
Acta Mechanica manuscript No.
(will be inserted by the editor)

M.J. Dai · S. Tanaka · S. Oterkus · E. Oterkus

Static and dynamic mechanical behaviors of cracked
Mindlin plates in ordinary state-based peridynamic
framework

Received: date / Accepted: date

Abstract An ordinary state-based peridynamic (PD) model based on the Mindlin plate theory is pre-
sented to deal with fracture mechanics problems. Static and dynamic stress resultant intensity factors
regarded as the primary fracture parameters for plate structures are evaluated by the displacement
extrapolation method. Owing to the PD surface effect, however, the accuracy of the displacement field
near crack surfaces is significantly affected. Therefore, the arbitrary horizon domain method is adopted
to correct the surface effect. It derives the variable PD parameters to properly describe mechanical
behaviors for each material point. Several numerical examples are investigated to examine the per-
formance of the presented method. It indicates that the PD Mindlin plate model incorporated with
the arbitrary horizon domain method validly minimizes the influence from the PD surface effect and
provides an effective approach to evaluate static and dynamic moment intensity factors.

Keywords Peridynamics · Plate structures · Arbitrary horizon domain · PD surface effect · Moment
intensity factors

1 Introduction

Peridynamics (PD) [1,2], which does not require spatial derivatives in its governing equations, has
been developed to simulate different kinds of complicated fracture problems. For thin-walled struc-
tures, a shell model is an effective approach with less computation time than a 3D solid model. In
the shell model, 2D plane stress and plate bending formulae are adopted to treat in-plane and out-
of-plane deformations, respectively. However, in contrast to 2D plane stress problems, the studies in
plate bending problems are relatively few in the PD literature. O’Grady and Foster derived a non-
ordinary state-based peridynamic (NOSPD) model for Kirchhoff-Love plates [3] and shells [4] from the
concept of rotational springs between interaction bonds. Diyaroglu et al. [5] developed a bond-based
peridynamic (BBPD) model for beams and plates with transverse shear deformation. Chowdhury et
al. [6] introduced a surface-based NOSPD model with curved bonds for linear elastic shells. Nguyen
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and Oterkus [7] proposed a three-dimensional shell model with six degrees of freedom in ordinary
state-based peridynamics (OSPD). Yang et al. presented Kirchhoff plate [8] and higher-order plate
[9] models in OSPD with various boundary conditions (BCs). Zhang et al. [10] developed a nonlinear
Reissner-Mindlin shell model in NOSPD. Nguyen and Oterkus [11] investigated a geometrically non-
linear analysis of plate bending problems in OSPD. Shen et al. proposed PD beam and shell models
based on micro-beam bonds obtained via the interpolation method [12,13]. Zhang et al. [14] derived a
nonlocal geometrically-exact shell model by using nonlocal differential operators.

The PD surface effect arises from the assumption that the PD parameters computed under a
complete circle/sphere horizon are constant for each material point. If the material point is located near
domain boundaries or crack surfaces, it does not possess a complete horizon. Meanwhile, the constant
PD parameters cannot correctly reproduce mechanical behaviors. Several correction methods have
been proposed to reduce the PD surface effect. Le and Bobaru [15] discussed in detail the capability of
the different surface effect corrections for elastic and fracture problems. An alternative concept for PD
surface effect correction that derives the variable PD parameters computed under its current horizon
domain for each material point was presented [16,17]. However, those studies only concentrated on
2D plane problems. Dai et al. [18] proposed a similar approach with arbitrary horizon domains, called
the arbitrary horizon domain method, in computations of the PD parameters to assess crack opening
displacements (CODs) and strain energy densities for shell structures.

J-integral and stress intensity factors (SIFs) utilized in most previous numerical and experimen-
tal studies are regarded as the primary fracture quantities to determine crack extension. Silling and
Lehoucq [19] firstly presented a nonlocal J-integral formulation in the state-based PD framework. Hu
et al. [20] subsequently proposed a convergence analysis of the PD J-integral in BBPD. Le and Bobaru
[15] investigated the performance of the different surface effect corrections in PD J-integral evalua-
tion. Stenström and Eriksson developed the contour [21] and domain [22] forms of the PD J-integral
based on the displacement field in BBPD. Those studies mentioned above only discussed mode-I frac-
ture conditions. For mixed-mode fracture conditions, Imachi et al. [23,24] evaluated dynamic SIFs for
2D elastic cracked solids. Dai et al. assessed SIFs for shell structures subjected to in-plane [25] and
out-of-plane [26] loading.

To the authors’ knowledge, the evaluation of static stress resultant intensity factors (SRIFs) for
plate bending problems [26] had been merely carried out once in the PD literature. In addition, the
evaluation of dynamic SRIFs has still not been discussed. Hence, the Mindlin plate model in the
OSPD framework [7] is presented to treat fracture mechanics problems. Static and dynamic moment
intensity factors are assessed by employing the displacement extrapolation method [27,28]. To minimize
the influence from the PD surface effect near crack surfaces, the arbitrary horizon domain method
[18] is adopted in computations of the PD parameters. Meanwhile, two additional PD approaches
are considered to compare with the proposed surface effect correction; specifically, the standard PD
method without correction and the volume method [29]. Several numerical examples are investigated,
including static and dynamic loading conditions, to examine the accuracy of the proposed method.
Notably, the pressure load, which is the major loading mode in aerospace and maritime structures, is
applied to most of the numerical examples in the present study.

The remainder of this study is organized as follows: The PD Mindlin plate model and its numerical
implementations are introduced in Section 2. The arbitrary horizon domain method and the displace-
ment extrapolation method are presented in Section 3. Several numerical problems are examined to
verify the proposed method in Section 4. Lastly, the summaries and conclusions are discussed in Section
5.

2 Ordinary state-based peridynamic theory

2.1 Peridynamic model for plate structures

The OSPD model based on the Mindlin plate theory [7] is employed in the present study. Each material
point x interacts with other material points x′ within a constant distance, δ. The non-local region is
referred to as the horizon, and the material points within δ are called the family of x, Hx. Material
behavior in the PD theory is prescribed through nonlocal interactions between material points.

A schematic illustration of the PD plate model is presented in Fig. 1. x(k) denotes the initial
position of point k, and y(k) denotes the deformed position of point k. φ represents the angle of the
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Fig. 1 Initial and deformed states of a plate structure.

interaction bond with respect to the x1-axis. h is the plate thickness, and δ is the horizon radius.
u(k)=[u v w θx θy]

T indicates the displacement vector of point k. t(k)(j) and t(j)(k) signify the PD
force density vectors between points k and j. Note that the small deformation assumption is taken
into account in the proposed PD model.

The strain energy density in PD is defined as a summation of micro-potentials arising from the
interactions between material points within Hx. Furthermore, the micro-potential depends on the
constitutive properties and bond deformation of each interaction bond. The strain energy densities for
the bending and transverse shear terms in the proposed OSPD model are defined as:

W̄PD
b(k) = abϑ

2
b(k) + bb

N∑
j=1

ws2b(k)(j)ξ
2V(j), (1)

W̄PD
s(k) =

1

4
Cs

N∑
j=1

w(
w(j) − w(k)

ξ
−

θ̄(j) + θ̄(k)

2
)2ξ2V(j). (2)

The terms sb(k)(j) and ϑb(k) in Eq. (1) are defined as:

sb(k)(j) =
−(θy(j) − θy(k)) cosφ+ (θx(j) − θx(k)) sinφ

ξ
, (3)

ϑb(k) = db

N∑
j=1

wsb(k)(j)ξV(j). (4)

The terms θ̄(k) and θ̄(j) in Eq. (2) are defined as:

θ̄(k) = −θy(k) cosφ+ θx(k) sinφ, (5)

θ̄(j) = −θy(j) cosφ+ θx(j) sinφ, (6)

where the influence function w is defined as δ/ξ. ξ denotes the distance between points k and j. N
indicates the total number of interactions between material points within Hx. a, b, d, and C mentioned
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above represent the PD parameters. Subscripts b and s indicate the bending and transverse shear
terms, respectively.

By comparing ϑb, W̄b, and W̄s between CCM and PD under the assumption that the material point
possesses a complete horizon, the constant PD parameters for each material point can be obtained.
The PD parameters for the bending and transverse shear terms are expressed as:

ab =
Eh3(3ν − 1)

48(1− ν2)
, db =

Eh2

4πδ4(1 + ν)
, bb =

2

πhδ3
, (7)

Cs =
3ksE

πδ4(1 + ν)
, (8)

where E and ν denote Young’s modulus and Poisson’s ratio, respectively. ks represents the shear
correction factor.

The PD equation of motion for the Mindlin plate model is derived by substituting kinetic and
potential energies into the Euler-Lagrange equation. It is expressed in an integro-differential form
without spatial derivatives as:

m(k)ü(k) =

N∑
j=1

µ(k)(j)f(k)(j)V(j) + b(k), (9)

where m(k) and ü(k) denote the mass matrix and acceleration vector, respectively. f(k)(j) and b(k)
represent the PD force density vector and body force density vector, respectively. V(j) indicates the
volume of point j. µ(k)(j) signifies the state of each interaction bond. Crack segments can be easily
modeled by the status of interaction bonds (see Fig. 2). µ(k)(j) is defined as:

µ(k)(j) =

{
0 broken bond

1 intact bond
(10)

Intact bond

Broken bond

Initial crack

Crack

propagation

Fig. 2 Schematic illustration of interaction bond states for crack modeling (δ=1.5∆x).

According to the derivation of the PD equation of motion, the PD force densities for each degree
of freedom in the Mindlin plate model are expressed as:
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fw
(k)(j) =Csw{

w(j) − w(k)

ξ
− 1

2
[−(θy(k) + θy(j)) cosφ

+ (θx(k) + θx(j)) sinφ]}ξ,
(11)

fθx
(k)(j) =[2abdbw(ϑb(k) + ϑb(j)) + 4bbwsb(k)(j)ξ] sinφ

+
1

2
Csw{(w(j) − w(k)) sinφ

− ξ

2
[−(θy(k) + θy(j)) sinφ cosφ+ (θx(k) + θx(j)) sin

2 φ]}ξ,

(12)

f
θy
(k)(j) =− [2abdbw(ϑb(k) + ϑb(j)) + 4bbwsb(k)(j)ξ] cosφ

− 1

2
Csw{(w(j) − w(k)) cosφ

− ξ

2
[−(θy(k) + θy(j)) cos

2 φ+ (θx(k) + θx(j)) sinφ cosφ]}ξ.

(13)

2.2 Adaptive dynamic relaxation method for static simulations

Although the PD equation of motion is in a dynamic form, static and quasi-static problems in PD can
be solved via the adaptive dynamic relaxation (ADR) technique [30,31]. By introducing the fictitious
mass and damping terms, the PD equation of motion in the ADR method can be rewritten as:

DÜ(X, t) + cDU̇(X, t) = F (U ,U ′,X,X ′), (14)

where D is the fictitious diagonal density matrix, and c is the damping coefficient. X and U denote the
initial position and displacement vectors, respectively. The force vector F composed of PD interaction
forces and body forces is expressed as:

F(i) =

N∑
j=1

(t(i)(j) − t(j)(i))V(j) + b(i). (15)

By applying the central-difference scheme, the velocity U̇n+1/2 and displacement Un+1 vectors for
the next time step can be approximated as:

U̇n+1/2 =
(2− cn∆t)U̇n−1/2 + 2∆tD−1F n

2 + cn∆t
, (16)

Un+1 = Un +∆tU̇n+1/2, (17)

where n indicates the n-th iteration. ∆t represents the time step, and ∆t=1 is a common choice in the
ADR method.

Because of the unknown velocity vector U̇−1/2, the velocity vector U̇1/2 cannot be obtained at the
initial time step (n=0) by using Eq. (16). Therefore, the iteration can be started by:

U̇1/2 =
∆tD−1F 0

2
. (18)
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The damping coefficient cn can be expressed in a similar manner to the lowest frequency discussed
in Ref. [32] as:

cn = 2
√

((Un)T 1KnUn)/((Un)TUn), (19)

1Kn
(i)(i) = −(Fn

(i)/λ(i)(i) − Fn−1
(i) /λ(i)(i))/(∆tu̇

n−1/2
(i) ), (20)

where 1Kn and 1Kn
(i)(i) are the diagonal local stiffness matrix and its diagonal element, respectively.

λ(i)(i) denotes the diagonal element of the density matrix D. For the PD Mindlin plate model, λ(i)(i)

was defined in Ref. [7].

2.3 Central-difference explicit method for dynamic simulations

The central-difference explicit scheme is employed in the PD framework to deal with dynamic problems.
In contrast to Eq. (14), the PD equation of motion without a damping term is written as:

mün
(i) =

N∑
j=1

(tn(i)(j) − tn(j)(i))V(j) + bn(i). (21)

In the central-difference explicit scheme, the acceleration vector ün
(i) is given by:

ün
(i) =

un+1
(i) − 2un

(i) + un−1
(i)

∆t2
, (22)

where n indicates the n-th time step, and ∆t represents the time step.
By substituting Eq. (22) into Eq. (21) and after some algebraic manipulations, the displacement

vector un+1
(i) for the next time step can be approximated as:

un+1
(i) =

∆t2

m
[

N∑
j=1

(tn(i)(j) − tn(j)(i))V(j) + bn(i)] + 2un
(i) − un−1

(i) . (23)

Similarly, the displacement vector u1
(i) cannot be obtained at the initial time step (n=0) by using

Eq. (23) due to the unknown displacement vector u−1
(i) . To compute the displacement vector u−1

(i) , the

backward difference method is applied [33].

3 Stress resultant intensity factor evaluation

To evaluate static and dynamic SRIFs, the displacement extrapolation method [27,28,34] based on
the displacement field around the crack tip is applied. It provides a simple approach with reasonable
accuracy for assessing SIFs and SRIFs. However, the PD surface effect remarkably affects the accuracy
of mechanical behaviors near crack surfaces. The error distribution of the near-tip displacement field
between the PD and analytical solutions is illustrated in Fig. 3(a). It indicates that the major errors,
whose maximum value reaches over 30 %, are observed along the crack surface. Therefore, the arbitrary
horizon domain method [18] is adopted to treat the influence from the PD surface effect. Here, the
arbitrary horizon domain method and the displacement extrapolation method are introduced.
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3.1 Arbitrary horizon domain method for PD parameters

In the standard PD approach, the PD parameters computed on the basis of a complete circle/sphere
horizon are constant for each material point. The constant PD parameters cannot correctly reproduce
mechanical behaviors when the material point located near domain boundaries or crack surfaces does
not possess a complete horizon. The arbitrary horizon domain method employs the actual influence
domains in computations of the PD parameters, as expressed in Fig. 3(b), which are similar to the
visibility criterion [35] in the meshfree method. By comparing ϑb, W̄b, and W̄s assessed within the actual
horizon domain between CCM and PD under simple loading conditions, the variable PD parameters
can be derived. The derivation of the variable PD parameters is presented in this subsection.

0.0e+00

3.0e+01

5

10

15

20

25

d 

d 

x

x

(a) (b)

Crack
Hx

Hx

Fig. 3 (a) Relative error distribution (%) of the near-tip displacement field, (b) Arbitrary horizon domains
near crack surfaces.

By using Taylor’s series expansion and ignoring the higher-order terms, the transverse deflection
and rotation components of point j are expressed as:

w(j) = w(k) + w,x(k)(x(j) − x(k)) + w,y(k)(y(j) − y(k)),

θx(j) = θx(k) + θx,x(k)(x(j) − x(k)) + θx,y(k)(y(j) − y(k)),

θy(j) = θy(k) + θy,x(k)(x(j) − x(k)) + θy,y(k)(y(j) − y(k)),

(24)

which can be rewritten as:

w(j) − w(k)

ξ
= w,x(k) cosφ+ w,y(k) sinφ,

θx(j) − θx(k)

ξ
= θx,x(k) cosφ+ θx,y(k) sinφ,

θy(j) − θy(k)

ξ
= θy,x(k) cosφ+ θy,y(k) sinφ.

(25)

An alternative form of sb is expressed by substituting two rotation components in Eq. (25) into Eq.
(3) as:

sb(k)(j) = −θy,x(k) cos
2 φ− θy,y(k) sinφ cosφ+ θx,x(k) sinφ cosφ+ θx,y(k) sin

2 φ. (26)

The PD parameters ab and db are obtained by comparing W̄b and ϑb between PD and CCM under
the isotropic bending condition, respectively. The term ϑPD

b in Eq. (4) under the isotropic bending
condition (−θy,x(k)=ζ, θx,y(k)=ζ) becomes
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ϑPD
b(k) =dbh

∫
Hx

wsb(k)(j)ξdA

=dbh

∫
Hx

wζξdA.

(27)

The term ϑCCM
b under the isotropic bending condition becomes

ϑCCM
b(k) = 2ζ. (28)

Equating the terms ϑb between Eqs. (27) and (28) yields the PD parameter db as:

db =
2

h
∫
Hx

wξdA
. (29)

Similarly, the term W̄PD
b in Eq. (1) under the isotropic bending condition (−θy,x(k)=ζ, θx,y(k)=ζ,

and ϑb(k)=2ζ) becomes

W̄PD
b(k) =abϑ

2
b(k) + bbh

∫
Hx

ws2b(k)(j)ξ
2dA

=ab(2ζ)
2 + bbh

∫
Hx

wζ2ξ2dA.

(30)

The term W̄CCM
b under the isotropic bending condition becomes

W̄CCM
b(k) =

Eh3

12(1− ν)
ζ2. (31)

Equating the terms W̄b between Eqs. (30) and (31) yields the PD parameter ab as:

ab =
Eh3

48(1− ν)
− bbh

4

∫
Hx

wξ2dA. (32)

The PD parameter bb is obtained by comparing W̄b between PD and CCM under the torsion
condition. The term W̄PD

b in Eq. (1) under the torsion condition (−θy,y(k)=ζ, θx,x(k)=ζ, and ϑb(k)=0)
becomes

W̄PD
b(k) =bbh

∫
Hx

ws2b(k)(j)ξ
2dA

=bbh

∫
Hx

w(ζ sinφ cosφ)2ξ2dA.

(33)

The term W̄CCM
b under the torsion condition becomes

W̄CCM
b(k) =

Eh3

48(1 + ν)
ζ2. (34)

Equating the terms W̄b between Eqs. (33) and (34) yields the PD parameter bb as:

bb =
Eh2

48(1 + ν)

1∫
Hx

w(ξ cosφ sinφ)2dA
. (35)



9

The PD parameter Cs is obtained by comparing W̄s between PD and CCM under the transverse
shear condition. The term W̄PD

s in Eq. (2) that assumes θ̄(k)=θ̄(j) under the transverse shear condition
((w,x+θy)=ζ, (w,y-θx)=ζ) becomes

W̄PD
s(k) =

1

4
Csh

∫
Hx

w(
w(j) − w(k)

ξ
− θ̄(k))

2ξ2dA

=
1

4
Csh

∫
Hx

wζ2ξ2dA.

(36)

The term W̄CCM
s under the transverse shear condition becomes

W̄CCM
s(k) =

ksEh

2(1 + ν)
ζ2. (37)

Equating the terms W̄s between Eqs. (36) and (37) yields the PD parameter Cs as:

Cs =
ksE

1 + ν

2∫
Hx

wξ2dA
. (38)

The PD parameters in the proposed method are exactly the same as those in Eqs. (7) and (8)
through integrating the integrand over the complete circle horizon. It confirms that the derivation
of the PD parameters is properly conducted in the arbitrary horizon domain method. Moreover, the
volume correction technique [31] is adopted in computations of the variable PD parameters.

3.2 Crack surface displacement extrapolation method

The displacement extrapolation method is employed to assess static and dynamic moment/shear in-
tensity factors for plate structures. It is based on the asymptotic displacement field around the crack
tip. The asymptotic displacement field of the Mindlin-Reissner plate theory [36,37] that only retains
the terms depending on r′1/2 is presented as:

w =
24(1 + ν)

5Eh

√
r′

2
K3 sin

θ′

2
,

θx =
12(1 + ν)

Eh3

√
r′

2
[K1 sin

θ′

2
(
ν − 3

1 + ν
+ cos θ′) +K2 cos

θ′

2
(
1− 3ν

1 + ν
+ cos θ′)],

θy =
12(1 + ν)

Eh3

√
r′

2
[K1 cos

θ′

2
(
3− ν

1 + ν
− cos θ′) +K2 sin

θ′

2
(
5 + ν

1 + ν
+ cos θ′)],

(39)

whereK1,K2, andK3 denote the moment and shear intensity factors. The origin of the polar coordinate
system (r′,θ′) is placed at the crack tip.

According to the asymptotic displacement field in Eq. (39), the set of CODs [∆θx ∆θy ∆w]T in
terms of moment/shear intensity factors between the upper and lower crack surfaces (θ′=180◦ and
θ′=−180◦), as illustrated in Fig. 4(a), is given by:

∆θx
∆θy
∆w

 =

− 48
√
2r′

Eh3 0 0

0 48
√
2r′

Eh3 0

0 0 24(1+ν)
√
2r′

5Eh


K1

K2

K3

 (40)

The set of moment/shear intensity factors [K1 K2 K3]
T in terms of CODs can be rewritten as:
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K1

K2

K3

 =
1√
r′

− Eh3

48
√
2

0 0

0 Eh3

48
√
2

0

0 0 5Eh
24

√
2(1+ν)


∆θx
∆θy
∆w

 (41)

KI

non-real facor K

trend line

r’
KI

tip

extrapolation point
Du(   )

r’
θ ’

x2

r’

(b)(a)

x1

2d 

Fig. 4 (a) Schematic illustration of the crack surface displacement extrapolation method, (b) Least-squares
approximation for SRIF at the crack tip.

Owing to the singularity of SRIFs in Eq. (41), the extrapolation technique is required to approxi-
mate moment/shear intensity factors at the crack tip. Several extrapolation techniques were proposed
in the previous studies, including the linear extrapolation [34,38,39], quadratic extrapolation [27], and
linear regression [40,41] methods. In the proposed method, the material points within a line segment
with distance 2δ along the crack surfaces, as expressed in Fig. 4(a), are selected to be extrapolation
points. A linear regression approach, the least-squares method, is applied to evaluate the trend line of
SRIF, as illustrated in Fig. 4(b), and then the SRIF value at the crack tip can be obtained.

4 Numerical examples

SIFs and SRIFs are the critical fracture quantities to determine crack extension. The displacement
extrapolation method incorporated in the PD Mindlin plate framework is employed to evaluate static
and dynamic moment intensity factors. Meanwhile, owing to the influence of the surface effect for the
displacement field near crack surfaces, three PD approaches are adopted to examine the effectiveness of
the proposed surface effect correction. The standard method without correction, the volume method,
and the arbitrary horizon domain method are labeled as Approach 1, Approach 2, and Approach 3,
respectively. The volume correction technique [31] is included in all the approaches mentioned above.
The horizon size δ is set to 3.015∆x, and the particle spacing of ∆x=1/125 m is applied in the following
numerical examples with a uniform particle distribution.

The pressure load plays an important role in aerospace and maritime structures. Thus, this study
concentrates on the estimation of mode-I moment intensity factors that are the major fracture mea-
sures for pressure loads. A commercial FEM software, ABAQUS, is used to compute CODs. Moreover,
the reference results of moment intensity factors are determined by substituting CODs obtained from
ABAQUS into the displacement extrapolation method [38]. Additionally, the normalized moment in-
tensity factors of F1=K1/M

√
a and F1=K1/p0(

W
2 )2

√
a are defined for bending load and pressure load,

respectively.
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4.1 Square plate with a central crack under static pressure/bending load

A square plate with a central crack under static pressure/bending load is investigated. The length
L and width W of the square plate are 2.0 m. Several plate thicknesses of W/2h=2, 6, and 10 are
considered. Five different crack lengths 2a/W are adopted from 0.1 to 0.9 with an equal interval of
0.2. Two loading conditions, including uniform pressure of p0=1.0 and bending moment of M=1.0, are
applied to the square plate with simply supported BCs imposed on the top and bottom edges (see Fig.
5). Young’s modulus E and Poisson’s ratio ν are set to 1,000 and 0.3, respectively.

2a

W

L

simply supported

h

p
0

2a

W

L

M

M

simply supported

Fig. 5 Square plate with a central crack under static pressure/bending load.

At first, the static fracture behaviors with different configured geometries are investigated to ex-
amine the basic performance of the proposed method. The von Mises stress and F1 results of PD
are compared with the FEM and reference [36] solutions, respectively. Those numerical results under
pressure load and bending load are expressed in Figs. 6 – 7 and Figs. 8 – 9, respectively. According
to the comparisons in Figs. 6 and 8, it confirms that the von Mises stress distributions of W/2h=10
and 2a/W=0.3 match well between PD and FEM. From the comparisons in Figs. 7(a) and 9(a), Ap-
proach 3 provides the closest F1 results of W/2h=10 for different crack lengths to the reference solution
than Approaches 1 and 2 in both loading conditions. Furthermore, the F1 results for different plate
thicknesses and crack lengths obtained from Approach 3 are in good agreement with those from the
reference solution in both loading conditions (see Figs. 7(b) and 9(b)).

4.2 Square plate with a central crack under dynamic pressure load

A square plate with a central crack under dynamic pressure load is analyzed. The length L, width W ,
and thickness h of the square plate are 2.0, 2.0, and 0.1 m, respectively. The half crack length a is set
to 0.1 m. The square plate is subjected to a uniform pressure of p0H(t)=1.0 MPa; here, H(t) denotes
the Heaviside step function. Meanwhile, two different displacement BCs are imposed on all the edges,
including clamped BCs and simply supported BCs (see Fig. 10). Young’s modulus E, Poisson’s ratio
ν, and density ρ are set to 200 GPa, 0.3, and 7,850 kg/m3, respectively.

The displacement and dynamic F1 results for two different displacement BCs are compared between
the PD and FEM solutions. Those numerical results under clamped BCs and simply supported BCs
are presented in Figs. 11 and 12, respectively. From the comparisons in Figs. 11(a) and 12(a), the
displacement results nearby the crack tip agree well between Approach 3 and FEM in both displacement
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Fig. 6 von Mises stress distribution (Pa) of W/2h=10 and 2a/W=0.3 under static pressure load, (a) FEM,
(b) PD.
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Fig. 7 SRIF evaluation under static pressure load, (a) Normalized moment intensity factor of W/2h=10 for
different PD approaches, (b) Normalized moment intensity factor for different plate thicknesses.
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Fig. 8 von Mises stress distribution (Pa) of W/2h=10 and 2a/W=0.3 under static bending load, (a) FEM,
(b) PD.
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Fig. 9 SRIF evaluation under static bending load, (a) Normalized moment intensity factor of W/2h=10 for
different PD approaches, (b) Normalized moment intensity factor for different plate thicknesses.
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Fig. 10 Square plate with a central crack under dynamic pressure load with clamped/simply supported BCs.

BC conditions. Moreover, the dynamic F1 results of Approach 3 are closest to those of FEM than
Approaches 1 and 2 in both displacement BC conditions (see Figs. 11(b) and 12(b)).

4.3 Rectangular plate with an edge crack under dynamic pressure load

A rectangular plate with an edge crack under dynamic pressure load is conducted. The length L, width
W , and thickness h of the rectangular plate are 1.0, 2.0, and 0.1 m, respectively. The crack length
a is set to 0.5 m. The rectangular plate is subjected to a uniform pressure of p0H(t)=1.0 MPa with
clamped BCs imposed on the right and left edges (see Fig. 13). Young’s modulus E, Poisson’s ratio ν,
and density ρ are set to 200 GPa, 0.3, and 7,850 kg/m3, respectively.

Similarly, the displacement and dynamic F1 results are compared between the PD and FEM so-
lutions. The displacement results nearby the crack tip illustrated in Fig. 14(a) match well between
Approach 3 and FEM. In addition, from the comparison between three PD approaches and FEM, the
dynamic F1 results of Approach 3 are most similar to those of FEM (see Figs. 14(b)).
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Fig. 11 Fracture behaviors of the square plate with clamped BCs, (a) Displacement uz and rotation θy nearby
the crack tip, (b) Normalized moment intensity factor for different PD approaches.
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Fig. 12 Fracture behaviors of the square plate with simply supported BCs, (a) Displacement uz and rotation
θy nearby the crack tip, (b) Normalized moment intensity factor for different PD approaches.
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Fig. 13 Rectangular plate with an edge crack under dynamic pressure load.
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Fig. 14 Fracture behaviors of the rectangular plate, (a) Displacement uz and rotation θy nearby the crack
tip, (b) Normalized moment intensity factor for different PD approaches.

4.4 Square plate with a side crack/two symmetric cracks emanating from a central hole under
dynamic pressure load

A square plate with a side crack/two symmetric cracks emanating from a central hole under dynamic
pressure load is performed. The length L, width W , and thickness h of the square plate are 2.0, 2.0,
and 0.1 m, respectively. The circle hole is located at the center of the square plate, and its radius is
set to 0.15 m. The crack length a emanating from the central hole is set to 0.15 m. The square plate
is subjected to a uniform pressure of p0H(t)=1.0 MPa with clamped BCs imposed on the top and
bottom edges (see Fig. 15). Young’s modulus E, Poisson’s ratio ν, and density ρ are set to 200 GPa,
0.3, and 7,850 kg/m3, respectively.

W

L

h

p
0

a

W

L

h

p
0

Clamped B.C.

2r2r

aa

Fig. 15 Square plate with a side crack/two symmetric cracks emanating from a central hole under dynamic
pressure load.

Here, the displacement and dynamic F1 results for two different crack configurations are compared
between the PD and FEM solutions. Those numerical results with a side crack and two symmetric
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cracks are plotted in Figs. 16 and 17, respectively. According to the comparisons in Figs. 16(a) and
17(a), the displacement results nearby the crack tip between Approach 3 and FEM have a good
agreement in both crack configurations. Additionally, the comparisons of dynamic F1 results indicate
that the results of Approach 3 are most analogous to those of FEM rather than Approaches 1 and 2
in both crack configurations (see Figs. 16(b) and 17(b)).
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Fig. 16 Fracture behaviors of the square plate with a side crack, (a) Displacement uz and rotation θy nearby
the crack tip, (b) Normalized moment intensity factor for different PD approaches.
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Fig. 17 Fracture behaviors of the square plate with two symmetric cracks, (a) Displacement uz and rotation
θy nearby the crack tip, (b) Normalized moment intensity factor for different PD approaches.

5 Conclusion

SIFs and SRIFs are regarded as the major fracture parameters to determine crack extension. However,
few SRIF studies for plate bending problems, especially dynamic analysis, have been carried out in
the PD literature. Therefore, the Mindlin plate model in the OSPD framework is presented to treat
fracture mechanics problems for plate structures. The displacement extrapolation method is adopted
to compute static and dynamic moment intensity factors. Owing to the PD surface effect, the accuracy
of the displacement field near crack surfaces is significantly affected. To minimize the influence from the
surface effect, the arbitrary horizon domain method is employed. The proposed surface effect correction
derives the variable PD parameters to properly reproduce mechanical behaviors for each material point.
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Several numerical examples are considered to assess fracture behaviors near the crack tip. At
first, the static estimations of moment intensity factors under two different loading conditions are
investigated to confirm the basic performance of the proposed method. Since the pressure load is
the major loading mode for aerospace and maritime structures, hereafter, the dynamic estimations of
displacements and moment intensity factors subjected to a uniform pressure load are analyzed. Those
numerical results are compared between PD and FEM. Although the stress singularity arises near the
crack tip in FEM, it can provide accurate results in the displacement field. Thus, FEM is chosen to
compute the reference results in the present study. From the comparisons mentioned in Section 4, it
indicates that the displacement extrapolation method incorporated with the arbitrary horizon domain
method can successfully minimize the PD surface effect and properly assess fracture behaviors for
plate bending problems in the PD Mindlin plate framework. It is believed that the accurate fracture
behaviors near the crack tip assessed by the proposed method can improve the capability of the OSPD
theory to simulate crack propagation.

A Examination of boundary conditions in the nonlocal theory

The peridynamic method regarded as a nonlocal continuum theory requires some special treatments to impose
boundary conditions, such as the weak form of peridynamics [42], the modified fictitious node method [43], and
the variable horizon method [44]. In the present paper, volumetric regions (nonlocal boundary) are employed
to implement external load and constraint boundary conditions (see Chap. 2 in Ref. [31]). For external load
boundary conditions, the external load computed as body force density is applied on a real material layer
along the boundary possessing nonzero volume. For constraint boundary conditions, the prescribed constraint
is adopted on a fictitious layer with the particular length scale, δ, outside the physical boundary. Several
numerical examples with constraint boundary conditions are successfully examined in Section 4. In Appendix
A, a numerical example with external load and constraint boundary conditions is investigated.

A cantilever square plate with a central crack under dynamic transverse shear load is carried out. The
length L, width W , and thickness h of the square plate are 2.0, 2.0, and 0.1 m, respectively. The half crack
length a is set to 0.1 m. The square plate is subjected to a transverse shear force of QH(t)=1.0 MPa on the
right edge with clamped BCs imposed on the left edge (see Fig. 1). Young’s modulus E, Poisson’s ratio ν, and
density ρ are set to 200 GPa, 0.3, and 7,850 kg/m3, respectively.

As illustrated in Fig. 2(a) and (b), the displacement nearby the crack tip and dynamic F1 results are in
good agreement between the PD and FEM solutions. It demonstrates that the proposed nonlocal method can
well simulate fracture behaviors under different types of boundary conditions.

Clamped B.C.

2a
L

W
Q

h

Fig. 1 Cantilever square plate with a central crack under dynamic transverse shear load.
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