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Abstract Peridynamics has attractive features for solving several fracture me-
chanics problems. On the other hand, to ensure the accuracy, a great deal of
particles (material points) is required. Introduction of variable horizon is an al-
ternative approach by changing the horizon size over the problem domain. In the
present study, we propose a novel variable horizon concept. It is known that un-
desired “ghost” force arises along the transition region of different horizons. In
order to suppress the ghost force, the gradual variation of the horizon size over a
certain region, called smoothing length, is introduced between the different scale
particle distributions. Efficiency of the smoothed variable horizon peridynamics
is demonstrated through several numerical studies employing the ordinary state-
based peridynamics. As a basic case, a linear displacement field is considered. It is
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observed that the proposed approach significantly reduces the ghost forces along
the interface of different spatial discretizations. Additionally, the dynamic stress
intensity factors of stationary cracks are carefully examined. The path indepen-
dence of the fracture parameters in the variable horizon peridynamics is ensured.
Efficiency of the presented method is then discussed. It is monitored that intro-
duction of the smoothing length concept significantly reduces the computational
costs in the peridynamic modeling.

Keywords Peridynamics · Variable Horizon · Ghost Force · Dynamic Stress
Intensity Factor

1 Introduction

Peridynamics (PD) is a new continuum mechanics formulation that has been pop-
ular in recent years. PD was proposed as a non-local reformulation of classical
elasticity equations by Silling [1]. The equation of motion in PD is an integro-
differential equation inherently avoiding the partial differentiations, which can not
be evaluated for discontinuities in a traditional manner. In the PD framework,
cracks are taken into account in a straightforward way by simply eliminating the
interactions between the particles on each side of the crack segment.

Considering brittle fracture phenomenon, various studies including prototype
microelastic brittle model have been proposed and its effectiveness has been shown
by Ha and Bobaru [2]. Furthermore, the fracture mechanics parameters for station-
ary cracks have been evaluated by the authors [3,4], and the initiation of dynamic
crack propagation and arrest phenomenon have been studied for calculating the
stress intensity factors (SIFs) with high accuracy by introducing a transition bond
concept [5, 6]. The ordinary state-based formulation was slightly modified and
employed for evaluating crack patterns in functionally graded materials [7].

In the PD formulation, the fracture phenomenon is accounted for whether the
interactions (force state) between the particles exist or not. Fracture analysis can
be performed without re-meshing unlike FEM, which can be regarded as the su-
periority of the PD modeling. However, in order to meet sufficient accuracy in the
computation, a large number of particles is required and it is necessary to employ
a large scale model. Accordingly, in terms of computational cost, much more anal-
ysis time is demanded compared to other numerical methods. To overcome this
issue, increasing the particle density and modifying the horizon size only in the
region, where good accuracy is demanded, are conceivable practices. However, the
standard PD formulation was constructed for constant horizon size of all parti-
cles, varying the particle arrangement and horizon sizes throughout the problem
domain therefore generates undesired forces and spurious wave reflections [8].

To address this issue, the variable horizon PD (VH-PD) concept was proposed
by Silling et al. [8]. Dipasquale et al. [9] analyzed crack propagation with 2D PD
employing an adaptive grid refinement. Several strategies for avoiding the wave
reflection were presented in Ref. [9]. Song et al. [10] also employed the adaptive
grid refinement in PD modeling of ice craters under impact loading. The ghost
force effect however has not been discussed in detail by Ref. [10]. Additionally, the
Dual Horizon PD (DH-PD) formulation dealing with the variable horizons have
been presented in [11,12]. Ren et al. [13] implemented DH-PD for the ductile frac-
ture problems employing the non-ordinary state-based PD formulation. Rabczuk
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and Ren [14] also applied DH-PD formulation to address contact and fracture
of rock-like materials. Jenabidehkordi and Rabczuk [16] proposed multi-horizon
PD model to avoid ghost force effects in case of different horizon sizes. Multiple
horizons, which do not coincide each other, are assigned for the particles in the
refinement zone. Recently, multiscale coupling model of molecular dynamics and
PD was proposed by Tong and Li [15]. The micro (atomistic) scale is modeled by
molecular dynamics and macroscale is modeled by state-based PD. A transition
region with adaptive multiscale elements is defined for transmitting physical quan-
tities, e.g., displacements. A filter is implemented in the transition region so that
the high frequency instant waves are filtered and a smooth low frequency wave is
transmitted from microscale to macroscale. Coupling of PD and FEM was studied
by the variable horizon concept in [17]. A coupling approach for extended multi-
scale FEM and PD was proposed for an efficient simulation of crack propagation
in large scale solid structures [18]. Khodabakhshi et al. [19] proposed a non-local
fracture criterion for a special type of FEA for eliminating the mesh sensitivity
in results caused by a local fracture criterion. The proposed criterion can also be
utilized within the traditional FEM.

A unification attempt was performed for reproducing kernel particle method
and the state-based PD to utilize the advantages of both techniques to overcome
issues associated with skin effects and non-uniform discretization in PD, see [20].
Smoothing property of Lanczos derivatives obtained by connecting state-based
PD discretization and classical continuum mechanics was also discussed by the
authors. Finally, the authors proposed improvements on the state-based PD ad-
dressing the issues associated with application of boundary conditions and non-
uniform grids based on the findings from the study [20]. In the meshfree methods,
the non-uniform particle arrangement for the demanded area was employed and
mixed-mode SIFs of shear deformable plates [21–23] as well as buckling of cracked
cylindrical and flat shells [24] were studied. In addition, same concept was re-
cently applied to geometrical non-linear analysis of shells by a meshfree particle
method [25]. Besides these works, the non-uniform particle discretization has been
well established and applied in meshfree particle methods for several decades, see
Refs. [26–28].

When employing different horizon sizes between the different scale particle dis-
tributions, “ghost” force arises along the transition region. In the present study, a
novel variable horizon concept is presented. The gradual variation of the horizon
size, called smoothing length, is newly introduced to suppress the ghost force along
with the gradual variation of spatial resolution. The convenience of the smoothed
variable horizon PD (SVH-PD) modeling is verified. First, PD formulation is in-
vestigated to treat the variable horizon. It is known that so-called Newton’s third
law in mechanics does not meet in the standard PD formulation when different
horizon sizes are employed. Then, force states with different horizon sizes are ex-
amined and generalized. It is also shown that one of the formulation is identical
with the DH-PD [11,12]. The multi-horizon PD [16] also addresses the ghost force
effect, the present SVH-PD however seems to be more convenient from the m-
convergence point of view. Moreover, the present work employs numerical length
scale rather than the physical length scale [15], the present study therefore differs
from a multiscale analysis.

As a basic study, we deal with simple problems without cracks to investigate
influence of the variable horizon size. Then, two-dimensional (2D) stationary crack
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problems are examined for evaluating dynamic stress intensity factors (DSIFs) to
quantify error in the PD modeling.

The structure of the paper is organized as follow. In section 2, we briefly give
the basics of a standard PD formulation. An arbitrary spatial resolution technique
in the PD framework is described in section 3. In this section, the variable horizon
concept is also explained considering the inconsistency of the interaction forces.
The novelty of the present work, the smoothing length concept, is introduced in
section 4. The numerical examples to discuss the accuracy and efficiency of the
proposed approach are dealt with in section 5. The concluding remarks are given
in the last section.

2 Peridynamic theory

The basic formulation of PD theory can be derived from the equation of motion
[29]. The equation of motion at position vector x in a finite body can be written
in ordinary state-based PD (OSB-PD) framework as:

ρü(x, t) =

∫
Hx

[
T (x, t)⟨x′ − x⟩ − T (x′, t)⟨x− x′⟩

]
dVx′ + b(x, t), (1)

where ρ is the material density, ü(x, t) is the acceleration vector, and b(x, t) is the
body force vector per unit volume. In the PD modeling, a finite body is discretized
by particles. The particles located at x′ have a volume dVx′ . T (x, t)⟨x′−x⟩ (= T )
and T (x′, t)⟨x − x′⟩ (= T ′) are the force states of particles located at x and
x′, respectively, which are interacting with each other. A particle interacts with
other particles within an influence radius δ. Hx represents the neighborhood of
the particle located at x as shown in Fig. 1.

Initial configuration Deformed configuration
(b) (a) 

Fig. 1 A standard PD concept: (a) kinematics, (b) force states.

In the OSB-PD formulation, the force state vector T is expressed in terms of
a scalar force density, t and a unit direction vector, m as [30]:

T = tm, (2)
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where m is defined in the deformed configuration as m = (ξ + η)/|ξ + η|. ξ (=
x − x′) and η (= u − u′) are the relative position and displacement vectors,
respectively. The scalar force density, t is given for the plane stress condition
as [30]:

t =
2(2ν − 1)

ν − 1

(
κ′θ − α

3
(ωed) • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ| + αωed. (3)

In the given expression, “•” represents a dot product of two states [29]. The volume
dilatation, θ and other PD parameters, α and κ′, can be expressed as:

θ =
2(2ν − 1)

ν − 1

(ω|ξ|) • e
(ω|ξ|) • |ξ| , (4)

α =
8G

(ω|ξ|) • |ξ| , (5)

κ′ = K +
G(ν + 1)2

9(2ν − 1)2
. (6)

The magnitude of a scalar force density, t for the plane strain condition is

t = 2
(
κ′θ − α

3
ωed • |ξ|

) ω|ξ|
(ω|ξ|) • |ξ| + αωed, (7)

where the parameters are

θ = 2
(ω|ξ|) • e
(ω|ξ|) • |ξ| , (8)

α =
8G

(ω|ξ|) • |ξ| , (9)

κ′ = K +
G

9
. (10)

In the above equations, ν, G and K are Poisson’s ratio, the elastic shear and
bulk modulus, respectively. ω is the influence function, which is a non-dimensional
measure of the distance between the particles. The influence function is considered
to be zero outside the horizon. ed is deviatoric part of the extension state, e.

3 Arbitrary spatial resolution technique

Computational efficiency is crucial in any numerical methods for efficient use of
computational resources. The computational cost in FEM mostly depends on the
mesh size and the number of elements (degrees of freedom). In FEM, a detailed
fine mesh is generally required for a stress concentration region where the displace-
ment/stress gradient changes remarkably, and the computational cost is reduced by
generating coarse mesh in the regions where the displacement gradient is smooth.
However, it is difficult for a standard PD to deal with models utilizing different
spatial resolutions unlike FEM. Nikravesh and Gerstle [31] utilized different lat-
tice orientations for the purpose of showing variable lattice resolution in improved
state-based lattice PD. In this section, a standard PD that allows different spatial
resolutions is formulated.
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3.1 m-convergence and δ-convergence

In the mesh-based methods, e.g., FEM, it is widely known that the element size
and the order of the approximate function (linear or higher-order elements) affect
the numerical accuracy. On the other hand, the horizon size, discretization size,
number of neighboring particles, and the weight function have significant influence
on the numerical accuracy of the PD simulation. Bobaru et al. [32] studied adaptive
and uniform refinement for the one-dimensional PD. It was reported that the
adaptive refinement produces significantly lower error than the uniform refinement
for the same number of nodes [32]. They also stated that accuracy in the PD
modeling has been improved by reducing the horizon size δ on the condition that
enough number of particles inside the horizon exists. Cheng et al. [33] also carried
outm-convergence and δ-convergence studies for dynamic fracture analysis of shale
material using PD.

-convergence

-convergence

(a)

(b)

Fig. 2 Schematics of δ-m-convergence: (a) δ-convergence, (b) m-convergence.

In the literature, defining the convergence for horizon size as δ-convergence,
and the convergence for the number of neighboring particles as m-convergence; it
is necessary to pay attention to δ-convergence while maintaining sufficient m to
achieve convergence of the solution. The δ-m-convergence concept is schematically
shown in Fig. 2. Fig. 2(a) shows δ-convergence representing change of horizon size
while maintaining the same number of particles inside the horizon. On the other
hand, Fig. 2(b) illustrates the m-convergence performed by changing the number
of particles inside the horizon but keeping the horizon size constant.

3.2 Inconsistency of interaction forces

As inferred from m-convergence and δ-convergence, it is considered that the vari-
able horizon size as well as the spatial resolution of the particles are important to
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improve the analysis efficiency. However, the standard PD formulation does not
locally satisfy so-called Newton’s third law when the different horizon sizes are
utilized. Fig. 3(a) shows the constant horizon size in the standard PD. In this
case, both of the particles are the neighbor of each other. Here, the particle group
NP

(i) in horizon δi of particle (i) can be represented as follows.

NP
(i) = H(i) = {|ξ| < δ(i)} (11)

In this case, the PD equation of motion for a particle (i) can be discretized as:

ρü(i) =

NP
(i)∑
j

[
T (i)(j) − T (j)(i)

]
V(j) + b(i). (12)

(a) (b)

Fig. 3 Force states: (a) x(i) ∈ NP
(j)

and x(j) ∈ NP
(i)

, (b) x(i) /∈ NP
(j)

and x(j) ∈ NP
(i)

.

Fig. 3(a) shows that the particles (i) and (j) have the same horizon size δ(i) =
δ(j), which corresponds to the standard PD. The particles at x(i) and x(j) fall

into the neighborhood domain of each other, x(i) ∈ NP
(j) and x(j) ∈ NP

(i). The
corresponding force states are then expressed as:f

(i)(j)
= T (i)(j) − T (j)(i) for i−th particle,

f
(j)(i)

= T (j)(i) − T (i)(j) for j−th particle.
(13)

Not surprisingly, Newton’s third law is satisfied as given below.

f
(i)(j)

= −f
(j)(i)

(14)

Fig. 3(b) shows the case that the horizon sizes of particles (i) and (j) are not the
same, δ(i) ̸= δ(j). While the particle (j) falls into the neighborhood of the particle

(i), the particle (i) is not covered by the horizon of particle (j), x(i) /∈ NP
(j) and

x(j) ∈ NP
(i). The corresponding force states become as:f

(i)(j)
= T (i)(j) − T (j)(i) for i−th particle,

f
(j)(i)

= 0 − 0 for j−th particle.
(15)
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The relations above do not satisfy Newton’s third law.

f
(i)(j)

̸= −f
(j)(i)

(16)

3.3 Variable horizon concept

3.3.1 Formulation

As discussed in the previous section, when the horizon size is spatially varied, the
third law of Newton is not ensured. This concept without any special treatments
is therefore not applicable for the problems, it is necessary to satisfy the New-
ton’s third law in mechanics. In order to clarify this requirement for the particles
with different horizon sizes, the cases shown in Fig. 4 are considered. Fig. 4(a)-
(d) schematically illustrate the different force states (Cases A-D) with variable
horizons, respectively.

(a) (b)

(c) (d)

Fig. 4 Force state cases: (a) Case A, (b) Case B, (c) Case C, (d) Case D.

Case A: f
(i)(j)

= T (i)(j) −T (j)(i) for i-th particle,

f
(j)(i)

= T (j)(i) −T (i)(j) for j-th particle.
(17)
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Case B: f
(i)(j)

= T (i)(j) −0 for i-th particle,

f
(j)(i)

= 0 −T (i)(j) for j-th particle.
(18)

Case C: f
(i)(j)

= 0 −T (j)(i) for i-th particle,

f
(j)(i)

= T (j)(i) −0 for j-th particle.
(19)

Case D: f
(i)(j)

= 0 −0 for i-th particle,

f
(j)(i)

= 0 −0 for j-th particle.
(20)

In all cases given in Fig. 4, Newton’s third law is satisfied, and the theory holds
for current PD discretization. In Fig. 4, the influence functions ω(i)(j) and ω(j)(i)

are expressed as:
ω(i)(j) ̸= 0 for x(j) ∈ NP

(i), (21)

ω(j)(i) = 0 for x(i) /∈ NP
(j). (22)

According to this definition, the force states for Cases A-D are rewritten as follows.

Case A: f
(i)(j)

= T (i)(j) −0 for i-th particle,

f
(j)(i)

= 0 −T (i)(j) for j-th particle.
(23)

Case B: f
(i)(j)

= T (i)(j) −0 for i-th particle,

f
(j)(i)

= 0 −T (i)(j) for j-th particle.
(24)

Case C: f
(i)(j)

= 0 −0 for i-th particle,

f
(j)(i)

= 0 −0 for j-th particle.
(25)

Case D: f
(i)(j)

= 0 −0 for i-th particle,

f
(j)(i)

= 0 −0 for j-th particle.
(26)

The above expressions state that Cases A and B are the same when the ordinary
influence function is adopted. It is considered that the Case B is appropriate for
representing the transmission of the interaction forces. This is also consistent with
the formulation of DH-PD [11]. Assume the influence function for particles (i) and
(j) is redefined as:

ω(i)(j) = ω(j)(i) = max(ω(i)(j), ω(j)(i)). (27)

Cases A, B and C can support different horizon sizes utilizing the expression in Eq.
(27). As described above, in order to adopt different horizon sizes, it is necessary
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to employ a different formulation from the force state of the standard PD, and the
equation of motion can be expressed in discretized form as:

ρü(i) =

NVH
(i)∑
j

T (i)(j)V(j) +

NVH′
(i)∑
j

T (j)(i)V(j) + b(i), (28)

where

NVH
(i) = {x ∈ B | ω(i)(j) ̸= 0},

NVH′

(i) = {x ∈ B | ω(j)(i) ̸= 0}.
(29)

Here, we define Eq. (28) as generalized VH-PD.

3.4 Verification of the variable horizon concept

In order to present validity of the Eq. (28), the stress induced wave propagation
problem in a plate shown in Fig. 5 is considered. Two types of particle arrange-
ments as depicted in Fig. 6 are compared using the standard PD and the general-
ized VH-PD, Eq. (28). The reference solution is Case A at which the horizon size,
as shown in Fig. 6, is constant throughout the model. Target points are enumer-
ated as #1, #2 and #3 in Fig. 5. The material properties are taken as Young’s
modulus E = 210 GPa, Poisson’s ratio ν = 1/3, the material density ρ = 7, 850
kg/m3. The plane stress condition is utilized.

250 mm

1
0

0
 m

m

1 2 3

125 mm 125 mm

Fig. 5 A rectangular plate subjected to a tensile load.

A uniform tensile stress of magnitude σ0 = 0.667 MPa is suddenly applied
to the right edge of the specimen, see Fig. 5. The horizon sizes are defined as
δ1 = 3.5dl1, δ2 = 3.5dl2 and the distance between the particles for coarse and fine
regions are dl1 = 5.0, dl2 = 2.5 mm, respectively. The discretization is depicted in
Fig. 6. In both horizon size cases, the number of particles inside the neighborhood
is constant.

Models A and B are examined by employing the standard PD and the gen-
eralized VH-PD. The displacement magnitudes for points #1, #2 and #3 are
measured for total duration of 0.5 ms. It must be noted that the standard PD
equation of motion is given by Eq. (12), while the generalized VH-PD equation of
motion is expressed by Eq. (28). Here, the comparison is carried out for these two
approaches adopting different particle discretizations.
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Model A Model B

coarse regionfine region

Fig. 6 Particle arrangements for Models A and B.

Fig. 7(a) shows the analysis results of Models A and B by the standard PD,
Eq. (12). It can be seen that the results of Model B, in which the horizon is not
constant, do not obviously match the results of Model A of the constant horizon
over the entire model, which is an outcome of inconsistency in the interaction
forces. In both points, the peaks for displacements are underestimated and the
occurrence instance of peaks also do not match with the Model A. The deviation
from the Model A is more pronounced for the points #2 and #3, where located
on the coarse region. This could be explained by the spurious wave reflection from
the interface of the different horizon sizes. On the other hand, Fig. 7(b) shows that
the analysis results perfectly match for both Models A and B, indicating that an
appropriate solution is obtained even when the horizon size is varied. Therefore,
validity of the VH-PD concept, Eq. (28) is confirmed.

0.0 0.1 0.2 0.3 0.4 0.5
Time [ms]

0.000

0.005

0.010

0.015

0.020

0.025

D
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p
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ce
m
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t
[m

m
]

PD (Model A)

PD (Model B)Point 3

Point 2

Point 1

0.0 0.1 0.2 0.3 0.4 0.5
Time [ms]

0.000

0.005

0.010

0.015

0.020

0.025

D
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p
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m
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t
[m

m
]

PD (Model A )

VHPD (Model B)Point 3

Point 2

Point 1

(a) (b)

Fig. 7 Comparison between Models A and B by: (a) standard PD, (b) VH-PD.
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3.5 Ghost forces

In this section, generation of an undesired artificial force, i.e., ghost force aris-
ing due to the different horizon sizes of the mutual particles, is briefly described
according to Ref. [8]. The ghost force that originally depends on the reference
interaction force T1 for the equilibrium state, L = 0 is written as:

L(x) = −1

2

∫
∇∇δ(x)(m⊗m)T 1⟨m⟩dVm + . . .

= O(|∇∇δ|)O(|T 1|).
(30)

The error term in Eq. (30) states that the ghost force is related to second derivative
of the horizon size and the magnitude of the reference interaction force, which also
proves that the ghost force would not exist if the horizon size is constant in the
entire model.

250 mm 250 mm

1
0

0
 m

m

coarse regionfine region

Fig. 8 A rectangular plate modeled by different horizons.

3.6 Validation of the ghost force

In order to verify influence of the ghost force on the internal force density, a
displacement field is applied to a rectangular plate model shown in Fig. 8. Keeping
the m value constant, the distance between the particles as well as the horizon size
are varied at the center of the plate (interface of the different spatial resolutions),
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see Fig. 8. The horizon size ratio δ1/δ2 is varied as 2.0, 4.0 and 8.0, respectively.
Internal force density is considered as the indicator. In this example, inertia and
external forces are omitted; this is because a forced linear displacement field is
adopted, which is expressed as:

u1 =
∂u1
∂X1

X1. (31)

Therefore, the analytical solution for the internal force density is L = 0.

0.0 100.0 200.0 300.0 400.0 500.0
X1-axis Coordinate   [mm]

-0.040

-0.020

0.000

0.020

0.040

0.060

In
te
rn
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fo
rc
e
d
en
si
ty

[k
N
/m

m
3
]

δ1/δ2 = 2

δ1/δ2 = 4

δ1/δ2 = 8

Fig. 9 Comparison of internal force densities for the different horizon size ratios, δ1/δ2.

Fig. 9 shows the variation of internal force densities along the X1 axis for
the different horizon size ratios. It is obvious that the values are non-zero at the
ends and the center of the specimen. The non-zero internal force densities at the
both ends of the specimen are associated with surface (skin) effects. The surface
effects arise from the nature of the PD formulation, but not due to the variable
horizon. On the other hand, the numerical oscillation at the center of the model,
where horizon size is suddenly changed, is because of the ghost force generation.
As the horizon ratio δ1/δ2 increases, the ghost force becomes large and Eq. (30)
is reproduced faithfully.

4 Introduction of a smoothing length concept for variable horizon

A model to reduce ghost force is proposed in this section. From the numerical
analysis results in the previous sections and Eq. (30), it can be seen that the ghost
force depends on O(|∇∇δ|) and O(|T 1|), see Eq. (30). It can be easily inferred that
the ghost force can be reduced by smoothly changing the horizon size gradient in
the region, where the spatial resolution is varied. In this section, “smoothing length
(Ls) concept” as shown in Fig. 10 is proposed. In this model, the horizon size is not
suddenly varied. The smoothing length, Ls denotes the length of the region where
the horizon size is gradually varied, see Fig. 10. The smooth transition between
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the different horizon sizes reduces the error term (|∇∇δ|) of the internal force
densities in Eq. (30).

(a) (b)

Fig. 10 Definition of the smoothing length: (a) sudden change of horizon sizes, (b) model
with the smoothing length concept for gradual variation of horizon sizes.

To examine the effectiveness of the smoothing length concept, the previous
numerical model shown in Fig. 8 is considered. Different smoothing lengths of
Ls = 0, Ls = 5dl1 and Ls = 10dl1 are adopted to observe the oscillation of
internal force density. Note that Ls = 0 is the same as the previous section, where
the smoothing length is not introduced; the horizon size changes rapidly at the
interface.

The influence of the smoothing length concept is illustrated in Fig. 11(a)-(c)
for smoothing lengths Ls = 0, Ls = 5dl1 and Ls = 10dl1, respectively. The
given figure shows that the internal force density is reduced by increase of the
smoothing length. It is clear that the magnitude of ghost force becomes smaller by
the smoothing approach and the oscillations are redistributed over the smoothing
region with a small magnitude, which mostly occurs at the left boundary of the
smoothing region (smaller horizons). Here, the approach is called as smoothed
variable horizon PD (SVH-PD).

5 Numerical examples

The SVH-PD is employed to calculate DSIFs of stationary cracks in this section.
The DSIFs evaluation techniques in PD modeling were previously proposed by the
authors [3,4]. The evaluation techniques are briefly revisited here. At first, the J-
integral method for evaluating DSIFs is described. Then, the path independence
of DSIFs in SVH-PD framework is studied. Finally, the DSIFs obtained by the
present approach are presented comparing with the analytical reference results.
The reduction of the computational cost by SVH-PD is clearly indicated.
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Fig. 11 Comparison of internal force densities for: (a) Ls = 0, (b) Ls = 5dl1, (c) Ls = 10dl1.
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5.1 J-integral method for evaluating DSIFs

Path independent energy release rate is calculated near the crack tip using the J-
integral proposed by Rice [34]. The J-integral approach is schematically illustrated
in Fig. 12.

Crack tip

W

Fig. 12 A schematic illustration of J-integral domain.

The original form of the J-integral is a path integral. Here, we take the dynamic
effects into account. Employing the Gauss divergence theorem, the J-integral can
be expressed as domain Ω integration [35–37], which is written below.

J =

∫
Ω

[
(σij

∂ui
∂x1

−Wδ1j)
∂q

∂xj
+ ρ

∂2ui
∂t2

∂ui
∂x1

q
]
dΩ (32)

In the given equation, x1 and x2 are local coordinate axes respectively parallel and
normal to the crack segment, whose origin is located at the crack tip. σij , ui and
ρ are the stress, displacement, and material density components. W and δ1j stand
for the strain energy density and Kronecker delta, respectively. q is an arbitrary
continuous function that becomes zero at the outer boundary, Γ0 and unity at the
inner boundary, Γε of the domain Ω. To ensure the path independence, circular
or rectangular integration domains can be utilized.

The opening mode DSIF, Kd
I is evaluated from the energy release rate J as

follow,

Kd
I =

√
JE′, (33)

where E′ is a material property as E′ = E and E′ = E/(1 − ν2) for plane stress
and plane strain conditions, respectively.

In computing the DSIFs by the J-integral, it is required to evaluate the dis-
placement gradients. The current form of the PD cannot calculate the displace-
ment gradients directly, the Moving Least Squares (MLS) method [38] is therefore
adopted to approximate the displacement gradients of the particles.

As for the numerical integration of the energy release rate J , the displace-
ment components are calculated in PD framework and introduced into the MLS
approximation. The discretized form of the J-integral is then expressed as:

J =
Ω∑
k

[
{(σij)k(

∂ui
∂x1

)k −Wkδ1j}(
∂q

∂xj
)k + ρk(

∂2ui
∂t2

)k(
∂ui
∂x1

)kqk
]
Vk. (34)
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Here, the subscript k stands for the k-th particle. (∂ui/∂x1)k is the displacement
gradient obtained by MLS, which is expressed as:(

∂ui
∂x1

)
k

=
N∑
l

(
∂ψ

∂x1
)l(ui)l, (35)

where ψ represents the shape function in the MLS approximation. N is the total
number of particles within the influence radius of the k-th particle. In the present
study, the influence radius of MLS is utilized as same as the horizon size. Further
details regarding the MLS approximation and its discretization can be found in
Refs. [3, 4]. The stress components in Eq. (34) are however computed within PD
framework assuming the force flux at a particle is equivalent to state of stress,
which is expressed as:

σ =

∫
H
T ⊗ ξdV. (36)

(a) (b)

(c) (d) (e)

Fig. 13 Numerical model and particle arrangements around the crack tip: (a) a rectangular
plate with a center crack, (b) particle arrangement for Level 0, (c) particle arrangement for
Level 1, (d) particle arrangement for Level 2, (e) particle arrangement for Level 3.

5.2 Verification of the path independence

The DSIFs for a rectangular plate with a central crack shown in Fig. 13(a) are
calculated to verify the path independence in the SVH-PD framework. The model
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dimensions are 2H = 40 mm, 2W = 20 mm, a = 2.4 mm, and the load σ0 = 1.0
GPa is applied to both left and right edges of the rectangular plate. The material
properties are taken as Young’s modulus E = 199.992 GPa, material density
ρ = 5, 000 kg/m3, and the Poisson’s ratio ν = 0.3. The distance between the
particles is set as dl1 = 0.1 mm in the coarse region and the particle distance in
the fine region is varied depending on the horizon size ratio. The horizon size in
both coarse and fine regions is taken as δ = 4.0dl.

As shown in Fig. 13, the crack tip region of dimension 20dl1×20dl1 is discretized
in high resolution. The difference between the resolutions is defined by levels. Level
0 represents the constant spatial resolution as well as the constant horizon size in
the whole model, and therefore the smoothing length becomes zero for this model.
The Levels 1, 2 and 3 stand for the horizon size ratio δ1/δ2 of 2.0, 4.0 and 8.0,
respectively. δ2 denotes the horizon size in the crack tip (fine) region. The particle
arrangements for these cases are respectively given in Fig. 13(c)-(e).
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Fig. 14 DSIFs for paths A and B utilizing the constant horizon (Level 0).

Fig. 14 shows the DSIFs for constant horizon in the entire model as illustrated
in Fig. 13(b). The path independence for the constant horizon case can thus be
confirmed considering Fig. 14. Then, this case is utilized as the reference solution
for the further verification of path independence in SVH-PD employing different
spatial resolutions. Paths A and B have J-integration regions of rq1 = 1.0 mm,
rq2 = 2.0 mm and rq1 = 0.5 mm, rq2 = 1.0 mm, respectively. rq1 and rq2 stand for
the distances from the crack tip to the inner and outer boundary of the domain,
respectively. The following global error expression is considered as indicator to
examine the path independence.

ϵg =
1

|z|max

√√√√ 1

N

N∑
i

(
zrefi − znumi

)2
(37)
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Fig. 15 Comparison of global error for the various smoothing lengths and the particle ar-
rangements.

Fig. 16 The neighborhood of Level 3.

The global error for Level 0 is 0.60 %, and this value is used for the comparison
reason. Fig. 15 shows the global error utilizing the smoothing lengths Ls = 0, 5dl1
and 10dl1 for Levels 1-3. In the Ls = 0 case, it can be confirmed that the global
error increases as Level (δ1/δ2) increases. For each level, it is seen that the global
error becomes smaller as the smoothing length Ls increases, which obviously shows
influence of the smoothing length on reducing the error in DSIFs. It is also clear
in Fig. 15 that sufficient accuracy can be obtained with smoothing length concept
even at Level 3, where the horizon size ratio is large. However, as shown in Fig.
16, the number of neighboring particles inside the horizon becomes very large,
which is inefficient from the viewpoint of m-convergence. Therefore, we propose
a method to take into account the m-convergence and enforce gradual variation
of spatial resolution near the crack tip as shown in Fig. 17, called as step by step
modeling. Fig. 18 indicates the results when the spatial resolution is gradually
varied. The step by step modeling reveals the lowest error for the same smoothing
length compared to Levels 1-3.
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Fig. 17 A gradual variation of spatial resolution and horizon size.
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Fig. 18 Comparison of global error for the various smoothing lengths and the particle ar-
rangements with step by step modeling.

5.3 Evaluation of DSIFs for a stationary crack

A semi-infinite plate with a through crack shown in Fig. 19(a) is considered. The
model dimensions are W = 100 mm, 2H = 40 mm, and a = 50 mm. The material
properties are utilized as Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3,
and the material density ρ = 7, 850 kg/m3. The plane strain condition is adopted.
As a reference value, the analytical solution of a semi-infinite plate from Ref. [39]
is considered, see Eq. (38).

Kd
I =


0 (t ≤ t̄),

2σ0

√
cdt(1− 2ν)/π

1− ν
(t > t̄).

(38)

The total simulation time is t < 3t̄ at which the semi-infinite condition is satisfied.
t̄ is the dimensionless time, which is expressed as:

t̄ = cd × t/H, (39)

where cd is the longitudinal (dilatational) wave speed. t̄ represents reaching time
of a stress wave to the crack tip.
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Fig. 19 Modeling for DSIFs evaluation: (a) semi-infinite rectangular plate model, (b) crack
tip particle refinement.

For the SVH-PD implementation, the spatial resolution near the crack is fur-
ther refined, see Fig. 19(b). The convergence of global error is examined with
the standard PD and the SVH-PD. The distance between particles is varied as
dl = 0.4, 0.2, 0.1, 0.05 mm, and the SVH-PD concept is applied from Level 0 to
Level 3 as described in the preceding sections.

The results of the standard PD and the SVH-PD are shown in Figs. 20 and
21, respectively. It can be confirmed that both results converge to the analytical
solution. For further clarification purpose, close-up views are provided in Figs.
20(b)-(c) and 21(b)-(c). The close-up view for the standard PD indicates that
dl = 0.05 reveals the closest results to the analytical solution. As for the SVH-
PD approach, the closest result to the analytical solution is achieved for Level 3.
The number of particles in the standard PD is 25,000, 100,000, 400,000, 1,600,000
for the particle distance values dl = 0.4, 0.2, 0.1, 0.05 mm, respectively. On the
other hand, in the case of SVH-PD, the number of particles is 25,000, 30,292,
46,060, 99,124 for Levels 0-3, respectively. The given numbers clearly show that
the efficiency is considerably improved. This phenomenon can also be observed in
the global error plot of dimensionless DSIFs versus the number of particles for the
standard PD and the SVH-PD, which is given in Fig. 22. The smallest error is
immediately achieved in the SVH-PD approach, while the number particles has to
be increased further in the standard PD solution.
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Fig. 20 Comparison of normalized DSIFs by the standard PD: (a) general trend of DSIFs,
(b) close-up view between t̄ = 0.80 and 1.20, (c) close-up view between t̄ = 2.00 and 2.50.

6 Conclusions

The SVH-PD concept has been implemented for evaluating the DSIFs of station-
ary cracks. The undesired ghost force when the horizon size is changed has been
addressed and the smoothing length concept was proposed to reduce the ghost
force effect. It was clearly shown that the smoothing length concept significantly
reduces the effect of ghost forces by distributing it through region, where the
horizon size is varied gradually.

As for evaluating the DSIFs, the J-integral method has been employed. To
evaluate displacement gradients in the J-integral formulation, MLS approximation
was utilized. Path independence of the DSIFs obtained by the J-integral method
has been verified. To improve the computational efficiency, the spatial resolution
near the crack tip was gradually varied. This approach notably improved the m-
convergence.

The DSIFs obtained by the standard PD and SVH-PD were compared with
the reference analytical solution for a semi-infinite plate. Both results converged



A SVH-PD and its appl. to the frac. param. eval. 23

(a)

(b) (c)

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Normalized time t̄

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N
o
rm

a
li
ze
d
D
S
IF

K̄
d I

Analytical

Level 0

Level 1

Level 2

Level 3

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Normalized time t̄

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
o
rm

a
li
ze
d
D
S
IF

K̄
d I

Analytical

Level 0

Level 1

Level 2

Level 3

2.00 2.10 2.20 2.30 2.40 2.50
Normalized time t̄

0.70

0.73

0.75

0.78

0.80

0.83

0.85

0.88

0.90

N
o
rm

a
li
ze
d
D
S
IF

K̄
d I

Analytical

Level 0

Level 1

Level 2

Level 3

Fig. 21 Comparison of normalized DSIFs by VH-PD: (a) general trend of DSIFs, (b) close-up
view between t̄ = 0.80 and 1.20, (c) close-up view between t̄ = 2.00 and 2.50.

to the analytical solution, however the computational efficiency of SVH-PD was
significantly higher than that of the standard PD.

To sum up, the newly proposed smoothing length concept has reduced the ghost
force effect and provided good accuracy while keeping the number of particles very
low compared to the standard PD.
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