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Abstract Buckling analysis of stiffened plates including curvilinear surfaces is carried out by an
effective meshfree model. The buckling loads and modes computed by the present method are analyzed.
Six degrees of freedom (6-DOFs) curved shell meshfree formulation in convected coordinate system
including a drilling rotation component is employed, which enables the assembly of curved shells
for the modeling of more complex structures. By this formulation, assembly of any arbitrary shape of
geometry can be modeled in convected coordinates; while the 5-DOFs shell formulation suffers from the
modeling of shell assemblies. Particularly, curved shells with straight stiffeners, plates with curvilinear
stiffeners are considered. Furthermore, a twisted T-shaped structure that is both web and flange have
curvilinear geometry is analyzed. A meshfree discretization is employed, with which the reproducing
kernel particle method (RKPM) is used as the meshfree interpolant. A boundary singular kernel (SK)
method is adopted to precisely impose essential boundary condition (BC) and to model folded shell
geometries. The accuracy and effectiveness of the proposed method are demonstrated through several
shell buckling problems for stiffened plate structures with curvilinear surfaces. The obtained meshfree
results are compared with the linear and quadratic shell element results of Finite Element Method
FEM (ANSYS) and discussed.
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1 Introduction

The stiffened panels are common and important structural members in many engineering applications
including ship hulls, bridges and storage tanks. The combination of plate and stiffeners inherently
provides higher strength to weight ratios, and this advantage brings with several research works dealing
with buckling analysis by FEM [1–4], analytical [5, 6], and semi-analytical methods [7–9]. In addition
to buckling analysis, the ultimate strength of stiffened plates has also been investigated mainly by
FEM [10–13], and semi-analytical estimation methods [14, 15] during the last few decades. Nonlinear
collapse behavior of the stiffened curved plates was also examined and design formulae were proposed
by Seo et al. [16]. A comprehensive reference textbook covering buckling and ultimate strength of plates
and stiffened plates was recently published by Yao and Fujikubo [17]. Monotonously increasing demands
on the performance of the structures, especially in the aerospace and modern shipping industry, push
the engineers to design unconventional but efficient structures to meet the marginal requirements.
Such demands also trigger development of production methods. The development of manufacturing
and material technologies enables the production and utilization of the structural arrangement of
complex geometries; such as a plate with curvilinear stiffeners. Kapania et al. [18] introduced the
concept of curvilinear stiffeners to show that the curvilinear stiffeners can provide lighter weight than
the panels with straight stiffeners in some cases. Furthermore, Kapania and his colleagues performed
static, buckling and vibration analysis of homogeneous plates with curvilinear stiffeners by element-free
Galerkin method [19], FEM [20], and for composite curvilinearly stiffened plates by FEM [21]. The
structural optimization of plate-curvilinear stiffener arrangements has been investigated in Refs. [22,23].
Recently, Qin and his colleagues examined the static and dynamic behavior of curvilinearly stiffened
plates [24], and the free vibration of curvilinearly stiffened shells [25] employing isogeometric analysis
method. In those works, stiffeners were modeled by beam formulation. The structural efficiency of
the stiffened ship panels with unconventional stiffener cross-section (Y-type) was examined by Leheta
et al. [26]. On the other hand, Liew and his colleagues performed a series of buckling and vibration
analyses of plates and plate assemblies based on first order shear deformation theory by RKPM [27],
radial basis function method [28] and meshfree Galerkin methods [29,30].

Above references show that FEM with shell elements is the most common approach for simula-
tion of stiffened panels. Furthermore, linear element formulation was usually adopted due to the lower
computational effort. However, linear shell elements sometimes become vulnerable to shear locking;
particularly in the approximation of curvilinear surfaces. In addition, conventional FEM with linear
elements suffers from the non-smooth stress-strain field. Special procedures, e.g., consecutive inter-
polation procedure [31], are required to eliminate such non-smooth stress-strain field. Consecutive
interpolation procedure can also be improved for evaluating fracture parameters [32].

Meshfree methods, an alternative discretization method, can easily deal with the trouble caused
by shear locking owing to the higher order approximation functions. Our research group therefore
studied meshfree fracture [33–35] and buckling problems [36–38]. Buckling analyses were carried out
for isotropic cylindrical shells [36] and curvilinearly stiffened structural plates [37] by employing 5-DOFs
shell formulation. In Ref. [37], the curvilinear stiffeners were not modeled explicitly; but the out of
plane displacements were suppressed along the plate-stiffener connections. In addition, linear buckling
behavior of continuous stiffened plates was studied in detail by meshfree RKPM with 6-DOFs flat
shell formulation introducing drilling rotation component by the present authors [38]. It was shown
that the 6-DOFs shell formulation is efficient in simulating flat plate-flat stiffener interaction. The
compatible displacement field was ensured by an efficient coordinate transformation rule and Multi-
Point Constraint (MPC) technique. Chen and Wang [39] proposed constrained reproducing kernel
particle formulation addressing singular moment matrix when the RKs are produced in Cartesian
coordinates for complex geometries; and the displacement compatibility was ensured in Ref. [39].

Moreover, present authors performed geometrical nonlinear analysis of folded plate structures using
6-DOFs meshfree method in [40]. However, MPC was adopted to impose essential BCs, the accuracy
around the boundaries is sometimes deteriorated as reported in [41]. The influence of order of original
kernel function, i.e., higher order versions of present formulation, on the stress and error norms for the
geometrically nonlinear analysis was also assessed by Ref. [41]. The accuracy of an eigenvalue analysis,
e.g., vibration and linear buckling problems, is worsen by the numerical error around the BCs. Hereby,
a powerful essential BCs enforcement technique, boundary SK approach [42], is introduced to impose
the Kronecker Delta function property. In the present SK approximation, singular kernels are only
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generated at the boundary nodes, where the essential BCs are applied on or coinciding boundary nodes;
not the interior nodes. According to the authors’ knowledge, application of accurate buckling analysis
for curvilinearly stiffened plates as well as complex geometries by the meshfree shell formulation has
not been reported yet. Kapania and his colleagues as well as Qin and his colleagues modeled stiffeners
on the basis of beam formulation in Refs. [20, 21] and Refs. [24, 25], respectively. Such modeling may
be sufficient when stiffener size is relatively small. On the other hand, local buckling of stiffeners
and mother (base) shells may take place when the stiffener size is relatively large. In this case, beam
formulation suffers from representing local stiffener buckling. We therefore model both stiffeners and
mother shells by 6-DOFs shell formulation in convected coordinates to effectively simulate the plate-
stiffener interaction as well as local buckling of the stiffeners. A smooth stress-strain field over the
whole domain is achieved by higher order continuous interpolation functions for the approximation of
physical values and the shell geometry in a similar fashion with isoparametric FEM. In the numerical
integration, physical values are smoothed on the basis of strain smoothing approaches. Sub-domain
stabilized conforming integration (SSCI) [43–46] method is adopted to effectively simulate higher stress
gradients along the plate-stiffener connections. Wang and Peng [44] performed the numerical integration
of weak form by SSCI with smoothed measures of rotation and curvature. Wang and Wu [46] proposed
nesting sub-domain gradient smoothing integration (NSGSI) based upon SSCI, and the stiffness matrix
can be integrated exactly for any quadratic field. As for the remaining regions, stabilized conforming
nodal integration (SCNI) method proposed by Chen et al. [47] is applied. By employing advanced
numerical integration methods, the stiffness matrices can be derived more effectively, which results in
accurate evaluation of buckling loads and modes.

This paper is organized as follows: In Section 2, 6-DOFs shell formulation is briefly described.
Meshfree discretization and introduction of drilling rotation component are explained in Section 3.
In Section 4, modeling of plate-stiffener assemblies and numerical integration techniques are briefly
explained. Accuracy and effectiveness of the proposed method are demonstrated through numerical
examples in Section 5. The meshfree results are also compared with linear and quadratic shell elements
of FEM (ANSYS). The results are critically investigated and discussed. Concluding remarks are drawn
in Section 6.

2 6-DOFs shell formulation and approximations

6-DOFs meshfree formulation and discretization including curvilinear surfaces are used. They are
briefly reviewed here for the analysis of linear buckling problems. 6-DOFs shell formulation considers
both in-plane and out-plane deflections as well as drilling rotation component. This modeling makes
possible to solve buckling problems of plate - stiffeners combinations considering transverse shear strains
effectively. A schematic illustration of coordinate transformation between global Cartesian coordinates
and convected coordinates is given in Fig.1. In the given figure, X=(X1, X2, X3) is a position vector in
the Cartesian coordinates, and r=(r1, r2, r3) is that in the convected coordinates. 6-DOFs, including
translation (u1, u2, u3) and rotation (θ1, θ2, θ3) components, are considered. In the present study, all
surfaces are firstly created in convected coordinate system (r1, r2 plane), then mapped into Cartesian
coordinates. All derivations can, therefore, be performed in the convected coordinates. Scattered nodes
can be set on the mid-thickness plane either in regular or irregular pattern. The nodal values in the
two coordinate systems have a one-to-one correspondence.

The displacement of a point on a shell surface can be written in terms of rotation angles and the
translation of mid-thickness plane as:

u = umid +
r3
2
th(−β1V2 + β2V1), (1)

where β1 and β2 are the rotation angles in terms of the tangential unit vectors V1 and V2. Right
hand side term, −β1V2 + β2V1, denotes the rotation of director, V3. Tangential units, Vi and the unit
vectors, ei in Cartesian coordinates have the following relation:

V2 =
V3 × e1
|V3 × e1|

, (2)

V1 = V2 × V3. (3)
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Fig. 1 A schematic illustration of a shell with 6-DOFs and mapping for curvilinear geometry.

Considering Eq. (1), a similar expression can be written for position of a point on shell surface as:

X = Xmid +
r3
2
thV3, (4)

where Xmid is a position vector on the mid-thickness plane of the curved shell in the Cartesian co-
ordinates. Covariant basis vectors, Gi can be readily derived by differentiating position vector with
respect to convected coordinates as:

Gi =
∂X

∂ri
. (5)

To meet the Kronecker delta property, contravariant basis vectors are derived as:

Gi =
Gj ×Gk

Gi · (Gj ×Gk)
, (6)

where (i, j, k)=(1,2,3),(2,3,1),(3,1,2) in Eq. (6). Once giving the relations between base vectors, we can
proceed explicit form and approximation of displacements. Eq. (1) can be expressed in explicit form
as:

u =

u1
u2
u3

 =

umid1 − r3
2 thβ1V2(1) +

r3
2 thβ2V1(1)

umid2 − r3
2 thβ1V2(2) +

r3
2 thβ2V1(2)

umid3 − r3
2 thβ1V2(3) +

r3
2 thβ2V1(3)

 . (7)

Here, Vi(j) denotes dot product of unit vectors Vi and ej . The displacement of a point on the shell
surface is approximated by RK functions as:

u(r) =

NP∑
I=1

ψI(r)
(
umidI +

r3
2
thV3I

)
, (8)

where ψI(r) represents the RK functions. On the other hand, umidI stands for the coefficient vector
for each node on the mid-thickness plane and NP is the total number of nodes to be used for the
approximation. This approximation can be expressed in explicit form as:

u =

NP∑
I=1

ψI 0 0 − r3
2 thψIV2(1)

r3
2 thψIV1(1)

0 ψI 0 − r3
2 thψIV2(2)

r3
2 thψIV1(2)

0 0 ψI − r3
2 thψIV2(3)

r3
2 thψIV1(3)



u1I
u2I
u3I
β1I
β2I

 =

NP∑
I=1

ΨIUI , (9)

where UI is 5-DOFs coefficient vector. So far, shell kinematics and approximation of displacements
in terms of RK functions were briefly described. As for the details of the shell kinematics as well as
approximation of physical values and curved shell surface, see Ref. [36].
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2.1 Relationship between rotation components and rotation angles

The relationship between the rotation angles and rotation components including drilling rotation angle,
β3, is introduced here. The rotation vector of directors, ω, is schematically illustrated in Fig.2.
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Fig. 2 Schematic illustration of the rotation vector ω.

The rotation vector of directors, ω is expressed considering rotation angles, rotation components
and unit vectors as:

ω = βiVi = θjej . (10)

The rotation angles then can be written as:

βi = Vi · ejθj = Vi(j)θj . (11)

The relationship is written in explicit form as follows:β1
β2
β3

 =

V1(1) V1(2) V1(3)

V2(1) V2(2) V2(3)

V3(1) V3(2) V3(3)

 θ1
θ2
θ3

 . (12)

Then, the kinematic relations can be rewritten considering Eq. (12) as:

u = umid +
r3
2
th (−(θ · V1)V2 + (θ · V2)V1) , (13)

where Vi={Vi(1) Vi(2) Vi(3)} and θ={θ1 θ2 θ3}T . The derivatives of the displacement vector are obtained
as:

∂u

∂ri
=
∂umid

∂ri
+
r3
2
th

(
− ∂

∂ri
(θ · V1)V2 − (θ · V1)

∂V2

∂ri
+

∂

∂ri
(θ · V2)V1 − (θ · V2)

∂V1

∂ri

)
, (i = 1, 2)

(14)

∂u

∂r3
=
1

2
th(−(θ · V1)V2 + (θ · V2)V1) . (15)

3 Meshfree discretization for buckling problems

Buckling problem is related with energy principles so that buckling equations can be derived by Prin-
ciple of Virtual Work. Thus, the general form of virtual work equation is written as:∫

V

S : δEdV =

∫
S

tδudS, (16)

where S stands for second Piola-Kirchhoff stress tensor and E is Green-Lagrange strain tensor, while
t and u denote traction forces and corresponding displacement terms, respectively. δ is a variational
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operator. V is the volume of the shell and S is the shell surface, where traction force is applied on.
At first, a linear static analysis has to be performed to obtain pre-buckling stresses under a reference
external load. Once the pre-buckling stresses are obtained for the reference loads, the left hand side
of Eq. (16) can be decomposed into linear and non-linear parts, which are associated with linear and
non-linear parts of strain tensor as follows :

E =
1

2

{(
Gi ·

∂u

∂rj
+Gj ·

∂u

∂ri

)
+

(
∂u

∂ri
· ∂u
∂rj

)}
Gi ⊗Gj

= (εLij + εNLij)G
i ⊗Gj = εL + εNL. (17)

In the linear static analysis, all measures of stresses and strains are equivalent; and the left hand side
of Eq. (16) becomes equivalent to total strain energy, which is also decomposed as follows.

Π = ΠL +ΠNL, (18)

where, ΠL and ΠNL are associated with linear, εL and non-linear, εNL strains, which are respectively
expressed as:

ΠL =
1

2

∫
V

σ : εLdV, (19)

ΠNL =
1

2

∫
V

σ′
0 : εNLdV. (20)

Assuming plane stress condition, in-plane stresses increase with respect to critical load parameter, λ,
which states the additional loads cannot be sustained by in-plane displacements any longer. At this
moment, applying the stationary condition for Π with respect to displacement vector, the final form
of buckling equation can be written as:∫

V

σ : δεLdV + λ

∫
V

σ′
0 : δεNLdV = 0, (21)

where εL and εNL stand for the linear and nonlinear strain tensors, respectively. σ and σ′
0 denote the

Cauchy stress tensor and pre-buckling stress tensor, respectively. The details of the strain tensors as
well as stress tensors were defined in Ref. [36].

3.1 Introduction of drilling rotation component

Due to difficulties in modeling of assembled structures by 5-DOFs shell formulation, the relation-
ship between rotation angles and rotation components including drilling rotation component has been
defined in the previous section. The drilling rotation component in the curved shell formulation is in-
troduced to total system by means of penalty energy, QT , based on the idea of Kanok-Nukulchai [48].
The penalty energy can be written as:

QT = κT

∫
V

C1212

[
β3|G1 ×G2| −

1

2

(
G2 ·

∂u

∂r1
−G1 ·

∂u

∂r2

)]2
dV, (22)

where κT is a parameter for the penalty energy. It is taken as 0.1 as suggested by Ref. [48] to prevent
spurious torsional mode. In the case of rigid body rotation, the penalty energy must vanish. On the
other hand, C1212 is related shear term in the elastic constants tensor. β3 is the virtual in-plane
rotation. The virtual distortion caused by β3 is given as:

εβ3
=

[
β3|G1 ×G2| −

1

2

(
G2 ·

∂u

∂r1
−G1 ·

∂u

∂r2

)]
G1 ⊗G2, (23)

and the corresponding virtual stress is:

Rβ3
= 2κT C1212εβ3

G1 ⊗G2. (24)
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The virtual energy δQT due to the virtual rotation is added to Eq. (21). Finally, a discrete equation
of the eigenvalue problem is derived as:

(KL + λKNL)W = 0, (25)

where KL is the stiffness matrix associated with linear terms:

KL =

∫
V

BT
LCBLdV + κT

∫
V

BT
β3
C1212Bβ3dV, (26)

and KNL is the one associated with non-linear terms:

KNL =

∫
V

BT
NLσ

′
0BNLdV. (27)

The details of strain-displacement matrices BL and BNL were given by Ref. [36]. Volume integral term
dV can be described in terms of covariant base vectors and line elements as dV=[G1G2G3]dr1dr2dr3.

4 Modelling of plate-stiffener assemblies

A plate and curvilinear stiffener assembly is schematically illustrated in Fig.3(a). In this figure, ei and
e′i (i=1,2,3) are unit vectors for plate and stiffener parts in their local coordinates, respectively. As
can be seen from the given figure, the nodal arrangement might have regular or irregular pattern, but
the important thing is the synchronization of the coinciding nodes.
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Fig. 3 Modeling of stiffened plates: (a) assembly of plate and curvilinear stiffener, (b) SCNI, (c) SSCI.

At first, flat shell models are independently generated for the plate and the stiffeners. The support
domains of the nodes lie in their own plane, which is conceptually similar to FEs. The approximation
of nodal displacements as well as the geometry by RKs are performed independently for each body.
As for the modeling of plate-stiffener assemblies, orthogonal transformation of the base vectors for
geometry and displacement components is performed. This concept was presented in our previous
study, Ref. [38]. After the assembly process, we employ convected coordinates concept, which is similar
to Ref. [49], defining any arbitrary shape of geometry from the flat surfaces. At this moment, the
displacement components of the coinciding nodes of the bodies are synchronized. SK [42] is set for
the coinciding nodes to enforce the displacement constraints. Once SK is set, synchronization could be
easily imposed to coinciding nodes of plate and stiffeners regardless of shape of the geometry.

4.1 Numerical integration techniques

The SCNI [47] is adopted to derive stiffness matrices. However, for more accurate simulation of higher
stress gradients along the plate-stiffener connections, more improved one, SSCI [43–46] is employed for
the plate-stiffener connecting nodes. In case of SCNI, Voronoi cells covering the nodes are generated
as shown in Fig.3(b). In that figure, ΩK denotes Voronoi cell’s domain, and ΓK is boundary of the
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domain. On the other hand, n represents normal vector of the cell boundary and rK is the coordinate
of k-th node. Domain integral is reduced to a contour integral by means of Gauss-Divergence theorem,
calculation of interpolation function’s derivatives is therefore no longer needed. Physical values can be
obtained by interpolation function itself and normal vectors of the boundaries.

The physical values dj(r) (j= 1, 2, 3) are smoothed throughout the Voronoi cell, i.e.,

d̃hj (rK) =
1

AK

∫
ΩK

dhj (r) dΩ =

NP∑
I=1

1

AK

∫
ΩK

ΨI(r)djI dΩ, (28)

where ( ˜ ) represents a smoothed physical quantity. The physical value d̃hj (r) is averaged over the
entire domain ΩK , and the values are evaluated at node rK . AK is the area of domain ΩK as shown
in Fig.3(b). Using Gauss-Divergence theorem, surface integrals are transformed into contour integrals
as:

d̃hj,k(rK) =
1

AK

∫
ΩK

dhj,k(r) dΩ

=
1

AK

∫
ΓK

dhj (r)nk dΓ

=

NP∑
I=1

bIk(rK)djI , (29)

bIk(rK) =
1

AK

∫
ΓK

ΨI(r)nk dΓ. (30)

As for the SSCI, the Voronoi cells are further partitioned into triangular sub-domains ΩKi as shown
in Fig.3(c). In sub-domains the physical values are then smoothed as:

d̃hj (rKi
) =

1

AKi

∫
ΩKi

dhj (r) dΩ

=

NP∑
I=1

1

AKi

∫
ΩKi

ΨI(r)djI dΩ, (31)

where AKi
and ΓKi

are the area and the boundary of the sub-domain ΩKi
in Fig.3(c). The value is

averaged within ΩKi and is evaluated at the gravity center of the sub-domain. The derivatives of the

physical components d̃j,k(rKi
) are evaluated through the following expressions:

d̃hj,k(rKi
) =

NP∑
I=1

bIk(rKi
)djI , (32)

bIk(rKi
) =

1

AKi

∫
ΓKi

ΨI(r)nk dΓ. (33)

Once deriving the stiffness matrix for the curvilinear surfaces employing convected coordinates, SCNI
and SSCI; the stiffness matrix of the plate-stiffener assembly can then be derived in the same manner
with Ref. [38].

5 Numerical examples and discussions

A series of linear buckling analysis is performed to show the accuracy and effectiveness of the proposed
meshfree method with convected coordinate system and advanced numerical integration techniques.
As first, shallow shell models with straight stiffeners are analyzed. The shell models without stiffeners,
employing 5-DOFs shell formulation, have been previously analyzed by the present authors [36]. A
convergence study is performed for one case of stiffened shallow shells. In this case, mother plate
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has curvilinear surface but the stiffener is straight. Then, buckling behavior of flat plate models with
curvilinear stiffeners is examined. As a final numerical example, a twisted T-shaped model is considered.
For this problem, both flange and web have curvilinear surfaces.

As for comparison, the numerical results obtained by the present meshfree method are compared
with the reference solutions derived from the FEM. In this study, the commercial FEM package,
ANSYS [50] is used. Bilinear general purpose shell elements (Shell181) based on Mindlin-Reissner
theory are adopted. This type of element has four nodes and 6-DOFs at each node. Shell181 is well
suited for simulating both linear and nonlinear behavior of thin to moderately thick shells with sufficient
accuracy and low computational efforts. We have already demonstrated capability of the Shell181
elements in simulating buckling behavior of cylindrical shells in Ref. [36]. Furthermore, quadratic shell
elements (Shell281) are also considered for the comparison. Shell281 has eight nodes and 6-DOFs at
each node.

For better representation of the obtained results, non-dimensional critical buckling, LK=12Pcb
2(1−

ν2)/Eπ2t2h and curvature, Z=b2
√
1− ν2/rcth, parameters are adopted from Ref. [51], where Pc is the

critical stress. Aspect ratio of the shell is assumed as a/b=2.0. The radius of curvature rc/b is varied
from 5.0 to 63.0. rc/b=63.0 case corresponds to almost flat plate case. The shell thickness is th/b=0.015
and the Poisson’s ratio is ν=0.3. The stiffener’s web thickness, tw is assumed to be same as the shell
thickness, and the stiffener web height is varied as hw/b=0.15 and 0.2.

Before proceeding curvilinear shell assemblies, which are target structures in the present paper,
6-DOFs shell formulation in convected coordinates is compared with the 5-DOFs shell formulation for
shallow shell problems under simply supported BCs, which were given by Ref. [36]. For the comparison,
converged nodal density (41×81) in Ref. [36] is adopted. The results for present 6-DOFs formulation
and reference values are provided in Table 1.

Table 1 Buckling coefficients LK for shallow shells under simply supported condition (a/b=2.0).

rd/b Z 6-DOFs (present) 5-DOFs [36] FEM [36] Ref. [52]
5.0 12.719 5.648 5.647 5.644 5.642
7.5 8.479 4.741 4.741 4.735 4.734
11.5 5.530 4.298 4.298 4.296 4.291
17.5 3.634 4.107 4.107 4.107 4.100
27.5 2.313 4.019 4.019 4.021 4.012
63.0 1.009 3.971 3.971 3.973 3.964

It is clearly seen in Table 1 that 6-DOFs meshfree formulation reveals almost the same buckling
coefficients with 5-DOFs formulation for curvilinear surfaces. Furthermore, buckling mode shapes are
exactly same with those of Ref. [36], they are therefore not given here. We may expect such same
results for 6-DOFs and 5-DOFs shell formulation in case of single (isolated) shells. As for the shell
assemblies (stiffened shells) as shall be discussed next, the 6-DOFs shell formulation is necessary.

5.1 Stiffened shallow shells

Buckling behavior of stiffened shallow shells is investigated. One single stiffener located on mid-part of
the shell along the longitudinal direction is considered. Keeping the shell aspect ratio constant, while
varying the curvature and the stiffener size, the buckling loads and modes are obtained. Modeling of
the shallow shells with a straight stiffener is schematically illustrated in Fig.4.

In the given figure, a denotes the length of the shallow shells, while b is the breadth of curved
side of the shell. rc is the radius of curvature. hw is the web height measured from the mid-thickness
surface of the shell, and tw is the web thickness. Simply supported BCs are considered for all edges
including the stiffener tip, which means the displacements in X2-direction are constrained. In order
to suppress the rigid body motion, mid-point nodes on the longitudinal edges are constrained against
the displacements in X3-direction. Furthermore, lower corner point in Fig.4 is constrained against
the displacements in X1-direction. Two flat plates, which constitute the shell and the stiffener, are
generated first. Then, the flat plate representing the stiffener is rotated so as to be orthogonal to the
mother plate. All DOFs of the coinciding nodes are synchronized employing SKs. This concept has
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Fig. 4 Representative modeling of the stiffened shallow shell.

been discussed extensively in our previous study [38]. A special mapping, which is same as Ref. [36],
is adopted to transform the mother flat plate into a shallow shell.

As for convergence of the present meshfree formulation, a shallow shell model with a straight stiff-
ener is analyzed. The most curved case, that is rc/b=5.0, is considered. The web height is taken as
hw/b=0.2. Element edge length for the FEM computations is varied as b/20, b/30 and b/40. As for
the meshfree computations, the nodal division is considered to be same as the element edge lengths of
FEM models. The error is defined as Error(%)=|Reference−Numer.|/Reference×100. Here, ”Numer.”
denotes the results obtained by either present formulation or FEM. As for the reference result, fully
converged FEM result employing quadratic shell elements (Shell281) is considered. In the fully con-
verged FEM, total number of nodes is 18,321, obtained by setting element edge length as b/50. In
this case, the critical buckling coefficient is Lk=15.8132. In the error computation, this fully converged
result is adopted as the reference value. On the other hand, total numbers of nodes in the meshfree
models are 1,066, 2,318 and 4,050 for b/20, b/30 and b/40 divisions, respectively. Assuming b=1.0, the
results of convergence study for present meshfree formulation and FEM employing different element
formulations, namely, linear and quadratic elements, are given in Table 2. In the given table, ”MFree”
denotes the results obtained by present formulation.

Table 2 Convergence for stiffened shallow shells under simply supported condition (rc/b=5.0, hw/b=0.2).

Buckling coefficients (Lk) Error (%)
Division MFree FEM (Shell181) FEM (Shell281) MFree FEM (Shell181) FEM (Shell281)
b/20 15.9202 16.2888 15.8175 0.6767 3.0072 0.0271
b/30 15.9029 16.0888 15.8136 0.5667 1.7427 0.0024
b/40 15.7906 16.0042 15.8132 0.1430 1.2077 0.0001

It is evident in Table 2 that the errors for the developed meshfree method are much lower than
those of FEM with linear elements. The relative errors for present formulation are lower than 1% for
all division cases, while the relative errors for FEM with linear elements are higher than 1% for all
division cases. Furthermore, the accuracy of FEM with linear elements is studied by adopting very
fine mesh, in which the element edge length is set as b/150. In this case, the relative error for linear
shell elements is 0.1930%, which is still greater than that of present method with nodal division of
b/40. Such difference may be attributed the difference in the element formulation and the numerical
integration scheme.

On the other hand, it can be readily observed that the FEM with quadratic elements converges
rapidly. The relative error for quadratic elements between the fully converged and the coarsest case
is much lower than those of present method and linear shell elements. This could be explained by
the merits of local property and quadratic approximation functions in FEM. Based on the results
of the convergence analysis, the nodal distance, b/40, provides sufficiently accurate results in the
meshfree buckling analysis; this division is then chosen for subsequent meshfree computations of the
stiffened shallow shells. The obtained meshfree results for the critical buckling coefficients and modes
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are compared with the fully converged FEM results. In addition, higher order buckling loads are also
presented for the most curved and almost flat cases.

The comparative results for two aforementioned approaches are presented in Table 3. There are two
important points that can be observed from Table 3. As expected, the first point is that the developed
meshfree method offers acceptable results of the critical buckling coefficients in comparison with the
FEM-based reference solutions. The second point lies in the fact that the present formulation can gain
good results even if the number of nodes is smaller than those of the fully converged FEM. In addition
to the higher order approximation functions, the advanced numerical integration techniques, i.e., SCNI
and SSCI for the plate - stiffener connections enable to obtain good agreement between the results
such that the maximum error between the meshfree and quadratic FEM is 0.221%, which is observed
in rc/b=63.0, hw/b=0.2 case.

Table 3 Critical buckling coefficients LK for stiffened shallow shells under simply supported condition.

hw/b = 0.15 hw/b = 0.2
rc/b MFree FEM (Shell181) FEM (Shell281) MFree FEM (Shell181) FEM (Shell281)
5.0 16.743 16.771 16.743 15.791 15.844 15.813
7.5 16.386 16.405 16.378 15.542 15.562 15.533
11.5 16.224 16.236 16.210 15.430 15.437 15.408
17.5 16.157 16.165 16.140 15.388 15.388 15.359
27.5 16.129 16.135 16.109 15.372 15.369 15.340
63.0 16.115 16.120 16.094 15.368 15.363 15.334

MFree FEM (Shell181)
(a)

(b)

X1

2

3

X

X

FEM (Shell281)

Fig. 5 Critical buckling mode shapes for rc/b=5.0: (a) hw/b=0.15, (b) hw/b=0.2.

The critical buckling mode shapes for the most curved (rc/b=5.0) and almost flat (rc/b=63.0) cases
are given in Figs.5 and 6, respectively. Fig.5 indicates a good agreement between MFree and FEM in
terms of critical buckling mode shapes regardless of the stiffener size. In case of hw/b=0.15, buckling
deflections occur both in shell and stiffener almost in the same magnitude. On the other hand, the
magnitude of deflections in the stiffener is larger than that of the shell for hw/b=0.2. This is because
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the stiffener becomes slender owing to the larger height to thickness ratio without stiffener flange. This
is also reason why the critical buckling coefficients are lower than that of hw/b=0.15 case.

As can be seen in Fig.6(a), the buckling deflections obtained by MFree and FEM for the hw/b=0.15
case are reverse to each other. Such reverse buckling deflection may be attributed to the reference
coordinate system chosen for FEM computations. Both meshfree and FEM models are generated in
global Cartesian coordinates, and very good agreement is achieved between the mode shapes except
the ones by FEM given in Fig.6(a). To investigate the possible reason, the reference coordinate system
of FEM has been shifted from Cartesian to cylindrical coordinates. It is interestingly found that the
mode shapes by FEM become the same as one obtained by proposed meshfree method as indicated in
Fig.7.

MFree FEM (Shell181)
(a)

(b)

FEM (Shell281)

X1

2

3

X

X

Fig. 6 Critical buckling mode shapes for rc/b=63.0: (a) hw/b=0.15, (b) hw/b=0.2.

MFree FEM (Shell181) FEM (Shell281)
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Fig. 7 Critical buckling mode shapes for rc/b=63.0, hw/b=0.15 (FEM results in cylindrical coordinates).

In case of hw/b=0.2 in Fig.6(b), magnitude of buckling deflection in the stiffener is larger than that
of the shallow shell. In addition, the buckling deflection in the shallow shell is larger for rc/b=63.0 case
than that of rc/b=5.0. This may be explained by the difference in the curvatures since the shells with
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higher curvature are more resistant against buckling, see Table 1. This phenomenon is also observed
in Table 3 so that the critical buckling coefficients decrease as increase of the radius of curvature for
the same stiffener size. Although higher order buckling modes and loads do not have much physical
meaning in practices, they could be examined to check the performance of the methods. The results
are hence presented in Tables 4 and 5 for rc/b=5.0 and rc/b=63.0 cases, respectively.

Table 4 Higher order buckling coefficients LK for rc/b=5.0.

hw/b = 0.15 hw/b = 0.2
Mode MFree FEM (Shell181) FEM (Shell281) MFree FEM (Shell181) FEM (Shell281)
1st 16.743 16.771 16.743 15.791 15.844 15.813
2nd 17.528 17.570 17.538 16.096 16.329 16.296
3rd 17.901 17.912 17.887 17.018 17.038 17.010
4th 19.534 19.595 19.565 18.089 19.055 19.022

Not surprisingly, the higher order buckling coefficients gained by MFree match well the reference
FEM results, particularly with the quadratic elements. However, it must be noted that the higher
order buckling modes and loads are very sensitive to discretization of the model aside to the element
formulation since higher order buckling modes may become complicated for complex geometries. It is
observed that the difference between 4th order buckling coefficients obtained by present formulation and
FEM becomes slightly large for rc/b=5.0, hw/b=0.2 case. In this case, magnitude of buckling deflection
in the stiffener is much larger than that of shallow shell owing to the larger web height/thickness ratio
as well as small radius of curvature. As for the almost flat plate case (rc/b=63.0), agreement between
the FEM with linear elements and present meshfree formulation becomes well compared to higher
curvature cases.

Table 5 Higher order buckling coefficients LK for rc/b=63.0.

hw/b = 0.15 hw/b = 0.2
Mode MFree FEM (Shell181) FEM (Shell281) MFree FEM (Shell181) FEM (Shell281)
1st 16.115 16.120 16.094 15.368 15.363 15.334
2nd 16.914 16.926 16.899 15.884 15.859 15.822
3rd 17.337 17.340 17.315 16.450 16.461 16.435
4th 18.841 18.872 18.845 17.992 17.928 17.928

In conclusion, the present formulation simulates buckling behavior of stiffened shallow shells well.
If the stiffener size is smaller, i.e., hw/b <0.15, the overall buckling (simultaneous flexural buckling of
shell and the stiffener) may take place, and the shell formulation for the stiffeners may not be crucial
since the stiffener will deform like a beam. On the other hand, the local buckling of plate/stiffener
occurs in case of larger stiffener sizes, i.e., hw/b ≥0.15, which is the scope of the present study. In the
latest cases, the modeling of stiffeners by shell formulation is crucial for the accurate buckling load
and mode estimations.

5.2 Flat plate with curvilinear stiffeners

The buckling behavior of a flat plate with curvilinear stiffeners of different configurations is investigated.
At first, one curvilinear stiffener case is considered. Then, the critical buckling loads and modes of a
flat plate with two curvilinear stiffeners are obtained. In these problems, as a first step, both plate and
stiffeners are modeled as flat plates, then the stiffener part is mapped into a curvilinear surface by
mapping. All DOFs of the coinciding nodes along the plate - stiffener connections are synchronized to
each other. Furthermore, SSCI is adopted to simulate higher stress gradients along the plate - stiffener
connections. Flat plate models with curvilinear stiffeners are schematically illustrated in Fig.8. Flat
plate model with one stiffener is called as ”Model A” while the flat plate model with two stiffeners is
called as ”Model B”. Those models have been previously analyzed by FEM in Ref. [20] adopting beam
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elements for modeling of the stiffeners. Simply supported BCs are imposed to all edges of the flat plate
keeping the stiffener tips free so that the displacements in X3-direction are suppressed. To suppress the
rigid body motion of the model, the displacements in X1-direction are constrained at mid-point nodes
of edges II and IV, as well as the displacements in X2-direction are constrained at mid-point nodes of
edges I and III. Moreover, all edges including stiffener tips are assumed to be remain straight. Both
sided uniaxial thrust load is applied in X2-direction on the edges II and IV. The dimensions for the
Model A are a=b=120 mm. The plate thickness th is 1.2 mm. The stiffener dimensions are assumed as
hw=12.58 mm and tw=1.14 mm. The material properties are taken as E=69 GPa and ν=0.3.
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Fig. 8 Flat plate models with curvilinear stiffeners: (a) Model A, (b) Model B.

In Fig.8, coordinates of the stiffener’s points for Model A are obtained by X2=0.0176(X1 −
50)2 + 30. On the other hand, the coordinates of the stiffeners for Model B are determined by

X2=
√

7202 − (X1 − 700)2 − 100 and X2=
√

7202 − (X1 + 93.1)2 − 100. The dimensions for the Model
B are a=606.9 mm, b=711.2 mm, and the plate thickness th is 6.07 mm. As for the stiffener dimensions,
hw=63.62 mm and tw=6.78 mm assumptions are made. The material properties are taken as E=73
GPa and ν=0.33. Buckling parameter, k=σcra

2th/π
2D, is adopted from Ref. [20] to present the results,

in which D is flexural stiffness of the flat plate, while σcr denotes the buckling stress. In case of Model
A, 65 nodes are located along X1 and X2 directions. As for the Model B, 55 and 65 nodes are located
along X1 and X2 directions, respectively. For the stiffener webs, 7 and 8 nodes are put for Model A and
Model B, respectively. Total numbers of nodes are 5,272 for Model A, and 5,137 for Model B. As for
the FEM results, fully converged results are considered. Then, the buckling parameters for flat plate
models with curvilinear stiffeners are compared in Table 6 for present method and FEM employing
linear and quadratic elements.

Table 6 Buckling coefficients k for flat plate models with curvilinear stiffeners.

Model A Model B
Mode MFree FEM (Shell181) FEM (Shell281) MFree FEM (Shell181) FEM (Shell281)
1st 8.759 8.776 8.772 10.668 10.644 10.639
2nd 9.571 9.489 9.492 19.168 19.278 19.265
3rd 17.764 17.636 17.635 24.339 24.105 24.058
4th 22.769 22.301 22.290 26.750 26.846 26.819

As seen in Table 6, good agreement is achieved between the critical buckling (1st mode) parameters.
In addition, we can observe good correlation between higher order buckling parameters up to 4th mode.
However, as stated before, higher order loads and modes heavily depend on the discretization aside the
element formulation. By increasing the number of nodes in the meshfree model, good agreement can
be achieved for higher order buckling parameters. Critical buckling mode shapes for Models A and B
are given in Figs.9 and 10, respectively.

As can easily be observed from Figs.9 and 10 that both considered methods offer similar critical
mode shapes for Model A and Model B, respectively. Even though the structure of Model B is compli-
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Fig. 9 Critical buckling mode shapes of Model A obtained by MFree and FEM.

cated, the buckling mode is simpler, that is buckling deflection develop only in plate part, compared
to the Model A. In case of Model A, deflection occurs in both plate and the stiffener, which is more
complicated than that of Model B. Such phenomenon can be observed in Table 6, that is the difference
between buckling coefficients obtained by present formulation and FEM for Model A becomes slightly
larger than that of Model B. This could be attributed to more stable characteristic of Model B owing
to the two stiffeners so that local buckling occurs only in plate. In practice, structures are designed so
that the local bucking of plate takes place prior to stiffener buckling. Once stiffener buckling occurs,
overall load bearing capacity of the structure might be lost.

MFree FEM (Shell181) FEM (Shell281)
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3

X

X

Fig. 10 Critical buckling mode shapes of Model B obtained by MFree and FEM.

5.3 Twisted T-shaped structure

The last numerical example deals with a twisted T-shaped structure with uniform thickness [53] as
schematically depicted in Fig.11. In this case, both web and flange have curvilinear surfaces. Both ends
of the model are assumed to be clamped keeping the displacement in X1-direction free but uniform at
the loaded edge. Then, unit point load is applied at the intersection point of the web and flange in the
X1-direction. Material properties are taken as E=2× 107, and ν=0.3. The model has no unit.

T-shaped structure is generated first by assembly of flat plates in a similar fashion with Ref. [38].
Then, the coordinates of the nodes are transformed by mapping functions into a twisted shape. Nodal
division is considered as (21 + 29) × 101 for (hw + b) × L directions. Total number of nodes in the
meshfree model is 5,050. As for the FEM results, fully converged results are considered.

As can be seen from Table 7, good agreement is achieved in terms of critical buckling stress obtained
by present formulation and quadratic FEM. In Fig.12, critical mode shapes are provided, and the
agreement between the critical mode shapes is excellent although the geometry is quite complex, which
shows the present formulation is capable of representing buckling behavior of complicated curvilinear
geometries. As for the higher order buckling stresses, the agreement between the present formulation
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Fig. 11 Geometric modeling and BCs for twisted T-shaped structure.

Table 7 Buckling stresses for twisted T-shaped structure.

Mode MFree FEM (Shell181) FEM (Shell281)
1st 4.204× 104 4.221× 104 4.208× 104

2nd 4.220× 104 4.238× 104 4.225× 104

3rd 4.363× 104 4.373× 104 4.360× 104

4th 4.416× 104 4.428× 104 4.415× 104

and the quadratic FEM is excellent while linear FEM suffers from modeling and simulating buckling
of curvilinear geometries.
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Fig. 12 Critical buckling mode shapes for twisted T-shaped structure.

6 Conclusions

A series of meshfree buckling analysis is carried out to examine the buckling loads and modes of the
stiffened plates with complex curvilinear surfaces, as well as to show the accuracy and effectiveness
of the present meshfree formulation. Critical buckling modes and loads are obtained by both present
method and fully converged FEM analyses employing linear (Shell181) and quadratic (Shell281) shell
elements.
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Present meshfree method reveals satisfactory results in terms of both buckling loads and modes.
In a particular case, the buckling modes shapes obtained by the present method and FEM are reverse
to each other even though the buckling coefficients are in good agreement.

As increase of curvature in shells, the agreement between the present meshfree method and quadratic
FEM becomes well. On the other hand, we achieve good agreement between linear FEM and present
method for small curvatures, which indicates that the present meshfree method can simulate the buck-
ling behavior of curvilinear shell assemblies satisfactorily well, while linear FEM suffer from modeling
and simulating the buckling behavior of highly curved shells.
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