Solid-State Thermal Transformation of Methylammonium Monomolybdate to Polyoxomolybdates and their Applications as Staining Reagents for Transmission Electron Microscopy Observations of Viruses

Ndaru C. Sukmana, ¹ Sugiarto, ¹ Jun Shinogi, ¹ Tatsuhiro Kojima, ² Akifumi Higashiura, ³ Akima Yamamoto, ³ Takemasa Sakaguchi, ³ and Masahiro Sadakane *¹

¹Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

²Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan ³Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan

E-mail: sadakane09@hiroshima-u.ac.jp

of The solid-state heating methylammonium monomolybdate, (CH₃NH₃)₂[MoO₄] (prepared by dissolving MoO_3 in an aqueous methylamine solution), in air released 4 methylamine and water to produce (CH₃NH₃)₆[Mo₇O₂₄] and followed by $(CH_3NH_3)_8[Mo_{10}O_{34}]$ before transformation to 5 MoO_3 . We report the first single-crystal X-ray structural analysis of $(CH_3NH_3)_2[MoO_4]$ and $(CH_3NH_3)_6[Mo_7O_{24}]$ and 6 8 demonstrate that the decamolybdate structure is different from that obtained from ammonium molybdates. Furthermore, $(CH_3NH_3)_6[Mo_7O_{24}]$ is a good negative staining 10 11 reagent for transmission electron microscopy observations of 12 viruses, such as SARS-CoV-2 and influenza virus.

13 Keywords: Polyoxometalate, Thermal transformation,14 Negative staining reagent.

15 Polyoxometalates (POMs) are anionic polynuclear 16 metal-oxo molecules of early transition metals, such as W, Mo, V, and Nb, formed between metal oxides (WO₃ or 17 MoO_3) and monometalates ($[WO_4]^{2-}$ or $[MoO_4]^{2-}$). These 18 19 molecule have been extensively investigated because their 20 structures and composites can be modified through various 21 techniques to tune their unique acidic, redox, magnetic, 22 chemical, and physical properties.¹⁻³

23 In particular, isopolyoxomolybdates containing Mo as 24 the sole metal component have been utilized as corrosion inhibitors,4,5 supercapacitors,6 anticancer agents,7 and starting 25 26 Mo sources for Mo-based oxide materials.^{8,9} Notably, 27 monomolybdate, [MoO₄]²⁻, prepared by dissolving MoO₃ in 28 a base, such as NaOH and KOH, presents in a basic to neutral 29 solution. The addition of an acids condenses monomolybdate 30 to polyoxomolybdates, such as [Mo₇O₂₄]⁶⁻, [Mo₈O₂₆]⁴⁻, and 31 $[Mo_{36}O_{112}(H_2O)_{16}]^{8-}$ with dehydration in aqueous solutions (Scheme S1).^{3,10,11} The dehydrative condensation degrees and, 32 33 often, the sizes of the molecules increase with the addition of 34 more acids until they are completely converted to MoO₃.

35 It is known that solid-state heating of the ammonium 36 salt of molybdates produces an effect similar to acid addition. 37 Dissolving MoO₃ in an ammonia solution produces 38 $(NH_4)_2[MoO_4]$. The volatile NH₃ and water produced by 39 NH₄⁺ and the oxygen atoms of metalates are eliminated by 40 heating, and condensation is promoted in the solid state. 41 Further, the solid-state heating of $(NH_4)_2[MoO_4]$ is known to 42 produce several ammonium isomolybdates, such as 43 $(NH_4)_2[Mo_2O_7], (NH_4)_2[Mo_3O_{10}], and (NH_4)_2[Mo_4O_{13}]$ (same as $(NH_4)_4[Mo_8O_{26}]$,¹² and further heating produces 44 45 hexagonal-MoO₃ and orthorhombic-MoO₃ (Scheme S2).¹³

In addition, dissolving MoO₃ in an ethylenediamine
solution produces ethylenediammonium monomolybdate,
(NH₃CH₂CH₂NH₃)[MoO₄], which is continuously converted
to (NH₃CH₂CH₂NH₃)₂[Mo₂O₇], (NH₂CH₂CH₂NH₂)MoO₃,
and MoO₃ via solid-state heating.¹⁴

51 We aimed investigate polyoxometates produced by 52 reactions between metal oxides and a volatile base 53 methylamine (CH₃NH₂); accordingly, we recently reported 54 that the reaction of WO_3 or V_2O_5 with methylamine and 55 subsequent drving produced methylammonium 56 paradodecatungstate, (CH₃NH₃)₁₀[H₂W₁₂O₄₂],¹⁵ or 57 methylammonium vanadate, CH₃NH₃[VO₃],¹⁶ respectively. 58 One of our authors indicated that dissolving MoO₃ in an 59 aqueous methylamine solution and subsequent drying (under 60 vacuum at 70 °C) produced methylammonium heptamolybdate, (CH₃NH₃)₆[Mo₇O₂₄], which was a suitable 61 Mo source for the production of orthorhombic Mo-V based 62 mixed oxides,^{17,18} which is among the most promising 63 oxidation catalysts.¹⁹ Notably, (CH₃NH₃)₆[Mo₇O₂₄] was 64 65 characterized via Raman spectroscopy and elemental analysis; however, an analysis of the molecular structure via 66 67 single-crystal X-ray structural analysis is yet to be conducted. 68 Therefore, it is crucial to understand the true structure and 69 heating effect on the methylammonium molybdate.

Methylammonium monomolybdate,
(CH₃NH₃)₂[MoO₄], was prepared by dissolving MoO₃ in a
40% methylamine solution at a methylamine/Mo ratio of 4,
followed by subsequent precipitation with the addition of
N,N-dimethylformamide (DMF) (Schemes 1 and S3).

75 Single-crystal X-ray structural analysis revealed that 76 monomolybdate, $[MoO_4]^{2-}$, crystallized in the space group 77 *Pnma*, together with two methylammonium $(CH_3NH_3^+)$ 78 counter cations (Figures 1(a), 1(b), and Table S1). Four 79 oxygen atoms surrounded the molybdenum cation tetrahedrally (Figure 1(a) and S1) with O-Mo-O angles 80 between 108.98° and 109.95° (Table S2). The Mo-O 81 82 distances were found to be nearly equal between 1.75 and 83 1.78 Å (Table S3), which are comparable to the average 84 tetrahedral Mo-O distances found in K₂MoO₄ (1.76 Å)²⁰ and 85 $(NH_4)_2MoO_4$ (1.76 Å).²¹ Typically, the $[MoO_4]^{2-}$ ion forms 86 hydrogen bonds with methylammonium via N-H...O 87 interactions (Figure S1) with distances of 2.73 to 2.82 Å.

88 In our analysis, the powder X-ray diffraction (XRD) 89 pattern simulated using single-crystal structure data fitted 90 well with the experimental XRD patterns (Figures 2(a) and S2), indicating that the obtained solid exhibits the same
 crystal structure, and the phase purity of the bulk powders
 was satisfactory. The difference in peak intensities between
 the simulation and experimental results could be attributed to
 the preferred orientation of the powder sample.

Figure 1. Ball-and-stick representation of methylammonium molybdates and packing of the molecules in a unit cell. (a and b) methylammonium monomolybdate, $(CH_3NH_3)_2[MOO_4]$, (c and d) methylammonium heptamolybdate, $(CH_3NH_3)_6[Mo_7O_{24}]$, and (e and f) methylammonium decamolybdate, $(CH_3NH_3)_8[Mo_{10}O_{34}]$. Light blue, red, black, and blue balls represent Mo, O, C, and N atoms, respectively.

Figure 2. XRD patterns of (a) methylammonium monomolybdate calcined at (b) 120, (c) 150, (d) 270, and (e) 350 °C.

20 21

22

23

24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39

The Fourier transform infrared (FT-IR) spectrum (Figures S3 and S4(a)) presents bands at 1467 and 1261 cm⁻¹, which can be attributed to NH_3^+ bending and $CH_3-NH_3^+$ rocking, respectively. Furthermore, the IR band at 956 cm⁻¹ can be assigned to the symmetric stretching vibration of $[MoO_4]^{2-}$, and the bands at 833, 879, and 898 cm⁻¹ may be assigned to the asymmetric stretching vibration of $[MoO_4]^{2-.22}$

The Raman band around 1001 cm⁻¹ can be assigned to the C–N stretching vibration, which indicates the presence of methylammonium as a counter cation (Figures S5 and S6(a)). The strong Raman bands at 898 and 315 cm⁻¹ can be attributed to the symmetric stretching and bending of $[MoO_4]^{2-}$, respectively. In addition, the Raman band at 838 cm⁻¹ can be assigned to the asymmetric stretching of MoO₄ units.²³

40 The solution Raman spectrum was found to be similar 41 to the solid-state spectrum (Figures S5(c) and S5(d)), and the 42 ultraviolet-visible (UV–vis) spectrum presented a peak at 207 43 nm and a shoulder near 230 nm (Figure S7), in agreement 44 with the spectrum of $[MoO_4]^{2-}$ reported in the literature.²⁴ 45 These results indicate the presence of $[MoO_4]^{2-}$ in the 46 reaction mixture.

47 The thermogravimetry-differential thermal analysis 48 (TG-DTA) diagram of methylammonium monomolybdate in 49 air flow indicates approximately 36% weight loss up to 450 °C, which indicates the consumption of 2 mol of 50 methylamine and 1 mol water from (CH₃NH₃)₂[MoO₄] to 51 form MoO₃ (36%) (Figure S8 and Table S4). For 52 53 $(NH_4)_2[MoO_4]^{13}$ and $(NH_3CH_2CH_2NH_3)[MoO_4]^{14}$ the TG 54 curves present stepwise weight losses, clearly indicating a 55 transformation of the molybdate structure. However, several 56 gradual weight losses can be observed; the first one between 57 80 and 150 °C with an endothermic peak, the second one 58 between 150 and 350 °C with small exothermic peaks, and 59 the third at approximately 400 °C with a large exothermic 60 peak.

61 We discovered that the powder XRD patterns were 62 altered after solid-state heating in air (Figure 2, Schemes 1 63 and S3). The first transformation was observed by heating 64 methylammonium monomolybdate at 120 °C for 1 h (Figure 3

2(b)). The observed powder XRD pattern was found to be 1 2 similar to one that reported in our previous paper.¹⁸ We discovered that a single-crystal could be obtained with the 3 4 addition of DMF to an aqueous solution of the heated solid. 5 Further, single-crystal X-ray structure analysis revealed that 6 the crystal contained heptamolybdate, an [Mo₇O₂₄]⁶⁻ anion, 7 and six methylammonium cations (Figures 1(c), 1(d), and 8 Table S1). Note that the $[Mo_7O_{24}]^{6-}$ anion comprises seven 9 condensed edge-sharing MoO₆ octahedra (Figures 1(c), 1(d) 10 and S9)), similar to the reported heptamolybdate anion for ammonium and sodium salts.^{25,26} The Mo-O distances were 11 found to be 1.71 to 2.64 Å, and the bond angles O-Mo-O 12 were found to be 70.11 to 174.81° (Tables S5 and S6). The 13 14 crystal structure revealed the presence of hydrogen bonding 15 interactions between the CH₃NH₃⁺ cations and the [Mo₇O₂₄]⁶⁻ 16 anions (Figure S9). The peak positions in the experimental powder XRD profiles matched with those in the simulated 17 18 powder XRD pattern obtained from single-crystal X-ray data 19 (Figure S10), implying that the powder had high phase purity. 20 Furthermore, the formula was also confirmed via TG-DTA 21 and CHN elemental analysis (Table S4). These results indicate that the true structure of [Mo₇O₂₄]⁶⁻ reported in our 22 previous paper¹⁸ corresponds to that of the common 23 24 heptamolybdate.

The IR bands at 921, 892, and 840 cm⁻¹ represent the stretching vibrations of Mo=O from the heptamolybdate anion (Figure S4(b)). The strong Raman bands at 936 and 885 cm⁻¹ can be attributed to the asymmetric stretching vibration of the Mo=O bond in $[Mo_7O_{24}]^{6-}$ (Figure S6(b)).

30 The second powder XRD transformation was observed 31 by heating at 150 °C for 1 h (Figure 2(c)). Further, single 32 crystals of the heated solid were obtained via recrystallization. 33 The single-crystals X-ray structure analysis revealed that the 34 obtained solid was methylammonium decamolybdate, 35 $(CH_3NH_3)_8[Mo_{10}O_{34}] \cdot 2H_2O$, which is known to crystallize in 36 the space group monoclinic, $P2_1/n$ (Figures 1(e), 1(f), and 37 Table S1). Notably, the anion comprises [γ-Mo₈O₂₆],²⁷ which 38 is composed of eight MoO₆ octahedra connected via edge-39 sharing and two MoO₄ tetrahedra connected to the $[\gamma$ -40 Mo₈O₂₆] unit by corner-sharing (Figures 1(e), 1(f), and S11). 41 structure was the same that of This as 42 (CH₃NH₃)₈[Mo₁₀O₃₄]·2H₂O prepared by a reaction of 43 (NH₄)₆[Mo₇O₂₄] with methylamine, as reported by Yamase et 44 al.²⁸ The XRD pattern was closely resembled the simulated 45 XRD pattern obtained from single-crystal structural data, 46 indicating the pure nature of the isolated solid (Figure S12).

47 It is known that the solid-state heating of 48 (NH₄)₆[Mo₇O₂₄] at approximately 100-200 °C produces ammonium decamolybdate, (NH₄)₈[Mo₁₀O₃₄] (Scheme 49 S4).^{13,29} However, connections between the MoO₄ tetrahedra 50 51 and the [7-Mo₈O₂₆] unit of methylammonium decamolybdate 52 are different from those in ammonium decamolybdate 53 produced by heating ammonium heptamolybdate. In 54 methylammonium decamolybdate, MoO₄ units are connected 55 to the linking sites O14, whereas in ammonium 56 decamolybdate, they are located at the site O13 (Figure S13).

57 The Mo–O distances were found to be between 1.7 and 58 2.43 Å, and the bond angles O–Mo–O were identified to be 59 between 69.07 and 164.21° (Tables S7 and S8). The crystal 60 structure revealed the presence of hydrogen bonding 61 interactions between the $CH_3NH_3^+$ cations and $[Mo_{10}O_{34}]^{8-}$ 62 anions (Figure S11). The TG–DTA and CHN analysis also 63 confirmed the formula of the solid (Table S4).

64 The Raman band observed at 1005 cm⁻¹ can be 65 assigned to C-N stretching in methylammonium as a counter cation (Figure S6(c)). The characteristic Raman bands of the 66 67 decamolybdate anion were observed at 953, 934, 919, 899, 68 876, 854, and 675 cm^{-1} , and the strong band at 953 cm^{-1} could 69 be attributed to the stretching vibrations of the Mo=O bond in decamolybdate.³⁰ The formation of the decamolybdate 70 71 anion and the presence of methylammonium cation were also 72 confirmed via the FT-IR analysis (Figure S4(c)).

Further heating at 270 and 350 °C for 1 h produced hexagonal-MoO₃ (Figures 2(d) and S14) and orthorhombic-MoO₃ (Figures 2(e) and S15), respectively.

76 Our results clearly indicate that the polyoxomolybdate 77 species obtained by the solid-state thermal transformation of 78 (CH₃NH₃)₂[MoO₄] are different from those obtained using 79 (NH₄)₂[MoO₄] (Schemes 1, S2, and S3). Previous studies 80 have reported that the types of the counter cations affect the formation of polyoxometalates in solutions.^{10,11,29} Notably, 81 the heating of methylammonium polyoxomolybdates 82 83 releases methylamine and water molecules, which alters their 84 structure. Additionally, basicity differences (the pKb of CH₃NH₂ and NH₃ is 3.34 and 4.75, respectively) and the 85 86 boiling temperature of the base (-6.3 and -33.3 °C for CH₃NH₂ and NH₃, respectively) may also affect the 87 88 formation temperature and the formed polyoxometalates.

89 Previously, Szilágyi et al. reported that (NH₄)₂[MoO₄] 90 was transformed to a mixture of (NH₄)₂[Mo₃O₁₀] and 91 (NH₄)₂[Mo₂O₇] after heating at 205 °C, (NH₄)₂[Mo₄O₁₃] after 92 heating at 230 °C, and orthorhombic MoO₃ after heating at 93 370 °C in air (Scheme S2).13 Further, Ressler et al. reported 94 that the structure of $(NH_4)_2[Mo_4O_{13}]$ was equivalent to the 95 structure of $(NH_4)_4[Mo_8O_{26}]$ in that γ -type octamolybdates 96 were connected to each other via edge-sharing.12

By contrast, we discovered that (CH₃NH₃)₂[MoO₄] was 97 98 °C, transformed to $(CH_3NH_3)_6[Mo_7O_{24}]$ at 120 99 °C, $(CH_3NH_3)_8[Mo_{10}O_{34}]$ at 150 hexagonal-MoO₃(CH₃NH₂)_{0.15} at 270 °C, and orthorhombic-MoO₃ at 100 101 350 °C (Schemes 1 and S3).

Further investigations on the solid-state thermal heatingof methylammonium polyoxomolybdates are now underway.

104 Notably, for virology, observing of the viral shape are 105 particularly important, and transmission electron microscopy 106 (TEM) with heavy metal negative staining reagents is the 107 most widely used technique.³¹ We were motivated by the desire to develop new negative staining reagents using 108 polyoxometalates.^{16,32,33} Methylammonium vanadate and 109 110 tungstate have been commercialized to observe viruses via TEM, and this is indicative of the importance of 111 methylammonium cations.^{34,35} However, methylammonium 112 113 molybdates are yet to be applied for this purpose.

114 The produced molybdates were dissolved in water (0.5 115 wt%), and the solution was contacted with viruses attached to 116 a carbon support film for TEM; note that the excess solution 117 was removed and dried before TEM observations.³² Notably, 118 methylammonium decamolybdate, $(CH_3NH_3)_8[Mo_{10}O_{34}]$,

could not be dissolved at 0.5 wt% in water at room 1 2 temperature. Methylammonium heptamolybdate was found 3 to be a good staining reagent for observing the SARS-CoV-2 4 delta variant, as evaluated by the contrast and sharpness of 5 the stained particles (Figures 3(a)-(c)). Virus particles with 6 diameters of approximately 85-120 nm and spike lengths of 15–35 nm were observed,³⁶ which were in agreement with 7 those previously reported.³⁷ The spikes could not clearly be 8 9 observed by using the (CH₃NH₃)₂[MoO₄] (Figure 3(d)). This 10 result indicates that the selection of molvbdate structure is an 11 essential factor for clear observation. Furthermore, the SARS-CoV-2 omicron variant (Figure 3(e)) and influenza 12 virus (Figure 3(f)) could be clearly observed using the 13 14 methylammonium heptamolybdate.

Further effort aimed at understanding the interactions
between polyoxomolybdates and virions and the develop of
better negative staining reagents are underway.

18 In conclusion, we clearly observed the solid-state 19 thermal conversion of monomolybdate, [MoO₄]²⁻, to MoO₃ 20 through the following two polyoxomolybdates: [Mo₇O₂₄]⁶ 21 and [Mo10O34]8- with the methylammonium cation (Schemes 22 1 and S3), and the results obtained via single-crystal 23 structural analyses of $(CH_3NH_3)_2[MoO_4]$ and 24 (CH₃NH₃)₆[Mo₇O₂₄] are presented herein for the first time. 25 Particularly, the observed thermal transformation was found 26 to be different from that observed using ammonium 27 monomolybdate. Furthermore, identified we 28 (CH₃NH₃)₆[Mo₇O₂₄] to be a suitable negative staining reagent 29 for observation of SARS-CoV-2 and influenza virus using TEM observations. However, further investigation on 30 31 thermal transformations and virus observations are underway. 32

33 This research was supported by a JSPS KAKENHI 34 Grant-in-Aid for Scientific Research (A) (JP19H00843), 35 Grant-in-Aid for Transformative Research Area (A) "Supra-36 ceramics (JP22H05144), JST A-STEP (Grant Number 37 JPMJTM20RF), Research Grant for COVID-19 from AMED 38 under Grant Number JP21fk0108550, Mitsubishi Chemical 39 Co., International Network on Polyoxometalate Science at 40 Hiroshima University, and JSPS Core-to-Core program. N. C. 41 S. would like to thank the financial support from the Osimo 42 Scholarship and Program for Developing and Supporting the 43 Next Generation of Innovative Researchers at Hiroshima 44 University. The authors are grateful to Ms. M. Kosaka and 45 Mr. M. Kobayashi at Division of Instrumental Analysis, 46 Okayama University for their help in CHN elemental 47 analyses and Ms. K. Koike at the Natural Science Center for 48 Basic Research and Development, Hiroshima University for 49 support in TEM analysis. Synchrotron radiation experiments 50 were performed on BL02B1 at Spring-8 with the approval of 51 the Japan Synchrotron Radiation Research Institute (JASRI) 52 (Proposal No. 2020 A1795).

Figure 3. (a) Schematic 2D-morphology of corona virion. TEM images
of SARS-CoV-2 delta variant virions stained using (b and c)
methylammonium heptamolybdate and (d) methylammonium
monomolybdate. TEM images of (e) SARS-CoV-2 omicron variant
virions and (f) influenza virions stained using methylammonium
heptamolybdate.

63	Supporting	Information	is	available	on
64	http://dx.doi.o	rg/10.1246/cl.***	***.		

65

66 References and Notes

- 67 1. L. Cronin (Ed.), Chem. Soc. Rev. 2012, 41, 7325-7648.
- 68 2. C. L. Hill (Ed.), Chem. Rev. 1998, 98, 1-390.
- M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer-Verlag,
 Berlin, 1983.
- D. S. Kharitonov, M. Zimowska, J. Ryl, A. Zieliński, M. A.
 Osipenko, J. Adamiec, A. Wrzesińska, P. M. Claesson, I. I. Kurilo,
 Corros. Sci. 2021, 190, 109664.
- 74 5. I. A. W. Ma, S. Ammar, S. S. A. Kumar, K. Ramesh, S. Ramesh, J.
 75 *Coat. Technol. Res* 2022, *19*, 241–268.
- 76 6. L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue, G. Wang, *Small* 77 2017, 13, 1700917.
- 78 7. H. Yanagie, A. Ogata, S. Mitsui, T. Hisa, T. Yamase, M. Eriguchi,
 79 *Biomed. Pharmacother.* 2006, *60*, 349–352.
- 80 8. I. A. De Castro, R. S. Datta, J. Z. Ou, A. Castellanos-gomez, S.
 81 Sriram, T. Daeneke, K. Kalantar-zadeh, *Adv. Mater.* 2017, *29*,
 82 1701619.
- 83 9. K. H. Kang, G. T. Kim, S. Park, P. W. Seo, H. Seo, C. W. Lee, J.
 84 Ind. Eng. Chem. 2019, 76, 1–16.
- 85 10. N. I. Gumerova, A. Rompel, Chem. Soc. Rev. 2020, 49, 7568–7601.

foreneog and No

- S. Himeno, H. Niiya, T. Ueda, Bull. Chem. Soc. Jpn. 1997, 70, 631–
 637.
- 3 12. J. Wienold, R. E. Jentoft, T. Ressler, *Eur. J. Inorg. Chem.* 2003,
 4 1058–1071.
- 5 13. T. N. Kovács, D. Hunyadi, A. L. A. de Lucena, I. M. Szilágyi, J.
 6 Therm. Anal. Calorim. 2016, 124, 1013–1021.
- 7 14. W. Bensch, P. Hug, R. Emmenegger, A. Reller, H. R. Oswald, *Mat.* 8 *Res. Bull.* 1987, *22*, 447–454.
- 9 15. N. C. Sukmana, Sugiarto, Z. Zhang, M. Sadakane, Z. Anorg. Allg.
 10 Chem. 2021, 647, 1930–1937.
- 11 16. N. C. Sukmana, J. Shinogi, A. Yamamoto, A. Higashiura, T.
 Sakaguchi, M. Sadakane, *Eur. J. Inorg. Chem.* 2022, e202200322.
- 13 17. S. Ishikawa, Y. Yamada, C. Qiu, Y. Kawahara, N. Hiyoshi, A.
 14 Yoshida, W. Ueda, *Chem. Mater.* 2019, *31*, 1408–1417.
- 15 18. S. Ishikawa, T. Murayama, S. Ohmura, M. Sadakane, W. Ueda,
 Chem. Mater. 2013, *25*, 2211–2219.
- 17 19. S. Ishikawa, W. Ueda, Catal. Sci. Technol. 2016, 6, 617–629.
- 18 20. B. M. Gatehouse, P. Laverett, J. Chem. Soc. A 1969, 849-854.
- 19 21. M. Dittmann, E. Schweda, Z. Anorg. Allg. Chem. 1998, 624, 2033–
 20 2037.
- 21 22. S. Vilminot, G. André, M. Richard-Plouet, F. Bourée-Vigneron, M.
 22 Kurmoo, *Inorg. Chem.* 2006, 45, 10938–10946.
- 23 23. V. P. M. Pillai, T. Pradeep, M. J. Bushiri, R. S. Jayasree, V. U. Nayar,
 24 Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 867–876.
- 25 24. T. Ozeki, H. Kihara, S. Ikeda, Anal. Chem. 1988, 60, 2055-2059.
- 26 25. K. Sjoböm, B. Hedman, Acta Chem. Scand. 1973, 27, 3673–3691.
- 52

- 27 26. E. Shimao, Bull. Chem. Soc. Jpn. 1967, 40, 1609-1613.
- 28 27. W. G. Klemperer, W. Shum, J. Am. Chem. Soc. 1976, 98, 8291–
 29 8293.
- 28. P. K. Bharadwaj, Y. Ohashi, Y. Sasada, Y. Sasaki, T. Yamase, *Acta Crystallogr., Sect. C Struct. Chem.* 1986, *42*, 545–547.
- 32 29. V. W. Day, M. F. Fredrich, W. G. Klemperer, W. Shum, J. Am.
 33 Chem. Soc. 1977, 99, 6146–6148.
- 34 30. Y. T. Kim, E. D. Park, Appl. Catal. A Gen. 2009, 361, 26-31.
- 35 31. C. A. Scarff, M. J. G. Fuller, R. F. Thompson, M. G. Iadaza, *J. Vis. Exp.* 2018, 2018, 1–8.
- 37 32. K. Sahiro, Y. Kawato, K. Koike, T. Sano, T. Nakai, M. Sadakane,
 38 *Sci. Rep.* 2022, *12*, 7554.
- 39 33. Y. Kawato, T. Mekata, T. Nishioka, I. Kiryu, T. Sakai, M. Tomoki,
 40 S. Miwa, K. Koike, M. Sadakane, K. Mori, *Virology* 2021, *559*, 120–
 41 130.
- 42 34. D. M. Shayakhmetov, T. Papayannopoulou, G. Stamatoyannopoulos,
 43 A. Lieber, *J. Virol.* 2000, *74*, 2567–2583.
- 44 35. B. Franzetti, G. Schoehn, J.-F. Hernandez, M. Jaquinod, R. W. H.
 45 Ruigrok, G. Zaccai, *EMBO J.* 2002, *21*, 2132–2138.
- 46 36. *Virus Taxonomy*, Ninthe Report of the International Committee on
 47 Taxonomy of Viruses, ed. by A. M. Q. King, M. J. Adams, E. B.
 48 Carstens, E. J. Lefkowitz, Elsevier Academic Press, London, 2012.
- 49 37. H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng,
- 50 J. H. Tao, T. Song, T. Chen, N. Wu, J. Xu, C. Sun, J. Zhang, T. Weng,
 50 Z. Zhang, Z. Wu, L. Cheng, D. Shi, X. Lu, J. Lei, M. Crispin, Y. Shi,
 51 L. Li, S. Li, *Cell* 2020, *183*, 730–738.

NOTE The diagram is acceptable in a colored form. Publication of the colored G.A. is free of charge. For publication, electronic data of the colored G.A. should be submitted. Preferred data format is EPS, PS, CDX, PPT, and TIFF. If the data of your G.A. is "bit-mapped image" data (not "vector data"), note that its print-resolution should be 300 dpi. You are requested to put a brief abstract (50-60words, one paragraph style) with the graphical abstract you provided, so that readers can easily understand what the graphic shows.

Graphical Abstract						
	Textual Information					
A brief abstract (required)	The release of methylammonium and water while heating methylammonium monomolybdate results in the formation of two methylammonium polyoxomolybdates $(CH_3NH_3)_6[Mo_7O_{24}]$ and $(CH_3NH_3)_8[Mo_{10}O_{34}]$ before transformation to molybdenum oxides such as hexagonal MoO ₃ and orthorhombic MoO ₃ . Methylammonium heptamolybdates can be used as a negative staining reagents for transmission electron microscopy observation of SARS-CoV-2 and influenza viruses.					
Title(required)	Solid-State Thermal Transformation of Methylammonium Monomolybdate to Isopolymolybdates and their Applications as Staining Reagents for Transmission Electron Microscopy Observations of Viruses					
Authors' Names(required)	Ndaru C. Sukmana, Sugiarto, Jun Shinogi, Tatsuhiro Kojima, Akifumi Higashiura, Akima Yamamoto, Takemasa Sakaguchi, Masahiro Sadakane					
	Graphical Information					
(CH ₃ NH ₃) ₈ [Mo ₁₀ O ₃₄] (CH ₃ NH ₃) ₈ [Mo ₁₀ O ₃₄] (CH ₃ NH ₂) Heat-treatmen -CH ₃ NH ₂ -H ₂ O MoO ₃ + CH ₃ NH ₂ + H ₂ O <please graph<br="" insert="" your="">The size is limited within</please>	Negative staining reagent for TEM V=y,H+j,j[MoQ,] (CH,jWH,j)j[MoQ,] Solution Solution					

Electronic Supporting Information for Chemistry Letters @ 2021 The Chemical Society of Japan

Supporting information for

Solid-State Thermal Transformation of Methylammonium Monomolybdate to Methylammonium Polyoxomolybbdates and their Applications as Staining Reagents for Transmission Electron Microscopy Observations of Viruses

Ndaru C. Sukmana, Sugiarto, Jun Shinogi, Tatsuhiro Kojima, Akifumi Higashiura, Akima Yamamoto, Takemasa Sakaguchi, Masahiro Sadakane

Experimental Details

Materials. All chemicals were reagent grade. 40% methylamine was purchased from Kanto Chemical CO., Inc., molybdenum trioxide and N,N-dimethylformamide (DMF) were purchased from Wako Pure Chemical Industries, Ltd., and homemade deionized water (Millipore, Elix, USA, MA) was used throughout this study.

Preparation of (CH₃NH₃)₂[MoO₄]. MoO₃ (2.1 g, Mo: 15 mmol) was stirred with in a 5 mL 40% methylamine solution in a glass beaker for 30 min at room temperature to a produce clear colorless solution. An excess of DMF (15 mL) was added to the solution, and the resulting white solid (2.28 g) was filtered. Infrared (IR), $\tilde{\nu}$ /cm⁻¹(KBr): 3070(s), 2863(m), 2730(m), 2159(m), 1627(m), 1540(m), 1473(m), 1409(w), 1261(w), 958(m, sh), 898(vs), 879(vs), 836(vs), 676921(s, sh), 892(vs), 840 (s), 784(s, sh), 676(s) cm⁻¹. Elemental analysis calcd. for (CH₃NH₃)₂[MoO₄]: C 9.92, H 5.84, N 11.57; found, C 10.09, H 5.36, N 11.6.

Preparation of single-crystals of (CH₃NH₃)₂[MoO₄]. MoO₃ (0.7 g, Mo: 5 mmol) was stirred in a 40% methylamine solution (1.7 ml) in a glass container for 30 min at room temperature, which produced a clear colorless solution. DMF (1.7 mL) was added to the solution, and colorless crystals were obtained immediately.

Calcination of (CH₃NH₃)₂[MoO₄]. (CH₃NH₃)₂[MoO₄] (1 g) was calcined in air to 120, 150, 270, and 450 °C; the temperature was raised at a heating rate of 10 °C/min, and the final temperature was maintained for 1 h in air. (CH₃NH₃)₆[Mo₇O₂₄], (CH₃NH₃)₈[Mo₁₀O₃₄]·2H₂O, hexagonal MoO₃, and orthorhombic MoO₃ were formed at the foregoing temperatures.

 $(CH_3NH_3)_6[Mo_7O_{24}]$, $\tilde{\nu}/cm^{-1}(KBr)$: 3438(m), 1629(m), 1496(m), 1471(m), 1423(w), 1263(w), 921(s, sh), 892(vs), 840 (s), 676(vs) cm^{-1}. Elemental analysis calcd. for $(CH_3NH_3)_6[Mo_7O_{24}]$: C 5.77, H 2.91, N 6.74; found, C 5.45, H 2.77, N 6.11.

Preparation of single-crystals of (CH₃NH₃)₆[MorO₂₄]. 0.1 g of (CH₃NH₃)₆[MorO₂₄] was dissolved in 0.2 mL water, and following this, 0.2 mL of DMF was added to the solution, and this was placed in a closed 10 mL glass vessel. After one day, colorless crystals suitable for single-crystal X-ray structural analysis were obtained. (CH₃NH₃)₈[Mo₁₀O₃₄]·2H₂O, $\tilde{\nu}$ /cm⁻¹(KBr): 3455(m), 1602(m), 1483(m), 1425(w), 1263(w), 912 (s), 873(vs), 840(s), 684(vs) cm⁻¹. Elemental analysis calcd. for (CH₃NH₃)₈[Mo₁₀O₃₄]·2H₂O: C 5.35, H 2.92, N 6.24; found, C 5.15, H 2.62, N 5.85.

Preparation of single-crystals of (CH₃NH₃)₈[Mo₁₀O₃₄]·2H₂O. 0.2 g of the heated solid at 120 °C was dissolved in 0.3 mL water, and this was heated at 60 °C until all solids were completely dissolved. The temperature was gradually decreased to room temperature, and colorless crystals suitable for single-crystal X-ray structural analysis were obtained.

Analytical Techniques. Powder X-ray diffraction (XRD) patterns were obtained using Bruker D2 PHASER 2nd Gen with Cu-K α radiation. The samples were ground and placed on a sample holder, and the XRD profiles were recorded at $2\theta = 3-80^{\circ}$. The Fourier transform infrared (FT-IR) spectra were obtained using a NICOLET 6700 FT-IR spectrometer (Thermo Fischer Scientific) in the range of 650–4000 cm⁻¹ with KBr pellets. Thermogravimetry-differential thermal analysis (TG-DTA) was conducted using a TG-DTA7300 instrument (SII, Japan) with an air flow of 200 mL s⁻¹, the heating rate was 10 °C min⁻¹. The temperature was raised at a rate of 10 C° min⁻¹ to the target temperature. Ultraviolet–visible (UV–Vis) spectra were obtained using an Agilent 8453 UV–vis spectrometer in the range of 190–1100 nm with a cell length of 1 cm, and the Raman spectra were collected using a JASCO RMP-510 with a 532.0 nm laser; note that each spectrum was recorded for 1 s, and this was repeated three times. CHN analyses were performed at the Division of Instrumental Analysis, Okayama University.

X-ray Crystallography. The single-crystal X-ray diffraction data of $(CH_3NH_3)_2[MoO_4]$, $(CH_3NH_3)_6[Mo_7O_{24}]$, and $(CH_3NH_3)_8[Mo_{10}O_{34}]\cdot 2H_2O$ were collected using Bruker APEX-II CCD at 100 K using monochromatic Mo-K α radiation (λ =0.71073 Å). Data reduction and space group determination were performed using the Bruker APEX 3 suite.¹ Absorption correction was applied using a multi-scan technique (SADABS).¹ The structure was solved using direct methods with SHELXT², and refined using SHELXL³ with the SHELXle⁴ interface. The carbon and nitrogen atoms in the methylammonium cations were located in the electron density map, where the cations were found to be hydrogen bonded to the anionic cluster. The crystal data of methylammonium isopolymolybdate are summarized in Table S1. CCDC 2222172, 2222173, and 2222175 contain crystallographic data for methylammonium monomolybdate, methylammonium heptamolybdate, and methylammonium decamolybdate, respectively, which can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC).

Preparation of SARS-CoV-2. SARS-CoV-2/JP/HiroC77/2021 (Delta B.1.617.2, EPI_ISL_6316561) and hCoV-19/Japan/PG-178634/2022 (Omicron BA.1, EPI_ISL_9217693) were prepared via a method described in our previous paper.⁵ Virus culturing was performed at the P3 facility of Hiroshima University under Biosafety Level 3 regulations.

Preparation of influenza virus: The human influenza virus [A/Udorn/72 (H3N2)] was propagated in embryonated chicken eggs as described previously.⁶ The virus was sedimented via ultracentrifugation at 22000

rpm for 1 h through a 20%(w/w) sucrose/saline layer using a Beckman SW32Ti rotor. The virus pellet was suspended in saline and used for electron microscopy.

TEM observations: For transmission electron microscopy (TEM) analysis, the virus solution (3 μ L) was adsorbed onto a glow-discharged (PIB-10, VACUUM DEVICE PIB-10, Ibaraki, Japan) formvar and carbon-coated Cu grid (EM Japan, Tokyo, Japan) for 30 s. The excess solution was eliminated using filter paper. Subsequently, a drop (3 μ L) of 0.9%(w/v) NaCl was placed in contact with the grid for 30 s for washing, and then, it was blotted with filter paper. Finally, the staining solution (0.5 wt.% in water) was placed on the grid for 30 s, and the excess solution was removed using filter paper. The staining step was performed twice, and the grid was air dried and irradiated with UV light (Care222TM, Ushio Inc., Tokyo, Japan) to completely inactivate the virus.⁷ This grid preparation was performed at the P3 facility of Hiroshima University under Biosafety Level 3 regulations. The sample grids were observed using TEM (JEOL, JEM-1400) with a tungsten filament operated at 80 kV at the Natural Science Center for Basic Research and Development, Hiroshima University. The images were recorded on a CCD camera (1024 × 1024 pixels).

References

- 1. Bruker, APEX3, SADAB5, SAINT, 2016.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr 2008, 64, 112–122.
- 3. G. M. Sheldrick, Acta Crystallogr., Sect. C Struct. Chem. 2015, 71, 3–8.
- 4. C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
- N. C. Sukmana, J. Shinogi, A. Yamamoto, A. Higashiura, T. Sakaguchi, M. Sadakane, *Eur. J. Inorg. Chem.* 2022, e202200322.
- 6. T. Kawahara, I. Akiba, M. Sakou, T. Sakaguchi, H. Taniguchi, *PLoS One* 2018, 13, e0204908.
- 7. H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, H. Ohge, Am. J. Infect. Control 2021, 49, 299–301.

Scheme S1. Effect of acidity on the formation of isopolymolybdates in aqueous solutions.

Scheme S2. Formation of ammonium monomolybdate via the reaction of MoO₃, H₂O, and NH₃, and its solid-state thermal transformation.

Scheme S3. Formation of methylammonium monomolybdate via the reaction of MoO₃, H₂O, and CH₃NH₂, and its solid-state thermal transformation.

Empirical	(CH3NH3)2[MoO4]	(CH3NH3)6[M07O24]	(CH3NH3)8[M010O34]·2H2O	(CH3NH3)8[M010O34]·2H2O
Formula	224.09	1247.00	1705.0	1705.0
\mathbf{W} . \mathbf{W} .	224.08	1247.99	1795.9	1/95.9
(g/mol)	00	00	205	100
Temp. (K)	90	90 50 · 1· ·	295	
Crystal	Orthorhombic	Iriclinic	Monoclinic	Monoclinic
system	5	n -		
Space group	Pnma		$P2_1/n$	$P2_1/n$
a (A)	9.3684(18)	10.4409(7)	12.596(2)	10.5245(8)
b (A)	6.8961(13)	10.8297(8)	17.175(2)	17.1868(13)
<i>c</i> (Å)	11.911(2)	16.0303(11)	10.653(2)	12.5003(9)
α (°)	90	100.611(1)	90	90
β (°)	90	90.909(1)	91.04(2)	91.1630(10)
γ (°)	90	118.343(1)	90	90
$V(Å^3)$	769.5(3)	1556.79	2304.25	2260.6(3)
Ζ	4	2	2	2
$D_{calcd.}$	1.934	2.662	2.588	2.683
(g/cm^{-3})				
$\mu (\text{mm}^{-1})$	1.663	2.825		2,783
Radiation				
<i>F</i> (000)	448.0	1200.0		1728
Index ranges	$-8 \le h \le 12$	$-13 \le h \le 13$		$-13 \le h \le 13$
	$-8 \le k \le 9$	$-14 \le k \le 14$		$-22 \le k \le 22$
	$-15 \le l \le 14$	$-20 \le l \le 21$		$-16 \le l \le 16$
G.O.F.	1.048	1.045		1.017
R indexes [I	$R_1 = 0.0206;$	$R_1 = 0.0169;$	$R_1 = 0.041;$	$R_1 = 0.0227;$
$> 2\sigma(I)$]	$wR_2 = 0.0480$	$wR_2 = 0.0395$	$wR_2 = 0.041$	$wR_2 = 0.0474$
R indexes	$R_1 = 0.0290;$	$R_1 = 0.0192;$		$R_1 = 0.0301;$
[all data]	$wR_2 = 0.0520$	$wR_2 = 0.0403$		$wR_2 = 0.0227$
	This study	This study	reported by Yamase ⁸	This study

Table S1. Crystal data for methylammonium isopolyoxomolybdates

8. P. K. Bharadwaj, Y. Ohashi, Y. Sasada, Y. Sasaki, T. Yamase, Acta Crystallogr., Sect. C Struct. Chem. 1986, 42, 545–547.

Figure S1. (a) Ball-and-stick representation and atom labeling for methylammonium monomolybdate, and (b) packing of molecules in a unit cell. Hydrogen atoms are not shown for clarity. Light blue, red, black, and blue balls represent molybdenum, oxygen, carbon, and nitrogen atoms, respectively. Light blue lines represent the hydrogen bonds between N and O atoms, which are shorter than 3.0 Å.

Table S2. Selected O–Mo–O angles (°) of $[{\rm MoO}_4]^{2\text{-}}.$

Bonds	Angle (°)
O2-Mo1-O3	109.95(10)
O2-Mo1-O1	109.95(6)
O3-Mo1-O1	108.98(6)
O2-Mo1-O1	109.95(6)
O3-Mo1-O1	108.98(6)
O1-Mo1-O1	109.00(10)

Table S3. Selected bond distances (Å) of [MoO₄]²⁻.

Bonds	Length (Å)
Mo1-O2	1.748(2)
Mo1-O3	1.755(2)
Mo1-O1	1.7800(15)
Mo1-O1	1.7801(15)

Figure S2. XRD patterns of methylammonium monomolybdate, (CH₃NH₃)₂[MoO₄]: (a) simulated pattern obtained from single crystal X-ray structure analysis data and (b) observed pattern.

Figure S3. FT-IR spectrum of methylammonium monomolybdate, (CH₃NH₃)₂[MoO₄].

Figure S4. FT-IR spectra of (a) methylammonium monomolybdate calcined at (b) 120, (c) 150, (d) 270, and (e) 350 °C.

Figure S5. Raman spectra of (a) methylamine hydrochloride, $CH_3NH_3^+Cl^-$, (b) sodium monomolybdate, $Na_2[MoO_4]$, and (c) methylammonium monomolybdate, $(CH_3NH_3)_2[MoO_4]$ prepared in the synthesis solution, and (d) isolated $(CH_3NH_3)_2[MoO_4]$ solid.

Figure S6. Raman spectra of (a) methylammonium monomolybdate calcined at (b) 120, (c) 150, (d) 270, and (e) 350 °C.

Figure S7. UV–vis spectrum of solution the reaction of MoO_3 and methylamine (solution concentration: 5 μ L/50 mL H₂O).

Figure S8. TG/DTA curves of methylammonium monomolybdate under air flow.

Formula	Weight Loss (wt%) ^[a]	C (wt%)	H (wt%)	N (wt%)
	Calc.(obs.)	Calc.(obs.)	Calc.(obs.)	Calc.(obs.)
$(CH_3NH_3)_2[MoO_4]$	35.8(36.1)	9.92(10.09)	5.84(5.36)	11.57(11.60)
$(CH_3NH_3)_6[Mo_7O_{24}]$	19.3(19.1)	5.77(5.45)	2.91(2.77)	6.74(6.11)
(CH ₃ NH ₃) ₈ [Mo ₁₀ O ₃₄]·2H ₂ O	19.9(20.3)	5.35(5.15)	2.92(2.62)	6.24(5.85)
Hexagonal-MoO ₃ (CH ₃ NH ₂) _{0.15}	2.9(2.4)	1.21(0.99)	0.51(0.28)	1.41(1.56)

[a] estimated by TG-DTA under air flow up to approximately 500 °C.

Figure S9. (a) Ball-and-stick representation and atom labeling for methylammonium heptamolybdate and (b) packing of molecules in a unit cell. Hydrogen atoms are not shown for clarity. Light blue, red, green, purple, yellow, black, and blue balls represent molybdenum, terminal oxygen, two-fold coordinated oxygen, three-fold coordinated oxygen, four-fold coordinated oxygen, carbon, and nitrogen atoms, respectively. Light blue lines represent the hydrogen bonds between N and O atoms, which are shorter than 3.0 Å.

Bonds	Length (Å)	Bonds	Length (Å)
Mo1-O12	1.7282(15)	Mo4-O17	1.9995(15)
Mo1-O13	1.7563(15)	Mo4-O14	2.1557(14)
Mo1-O19	1.8993(14)	Mo4-O19	2.2865(15)
Mol-O7	1.9090(15)	Mo5-O21	1.7163(16)
Mo1-O11	2.2516(14)	Mo5-O23	1.7216(15)
Mo1-O14	2.2723(14)	Mo5-O22	1.9060(15)
Mo2-O5	1.7112(15)	Mo5-O20	2.0094(15)
Mo2-O2	1.7122(15)	Mo5-O19	2.1625(15)
Mo2-O4	1.9410(15)	Mo5-O11	2.2734(14)
Mo2-O6	2.0009(15)	Mo6-O9	1.7125(16)
Mo2-O14	2.1687(14)	Mo6-O10	1.7248(15)
Mo2-O7	2.2925(15)	Mo6-O8	1.9199(15)
Mo3-O15	1.7108(15)	Mo6-O22	1.9454(15)
Mo3-O16	1.7451(15)	Mo6-O11	2.1272(14)
Mo3-O6	1.9015(15)	Mo6-O12	2.6390
Mo3-O17	1.9271(15)	Mo7-O3	1.7162(15)
Mo3-O14	2.1528(14)	Mo7-O1	1.7350(15)
Mo3-O13	2.4856(15)	Mo7-O4	1.9354(15)
Mo4-O18	1.7085(15)	Mo7-O8	1.9744(15)
Mo4-O24	1.7204(15)	Mo7-O11	2.1817(14)
Mo4-O20	1.9335(15)	Mo7-O7	2.2464(15)

Table S5. Selected bond distance (Å) for [Mo₇O₂₄]⁶⁻

Bonds	Angle (°)	Bonds	Angle (°)	Bonds	Angle (°)
O12-Mo1-O13	104.76(7)	O12-Mo1-O13	104.76(7)	O12-Mo1-O13	104.76(7)
O12-Mo1-O19	101.27(7)	O16-Mo3-O13	78.98(6)	O9-Mo6-O11	104.66(6)
O13-Mo1-O19	100.02(7)	O6-Mo3-O13	81.07(6)	O10-Mo6-O11	148.04(7)
O12-Mo1-O7	102.27(7)	O17-Mo3-O13	79.00(6)	O8-Mo6-O11	75.58(6)
O13-Mo1-O7	101.14(7)	O14-Mo3-O13	70.11(5)	O22-Mo6-O11	75.39(6)
O19-Mo1-O7	142.95(6)	O18-Mo4-O24	105.19(7)	O3-Mo7-O1	106.12(8)
O12-Mo1-O11	84.95(6)	O18-Mo4-O20	97.70(7)	O3-Mo7-O4	96.28(7)
O13-Mo1-O11	170.28(6)	O24-Mo4-O20	98.18(7)	O1-Mo7-O4	100.76(7)
O19-Mo1-O11	77.29(6)	O18-Mo4-O17	101.42(7)	O3-Mo7-O8	99.58(7)
O7-Mo1-O11	76.75(6)	O24-Mo4-O17	91.67(7)	O1-Mo7-O8	92.06(7)
O12-Mo1-O14	172.97(6)	O20-Mo4-O17	155.37(6)	O4-Mo7-O8	155.97(6)
O13-Mo1-O14	82.25(6)	O18-Mo4-O14	91.80(7)	O3-Mo7-O11	94.16(6)
O19-Mo1-O14	76.60(6)	O24-Mo4-O14	159.16(7)	O1-Mo7-O11	156.83(7)
O7-Mo1-O14	76.54(6)	O20-Mo4-O14	91.24(6)	O4-Mo7-O11	87.75(6)
O11-Mo1-O14	88.04(5)	O17-Mo4-O14	72.88(6)	O8-Mo7-O11	73.26(6)
O5-Mo2-O2	106.26(8)	O18-Mo4-O19	160.11(6)	O3-Mo7-O7	163.44(7)
O5-Mo2-O4	98.68(7)	O24-Mo4-O19	93.48(6)	O1-Mo7-O7	89.49(6)
O2-Mo2-O4	99.72(7)	O20-Mo4-O19	72.42(6)	O4-Mo7-O7	74.96(6)
O5-Mo2-O6	101.36(7)	O17-Mo4-O19	84.55(6)	O8-Mo7-O7	85.01(6)
O2-Mo2-O6	90.73(7)	O14-Mo4-O19	71.64(5)	O11-Mo7-O7	71.79(5)
O4-Mo2-O6	153.79(6)	O21-Mo5-O23	105.01(8)	Mo6-O11-Mo7	94.39(6)
O5-Mo2-O14	93.16(7)	O21-Mo5-O22	101.17(7)	Mo6-O11-Mo1	104.07(6)
O2-Mo2-O14	156.72(7)	O23-Mo5-O22	99.21(7)	Mo7-O11-Mo1	100.72(6)
O4-Mo2-O14	89.67(6)	O21-Mo5-O20	89.19(7)	Mo6-O11-Mo5	93.37(5)
O6-Mo2-O14	72.58(6)	O23-Mo5-O20	98.32(7)	Mo7-O11-Mo5	158.49(7)
O5-Mo2-O7	162.54(6)	O22-Mo5-O20	156.52(6)	Mo1-O11-Mo5	96.80(5)
O2-Mo2-O7	90.70(6)	O21-Mo5-O19	156.27(7)	Mo1-O13-Mo3	106.30(7)
O4-Mo2-O7	73.77(6)	O23-Mo5-O19	93.97(7)	Mo3-O14-Mo4	96.54(6)
O6-Mo2-O7	82.19(6)	O22-Mo5-O19	89.46(6)	Mo3-O14-Mo2	95.48(6)
O14-Mo2-O7	71.41(5)	O20-Mo5-O19	73.84(6)	Mo4-O14-Mo2	150.94(7)
O15-Mo3-O16	105.82(7)	O21-Mo5-O11	90.89(7)	Mo3-O14-Mo1	101.29(6)
O15-Mo3-O6	99.57(7)	O23-Mo5-O11	163.44(7)	Mo4-O14-Mo2	101.57(6)
O16-Mo3-O6	102.55(7)	O22-Mo5-O11	72.69(6)	Mo2-O14-Mo2	101.87(6)
O15-Mo3-O17	98.12(7)	O20-Mo5-O11	86.28(6)	Mo3-O17-Mo4	109.93(7)
O16-Mo3-O17	98.54(7)	O19-Mo5-O11	71.93(5)	Mo1-O19-Mo5	112.67(7)
O6-Mo3-O17	147.49(6)	O9-Mo6-O10	107.22(7)	Mo1-O19-Mo4	109.78(7)
O15-Mo3-O14	105.02(7)	O9-Mo6-O8	100.77(7)	Mo5-O19-Mo4	95.95(6)
O16-Mo3-O14	149.04(7)	O10-Mo6-O8	100.44(7)	Mo4-O20-Mo5	113.94(7)
O6-Mo3-O14	74.84(6)	O9-Mo6-O22	102.17(7)	Mo5-O22-Mo6	112.56(7)
O17-Mo3-O14	74.33(6)	O10-Mo6-O22	95.53(7)		

Table S6. Selected O–Mo–O angles (°) of $[{\rm Mo}_7{\rm O}_{24}]^{6\text{-}}$

Figure S10. XRD patterns of methylammonium heptamolybdate, (CH₃NH₃)₆[Mo₇O₂₄]: (a) simulated pattern obtained from single-crystal X-ray structure analysis data and (b) observed pattern.

Figure S11. (a) Ball-and-stick representation and atom labeling for methylammonium decamolybdate and (b) packing of molecules in a unit cell. Hydrogen atoms are not shown for clarity. Light blue, red, green, purple, yellow, black, and blue balls represent molybdenum, terminal oxygen, two-fold coordinated oxygen, three-fold coordinated oxygen, four-fold coordinated oxygen, carbon, and nitrogen atoms, respectively. Light blue lines represent the hydrogen bonds between N and O atoms, which are shorter than 3.0 Å.

Bonds	Length (Å)	Bonds	Length (Å)
Mo1-O3	1.699(2)	Mo3-O11	1.929(2)
Mo1-O1	1.765(2)	Mo3-O8	1.949(2)
Mo1-O2	1.864(2)	Mo3-O4	2.224(2)
Mo1-O4	1.955(2)	Mo3-O2	2.281(2)
Mo1-O5	2.137(2)	Mo4-O12	1.702(2)
Mo1-O4	2.426(2)	Mo4-O13	1.713(2)
Mo2-O7	1.721(2)	Mo4-O11	1.916(2)
Mo2-O6	1.724(2)	Mo4-O14	2.022(2)
Mo2-O8	1.903(2)	Mo4-O5	2.163(2)
Mo2-O5	1.908(2)	Mo4-O2	2.270(2)
Mo2-O4	2.230(2)	Mo5-O16	1.745(2)
Mo2-O1	2.340(2)	Mo5-O15	1.747(2)
Mo3-O10	1.714(2)	Mo5-O17	1.756(2)
Mo3-O9	1.723(2)	Mo5-O14	1.813(2)

Table S7. Selected bond distances (Å) of $[Mo_{10}O_{34}]^{8-}$

Table S8. Selected O–Mo–O angles (°) of $[Mo_{10}O_{34}]^{8-}$

Bonds	Angle (°)	Bonds	Angle (°)	Bonds	Angle (°)
O3-Mo1-O1	104.30(10)	O6-Mo2-O4	100.11(9)	O4-Mo3-O2	73.61(7)
O3-Mo1-O2	103.93(9)	O8-Mo2-O4	73.52(8)	O12-Mo4-O13	105.95(10)
O1-Mo1-O2	100.65(9)	O5-Mo2-O4	72.00(8)	O12-Mo4-O11	99.03(10)
O3-Mo1-O4	102.52(9)	O7-Mo2-O1	85.33(9)	O13-Mo4-O11	99.34(10)
O1-Mo1-O4	97.48(9)	O6-Mo2-O1	171.63(9)	O12-Mo4-O14	97.99(10)
O2-Mo1-O4	142.90(9)	O8-Mo2-O1	79.28(8)	O13-Mo4-O14	90.99(10)
O3-Mo1-O5	98.33(9)	O5-Mo2-O1	79.88(8)	O11-Mo4-O14	156.79(8)
O1-Mo1-O5	156.99(9)	O4-Mo2-O1	71.62(7)	O12-Mo4-O5	93.71(9)
O2-Mo1-O5	77.55(8)	O10-Mo3-O9	105.33(10)	O13-Mo4-O5	158.63(9)
O4-Mo1-O5	73.26(8)	O10-Mo3-O11	99.98(9)	O11-Mo4-O5	85.46(8)
O3-Mo1-O4	177.80(8)	O9-Mo3-O11	97.13(9)	O14-Mo4-O5	77.80(8)
O1-Mo1-O4	77.55(8)	O10-Mo3-O8	94.96(9)	O12-Mo4-O2	161.81(9)
O2-Mo1-O4	76.74(8)	O9-Mo3-O8	101.19(9)	O13-Mo4-O2	91.99(9)
O4-Mo1-O4	75.97(8)	O11-Mo3-O8	152.35(9)	O11-Mo4-O2	74.58(8)
O5-Mo1-O4	79.74(7)	O10-Mo3-O4	159.87(9)	O14-Mo4-O2	84.40(8)
O7-Mo2-O6	102.97(10)	O9-Mo3-O4	92.94(9)	O5-Mo4-O2	69.07(7)
O7-Mo2-O8	104.24(9)	O11-Mo3-O4	85.79(8)	O16-Mo5-O15	107.54(10)
O6-Mo2-O8	97.38(9)	O8-Mo3-O4	72.83(8)	O16-Mo5-O17	106.91(10)
O7-Mo2-O5	103.13(9)	O10-Mo3-O2	89.32(9)	O15-Mo5-O17	110.13(10)
O6-Mo2-O5	99.02(9)	O9-Mo3-O2	164.21(9)	O16-Mo5-O14	108.22(10)
O8-Mo2-O5	143.84(9)	O11-Mo3-O2	74.10(8)	O15-Mo5-O14	111.09(10)
O7-Mo2-O4	156.90(9)	O8-Mo3-O2	83.01(8)	O17-Mo5-O14	112.71(10)

Figure S12. XRD patterns of methylammonium decamolybdate, $(CH_3NH_3)_8[Mo_{10}O_{34}] \cdot 2H_2O$, (a) simulated pattern obtained from single-crystal X-ray structure analysis data and (b) observed pattern.

Scheme S4. Solid-state thermal transformation of ammonium heptamolybdate.

Figure S13. Polyhedral representation of the $[Mo_{10}O_{34}]^{8-}$ anions of (a) methylammonium decamolybdate and (b) ammonium decamolybdate (ICSD 67325).

Figure S14. XRD patterns of hexagonal MoO₃: (a) simulated pattern obtained from structural data provided in ICDD 21-0569 and (b) observed pattern of the obtained solid heating at 270 °C for 1 hour.

Figure S15. XRD patterns of orthorhombic MoO₃: (a) simulated pattern obtained from structural data provided in ICDD 12-8070, (b) observed pattern of the obtained solid heating at 350 °C for 1 hour, and (c) observed pattern of the obtained solid heating at 500 °C for 1 hour.