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1. Introduction. For a given n-dimensional Riemannian manifold M, it is a natural and old
question in differential geometry whether M can be realized as a Riemannian submanifold of a
Euclidean space R". Historically, Cartan [9] and Janet [15] first proved the existence of such local
isometric imbeddings in R 2" in the real analytic category. The global imbedding theorem was
first proved by Nash [23] in the C * category, and later the dimension of the ambient space R" was
improved little by little by Greene [11], Gromov-Rokhlin [13], Gromov [12] and Giinther{14].

In the present note, apart from the above general theory, we restrict ourselves to the problem of
local isometric imbeddings for a special class of manifolds "Riemannian symmetric spaces". Since
symmetric spaces possess many elegant features, they can be realized globally in a comparatively
low dimensional Euclidean spaces. (See Kobayashi [19].) But, for most spaces, it is not known yet
whether these imbeddings give the least dimensional isometric imbeddings even in the local
standpoint.

In order to determine the least dimension, we must as another approach to this problem, find a
method to prove the non-existence of local isometric imbeddings into low dimensional Euclidean
spaces. Concerning this problem, it is known that if M is realized as a Riemannian submanifold of
RY, the curvature of M satisfies several pointwise algebraic conditions depending on the
codimension of the imbedding, and these conditions serve as obstructions to the existence of local
isometric imbeddings. In this note, we summarize these known conditions imposed on the
curvature of Riemannian submanifolds of RPY, and as their applications, list up the best known
estimates concerning the codimension of local isometric imbeddings of symmetric spaces, which is
summarized in Table II. But even combining all known results stated in this note, we do not yet
obtain the best result for most symmetric spaces. And in order to complete the problem, we must
find new additional conditions on the curvature of M which is useful in proving the non-existence of
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high codimensional imbeddings, or must find a new lower dimensional local realization of symmetric
spaces. These two problems are both in general hard to solve, but we hope that in the near future
we can make some progress for both directions and reach the final results.

Throughout this note, we assume the differentiability of class C*, unless otherwise stated. The
author expresses his hearty thanks to professor Kaneda for giving valuable comments on the first
version of this note.

2. We state several conditions imposed on the curvature of Riemannian submanifolds of the
Euclidean space with small codimension, and their applications to the case of symmetric spaces.
First, as a classical result, we consider the case of the spaces of constant curvature. The least
dimensions for R" (flat case) and S” ( positive case ) are clear, and as for the remaining nontrivial
case, we have

THEOREM 1. Let H" be the space of constant negative curvature of dimension n. Then H" can
be locally isometrically imbedded into R?", but cannot be in R***? even locally.

The latter statement follows, for example, from the following theorem of Otsuki.

THEOREM 2 (cf. Otsuki[24)). If M is of negative curvature, M cannot be isometrically immersed
into R*2,

Local realization of H” in R?""is well known, and can be found in several references such as
Aminov [7], [8], Kaneda [16], Tachibana [26], etc.

For another symmetric spaces, Kobayashi [19] constructed many comparatively low dimensional
global isometric imbeddings, using the fundamental property of symmetric R-spaces. For details,
see [19].

3. Now, for general symmetric spaces, we first summarize the results in Agaoka-Kaneda [5]. For
this purpose, we prepare several notations. Let R(XY): M — TxM (X, Y € TxM) be the
curvature transformation of M at x, and we define a Z-valued function c(x) on M by

c(x)=1/2 - max rank R(X,Y).
XYeTxM

Note that rank R(X)Y) is an even integer because R(X,Y) is a skew symmetric endomorphism of
TxM. Then, we have

TureoreM 3 (Agaoka-Kaneda [5). If M is isometrically immersed into R™", then for each x€M
the inequality c(x) = r holds. In particular, any open Riemannian submanifold of M containing x
cannot be isometrically immersed into R™ el
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In the case M is a symmetric space, the function c(x) takes a constant value, and we denote it
by c¢(M). Note that c(M) is determined by the infinitesimal character of M. The integer ¢ (M)
have the following fundamental properties.

PROPOSITION 4 (cf. [5; p.112)). El) Let M =M X - - - X Mk be a product of Riemannian
symmetric spaces. Then c(M)= g_‘.lc(.Mi).

(2) Let M be a Riemannian symmetric space of compact type and let M* be its non-compact
dual space. Then c(M*) =c(M).

Since every Riemannian symmetric space is locally a product of R* and irreducible one, we can
determine the value ¢ (M) for all symmetric spaces by combining Proposition 4 and the following
theorem. (Note that c(R*)=0.)

THEOREM 5 (cf. [5; p.112]). Let M = G/K be a simply connected irreducible Riemannian
symmetric space of compact type. If M is not isomorphic to any real Grassmann manifold, then

c(M)=1/2+dim M -rank G+ rank K).
For real Grassmann manifolds SO(p+q)/SO(p)xXSO(q) (p=q=1),

c(M)= (pq/2] if g=even or 2q 2 p 2q, g=odd,
plg-1)/2+q if p>2q and g=odd,

where [ ] is the Gauss symbol.

In particular, by this theorem, it follows that most of the irreducible Riemannian symmetric
spaces M cannot be isometrically immersed into the Euclidean space of dimension ~ 3/2:-dim M
even locally. We remark that many compact symmetric spaces can be globally isometrically
imbedded into the Euclidean space of dimension ~ 2-dim M (Kobayashi [19]), and there is some gap
between these two dimensions.

4. As a next condition, we state the results in Agaoka-Kaneda [6], by which we can in general
obtain better estimates on the codimension. First, we fix a tangent vector X € TxM, and denote
the complexification of TxM by (TxM) . We define two sets A (X) and A4 °(X) consisting of linear
subspaces of TxM and (TxM)© by

N X)=(WC M | R(Y,2)X=0, forall ¥,Z€ W},
Jff‘(X)={WC(TxM)c | R(Y,Z)X=0, forall ¥,Z€ W},

where R¢:(TxM FX(TxM ) X(TxM ¥ — (TxM ) is the complexification of the curvature tensor R.
Next, we put
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d(X)=maxdims W and d°X)=maxdim;W.
wex(X) weNX)

Under these notations, we define Z-valued functions p(x) and p°(x) on M by

px)=mind(X) and p°(x)=mind°(X).
XeTxM XeTxM

Since there is a canonical inclusion A (X) C #7¢(X), the inequality p (x) < p°(x) holds for x € M.
In this situation, we have the following theorem.

THEOREM 6 (Agaoka-Kaneda [6]). If M is isometrically immersed into R™", then the inequality
p (X = n-r holds. In particular, any open Riemannian submanifold of M containing x cannot be
isometrically immersed into R*?%®"!

Since p(x) < p°(x), the same statement holds if we replace p(x) by p°(x) in this theorem. Of
course, on account of this inequality, the estimates on the codimension obtained by p (M) is better
than the one obtained by p°(M). As in the previous case of c (x), the functions p(x) and p °(x) take
constant values if M is a Riemannian symmetric space, and we denote them by p (M) and p*(M),
respectively. These constants satisfy completely the same properties as c(M) stated in Proposition
4. But, we remark that for flat spaces, we have p(R")=p°(R")= n in this case.

The actual values for p(M) and p (M) are both in general hard to determine, and at the
present time, we know only the partial results, which we state in the following. (It seems that these
two values are quite different if the rank of M is sufficiently large.) First, for a special class of
symmetric spaces, we have the following results.

THEOREM 7 (Agaocka-Kaneda [6]). Let M be one of the following Riemannian symmetric space of
compact type:

Al SU(m) /SO (m), Bl  SO@m+1) /SO(m+1)X SO (m),
C! Sp(m)/U(m), DI SO@m) /SO(m)* SO (m),

El Es/Sp@), Ev E1/SU®),

Ew Es/Spin(16), FiI F4/Sp(3)-SUQ),

G G2/S0(4).

Then, the equality p(M)=rank M holds.

Note that among the irreducible symmetric spaces M = G/K of compact type, the above spaces
can be characterized by the property "rank M = rank G". Or in terms of the Satake diagram, they
correspond to irreducible diagrams without any black circles nor any arrows.

By this theorem, these spaces cannot be isometrically immersed into R2"™%M-1 even locally. In
particular, among them, it follows that the canonical imbedding of C/ Sp (m)/U (m) into R™&m*V
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constructed in Kobayashi [19] gives the least dimensional isometric imbedding even in the local
standpoint.

For general symmetric spaces, we do not obtain such a simple formula at present. We
summarize the remaining known results on the value p(M) in the following table.

Table I
M dimM  rank M p(M)

S0(+9) /SO@XS0@  pa q {2 €224
Pr(C) 2m ! {2, =%
SU@4) /S(U@XUQ)) 8 2 3

SU(2) =S0(3) =~ Sp(1) 3 1 2

SU®) 8 2 3
SU4)=S0(6) 15 3 5

SU(5) 24 4 6
Sp(2)=~S0(5) 10 2 4

Sp(3) 21 3 6

SO(7) 21 3 6

SO(®) 28 4 8

S009) 36 4 8

G2 14 2 4

(The symbol "= " in this table means a local isomorphism of Lie groups.)

In particular, since the space Sp (m) is globally isometrically imbedded into R (Kobayashi
[19]), it follows from the above table that for the spaces Sp (1), Sp (2) and Sp (3) these canonical
imbeddings give the least dimensional local isometric imbeddings.

As for the integer p°(M ), we determined its value completely for each compact simple Lie
groups.

THEOREM 8 (Agaoka-Kaneda [6]). The values p°(G) for compact simple Lie groups G are given
in the following tables .

G m 1 2 3 4
Am-1 SU(m) 0 2 3 5 [m?/4] (m=5)
Bm SO @2m+1) 2 4 6 8 1/2- m(m-1)+1 (m=5)
Cm Sp(m) 2 4 1/2-m(m+1) (m=3)
Dm SO@2m) 1 4 5 8 1/2-m(m-1) (m=5)
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G p°(G) G p°(G)
Es 16 F4 9

E7 27 G2 4

Es 36

For each group G, the order of p°(G) is about 1/4-dim G, and hence G cannot be locally
isometrically immersed into the Euclidean space with dimension about 7/4-dim G, which improves
the previous results obtained by Theorem 5.

5. In the low codimensional case, there are detailed results obtained by Thomas [27], Vilms [28],
Matsumoto [21], [22], Weinstein [29], Agaoka [2], etc. Among them, the conditions on the curvature
in Vilms [28; p.198] (the case of hypersurfaces) and Matsumoto [22; p.185] are essentially equivalent
to the one stated in Theorem 3, though they have completely different appearances. As another
special condition, we state the results in Agaoka [2] in the following.

Let M be a 4-dimensional Riemannian manifold, and for x € M, we fix an orientation of TxM.
Using the Riemannian metric, we may consider the curvature as the endomorphism R: A*?Tx:M —
NA*TxM in a natural way. Then we have

THEOREM 9 ( cf. [2; p.127). If a 4-dimensional Riemannian manifold M is isometrically immersed
into RS, then for each x € M, the equalities Tr(Rox)®=Tr (Ro*)% =0 hold, where * . N\ TxM —
A% TxM is the Hodge star operator.

Note that if we change the orientation of TxM, then the values Tr (Ro*)® and Tr (Ro*)’ change
only their signs. Using this theorem, we can easily show that the complex projective space P*(C)
(with real dimension 4) cannot be locally isometrically immersed into R°®. We can also prove this
result by using Weinstein's condition in [29]. For details, see [2; p.130]. Concerning the space P%(C),
it is known that P2(C) is globally isometrically imbedded into R® ([19], and has a solution of the
Gauss equation in codimension 3 (2; p.132]). But, at present, we do not know the least dimensional
local imbeddings though there exist some attempts by Kaneda [17].

6. Finally, we summarize several fragmentary results on local isometric imbeddings of
symmetric spaces. First, as for the general complex projective space P™(C) and the complex

quadric Q™(C) = SO(m+2)/ SO(m) X SO(2), we have

THEOREM 10 (cf. [3]). If P™(C) (resp. Q™(C)) is locally isometrically immersed into R*"*, then
the inequality r 2 1/5+6m-4) (resp. r 2 1/5+(6m-2)) holds.

The proof for Q™(C) is not stated in [3], but can be proved in completely the same way as P"(C).
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The above result for P™C) is better than that of Theorem 3 in the case of m = 5. For the space
P3(C), applying the value p (P*(C)) in Table I to Theorem 6, it follows that P3(C) cannot be
locally isometrically immersed into R®. (See also [4; p.19].)

It is proved in [1] that the symmetric space SO (5,C )/SO (5) (the non-compact dual of the
rotation group SO (5)) cannot be locally isometrically immersed into R'®. In addition, in the same
paper, it is proved that the least dimensional local isometric imbedding of SO (5) into R is
uniquely determined up to Euclidean transformations of R,

As for the general references on the problem of isometric imbeddings, see Poznyak-Sokolov [25],
where the brief historical survey is also summarized. For general existence theorem of local
isometric imbeddings, see Cartan [9)], Janet [15], Gasqui [10], and Kaneda-Tanaka [18] for analytic
case, and see Greene [11] for C* case, where the existence of local imbeddings into RY2"@*™n jg
proved.

7. In the following, we list up the best known results on local isometric imbeddings of
Riemannian symmetric spaces stated in this note.

Table I
M dim M MCRY MZRY

[Am-1] SU(m) nr-1 2n? 2mP-{m*/4)-3 (m=5)
[Bm] SO @2m+1) m@2m+1) @m+1)? 1/2-(Tm’4+5m-4)  (m=5)
[Cm) Sp (m) mQ@m+1) 4m’ 1/2:(7m*+3m-2) (m=3)
[Dnm) SO02m) m(@2m-1) 4nt 1/2:7m*-3m-2)  (m=5)

SU@Q) 8 18 12

SU@4) = SO (6) 15 32 24

SU(5) 24 50 41

Sp(2) = SO(B)¥ 10 16 15

50(,C)/ S0(5) 10 ? 16

Sp(3)* 21 36 35

SO(7) 21 49 35

SO(8) 28 64 47

S0(9) 36 81 63

Es 78 ? 139

E7 133 ? 238

Es 248 ? 459

F4 52 ? 94

Gz 14 ? 23
Al SUm)/SO(m)  1/2+(m-1)(m+2) m(m+1) m?*-2
All SU(@2m)/ Sp(m) (m-1) C2m+1) 2m(2m-1) 3m%*2m-2

Al SU(ptq)/ SU@XU() 2pq (p+q? 3pg-1 (p2q
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Table I (continued)

BDI

BI
CI
Cn
DI
Dm

Al

EI
El
EN
ENV
EV
EVI
EW
Ew
EKX
FI
FI

M dim M MCRY MZRY
2p*-p-1

S0(p+@/SO(PX50@ pa  V2{praprarD) {7

pq-p
SO@m+1)/SO(m+1)XS0(m) m (m+1) (m+1) Cm+1) 2m*+m-1
Sp(m)/U(m) » m(m+1) m@m+1) 2m?*+m-1
Sp(p+a)/Sp(p)XSp(@) 4pgq 2 ptqf-(pta 6pq-1
SO @2m)/ SO (m) X SO (m) m? m@m+1) 2m*m-1
SO@2m)/ U(m) m(m-1) m@2m-1) 3/2:m(m-1)-1
S n n+l n
H™® n 2n-1 2n-2
P™(C) 2m m(m+2) about 16m/5
P¥(C) 4 8 6
P3(C) 6 15 9
Q™) 2m 1/2-(m+2)(m+3) about 16m/5
SU@/S(UQR)XU@) 8 16 12
Es/ Sp@4) 42 ? 77
Ee/ SU(@2)-SU(6) 40 ? 59
Ee/ Spin(10)-SO(2) 32 78 47
E¢/Fa 26 5% 37
E7/SU®) 70 ? 132
E7/ Spin(12)-SU2) 64 ? 95
E7/ E6-SO(2) 54 133 80
Es/ Spin(16) 128 ? 247
Es/ E1-SUQ) 112 ? 167
Fa/ Sp@Q)-SUQ) 28 ? 51
F4/ Spin(9) 16 26 23
G2/S0O ) 8 ? 13

The symbol " =" indicates a local isomorphism of Lie groups. For the space with an asterisk *),

the least dimension is completely determined. For example, from this table we know that SO(5) can
be locally isometrically imbedded into R', but cannot be in R', and hence the best result is

determined for SO(5) = Sp(2).
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