Then, it is easily seen that the ordinary differential equation
1 .
w'+—(D,(r)-Dw'—=c (rnw=0
r

admits a positive solution w, € C*[r, o) satisfying
Wy (r)>0, r>r, limw,(r)=/{=conste/(0,0c), 2.7

if r, is sufficiently large. In fact, we can find a positive solution w_ of the integral equation

wo(r)=£— _[ B K*(s)(J: ;((’t )) W, (t)dt)ds, rer,

satisfying (2. 7). Therefore inequality (2. 1) can be rewritten as

K.(r) (wo(r))z( w ) 'Zp*(r), rxr,.
wo(r)| Ku(r) \we(r)

It is found from this observation that inequality (2. 1) has a positive solution w € C?[r,, =)
explicitly given by

K.(s) [ s wy (£)

el | g D (t)dt]ds.

W =w -
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Combining this fact with Theorem 2.1 we get the following corollary.

COROLLARY 2.2. Let (2. 6) hold. Then, positive solutions u of (1. 3) satisfy

) min _ F(u(x))
lim sup < oo,

o j ' K*(s)( j sf{—}%dt)ds

The following is a simple consequence of Corollary 2.2.

COROLLARY 2.3. Let (2. 6) and the condition lim
positive solutions tending to oo uniformly as |x| — o, provided

F(u) = o hold. Then (1. 3) has no

U oo

- " p(s)
j K,(r)[ j mdstr < oo, 2. 8)
EXAMPLE 2.4. Let us consider the inequality

(A + ) 0, (x)D; Ju + Y b(x)Du< p(x)u°, xeQ, 2.9)

where 0 <o <1, o = ¢, € C(L). Suppose that there are continuous functions a and b satisfying

oy | <@, [p0|<bdx), xeQ

for all ;, j, and
lima(r)=0, [ O

r—ee r

dr < oo, r b(r)dr < .
Then some computations show that we may take D'(r) = N — ¢, ( a (r) + rb (r)) for large r, with
some ¢, > 0, from which we find that
c,r' ™M <K, (r)<c,r'™"  forlarge r
with some c,, ¢, > 0. Therefore Corollary 2.2 asserts that positive solutions u of (2. 9) satisfy

_ min,,,_ [u(x)]"™
limsup —— < oo, (2. 10)
roe fj(t/s)”‘lﬁ(t)dtds

Moreover, Corollary 2.3 asserts that, if N> 3 and / “rp (r) dr < o, then (2. 9) never has positive
solutions tending to oo as |x| — ce.

Comparing (2. 10) with (1. 2), we find that our results above surely give an extension of the
estimates for positive solutions of (1. 1) described in the Introduction.

The argument developed above is also applicable to the linear inequality
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Lu<p(x)u, xeQ. (2.11)

(Note that here we put c(x) = 0 in (1. 3).) The following results are easily proved as in the proof
of Theorem 2.1 by considering the function v(x) = log u(x), where u is a positive solution of
(2. 11). Hence, the proofs are left to the reader.

THEOREM 2.5. Suppose that there is a positive function w(r) satisfying (2. 1) (with ¢ = 0)
and (2. 2). Then, positive solutions u of (2. 11) satisfy

. min,_, logu(x)
lim sup » < oo,
r—eo W r

COROLLARY 2.6. Positive solutions u of (2. 11) satisfy

) min,,,_logu(x)
lim sup n < oo,
k| [ 2D ar las
K.(1)

COROLLARY 2.7. Let (2. 8) hold. Then (2. 11) has no positive solutions tending to o«

uniformly as |x| — oo,
3. Quasilinear inequalities

Next, we turn to the quasilinear inequality (1. 4). To explain our assumptions here, we introduce
the function ¢ (s) = s/(1+s%)% s € R, and denote its inverse function on R by ¢. It is easily seen
that the following inequalities hold:

P(s) = s 520,

#(s) < Cs"7?20 ) 5>1,
with some C > 0, and
o(s,8,) < 0(s))o(s,) fors,,s, 20. 3.1
For radially symmetric functions A(]x]) of class C?, we have
Mh(r)=r"N "Y' (), r=|x

This simple formula is often employed later.
Throughout this section we assume the following:
(H)) f is strictly increasing, and satisfies

[ 20 ds = oo, (3.2)

and
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J'l ds <o
0 f(s)

This assumption and the fact that ¢'(0) = 1 enable us to introduce the function

™ ds
A=l e “°

A typical example of f satisfying (H,) is the function f () = 4°, 0 < o < 1—2c. For this f, F,(«)

(1=20-0)/(1

behaves like a constant multiple of u 2 a5y — oo,

The main result of this section is as follows:

THEOREM 3.1. Let p be a continuous function such that p(r) > max =y PX), 7 2 0. Then, for
each positive solution u of (1. 4) we can find a positive constant m satisfying

. mi“m:r u(x)
lim sup

<1.
o F,;‘(m+ jo ¢( jo (t/ sy Ia(t)dt)ds)

To prove this theorem we need preliminary lemmas.

3.3)

LEMMA 3.2. Let u be a positive solution of (1. 4), and v € C*(R") be a positive solution of
the inequality

Mv2 p(x)f(v), xeR".
If, in addition,

lim sup min u(x)

>1,
roe  lxl=r v(x)

then, u > v in R”.

PROOF. We remark first that for & of class C > we can express Mh in the form %AU(Dh) Dijh,
where the symmetric matrix (4 ,(2)), z € R", is positive definite.

Put w = u — v. To prove this lemma we suppose to the contrary that w(x,) < 0 for some x. By the
assumption we can find an R > 0 such that w > 0 on |x| = R and |x| < R. Consider the point x at
which w takes the minimum on the set |x| < R. Clearly u(x) < v(x ) and Du(x ) = Dv(x ). Let Mbe
the elliptic operator given by M= %AU(Du(J? )) D,. We then obtain a contradictory inequality:

0< Mw(¥) =Y, A;(Du(X)) Du(x) - Y A;(Dv(x))D,v(X)
ij ij

= Mu(x) — Mv(x) < p(X)Lf (u(x)) - f(»(%))] < 0.

The proof is complete.
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LEMMA 3.3. Let A >0 and v, (r) be a positive solution of the initial value problem for the
ordinary differential equation

rNEM e )= PN f), >0,
viO)=A, v'(0)=0.

Then v, exists on [0, =) and satisfies
v, (r) < F;,“(Fd,(l) + joq)( J’O (t/s)"" [)(t)dt)ds), r=0. 3. 4)

PROOF. The local existence of v, is assured by the standard argument. Let I = [0, R), R < oo,
be the maximal interval of existence for v, .
First we shall show that R = . To this end suppose the contrary that R is finite. Since

v (r)= ¢( [ srm™ bs) f(vl(s))ds), rel, (3.5)

we have v!(r) 2 0, r € I, and hence lim _ _ v,(r) = v,(R—0) exists in (A, c]. Let us suppose
v, (R—0) < o for a moment. Then (3. 5) shows the existence of the finite limit v, (R—0). Hence
we can extend v, as a solution of this IVP to the right of R by the standard argument. This
contradicts the definition of R, which implies that v (R—0) = . From (3. 5), together with (3. 1),

we obtain for r € I

50 S 0G0, o8 [ (5170 pisras ),
that is,

Fy - F(y=["" ¢(j‘fz))

< jo ¢( jo (t/ s f)(t)dt) ds.

Letting r — R—0, we have a contradiction, since the left hand side of the above tends to oo by
(3. 2). Therefore R must be co.

The validity of inequality (3. 4) immediately follows from the above inequality. The proof is
complete.

We are now in a position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Let v,(r), A > 0, be the function introduced in Lemma 3.3.
Clearly, we have

My, () = p(x) f(v,(xP), xeR".

Now, we prove that
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minlxl:, u(x)
lim sup <1 forsome u > 0. (3.6)
r—e vﬂ (r)
In fact, if this is not the case, then we have
) min, _ u(x)
limsup >1 forall A>0.
r—eo VA r

Hence Lemma 3.2 asserts that u(x) > v (|x]) in R" for all A > 0. In particular, we have u(0) >
v.(0) =4 forall A > 0. Clearly, this is impossible, and so we have (3. 6). Combining (3. 4) with
(3. 6), we can easily prove the validity of (3. 3) with m = F, (). This completes the proof.

COROLLARY 3.4. Let

j“«p( j (s )M ﬁ(s)ds)dr < oo,

Then (1. 4) has no positive solutions tending to o uniformly as |x|— oo.
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