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Abstract Two-dimensional (2D) crack problems are solved employing a novel technique based on a
combination of wavelet Galerkin method (WGM) and X-FEM with a high-order interpolant. Multires-
olution analysis of the wavelet basis functions (scaling/wavelet functions) plays an important role in
the numerical simulation. High-order B-spline scaling/wavelet functions are chosen as the basis func-
tions. Severe stress concentration near a crack tip is represented by superposing the multiresolution
wavelet functions. In addition, the crack modeling is easy to treat by introducing enrichment functions
of the X-FEM. In the proposed approach, the governing equation is discretized based on fixed-grid,
fracture mechanics problems with complicated shaped geometries can be analyzed effectively, reducing
the model generation tasks. 2D linear fracture mechanics problems are solved and the accuracy is
studied for numerical examples.

Keywords Wavelet Galerkin method · X-FEM · High-order B-splines · Fracture mechanics analysis

1 Introduction

The wavelet method is widely applied in signal processing, data compression, computer graphics, and
image denoising. Multiresolution analysis (MRA) is one of the attractive features of wavelet theory. It is
easy to control the spatial and time resolution in wavelet analysis employing MRA. A signal or function
can be decomposed into different resolution levels with hierarchical wavelet bases. A basic concept and
mathematical representations of the wavelet method are presented in [1–3]. Applications of the wavelet
method to analyze partial differential equations have been studied [4–6]. Researchers have developed
new methods, such as the wavelet collocation method [7], wavelet Galerkin method (WGM) [8, 9],
wavelet-based finite element method (wavelet FEM) [10, 11], and wavelet-based boundary element
method (wavelet BEM) [12, 13], to solve physical, science and engineering problems. Other wavelet-
based methods and related research are summarized in [14]. The present study focuses on the WGM
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to analyze fracture mechanics problems.

When solving solid and structural problems employing the WGM, the body is placed on a fixed-grid
and divided by equally spaced structured cells. The stiffness matrix is numerically integrated using
the structured cells. Such modeling is sometime called a fixed-grid (voxel-based) approach [15, 16].
Wavelet basis functions (scaling/wavelet functions) are employed as the basis functions in the WGM.
They are periodically located on the analysis model to approximate deformations. The solution at the
lowest-resolution level is approximated by scaling functions, and the solutions at the higher-resolution
levels are approximated by multilevel wavelet functions. In addition, the spatial resolution of the
wavelet Galerkin (WG) analysis can easily be controlled employing MRA. The wavelet functions are
superposed locally where high spatial resolution is needed. Therefore, the WGM can be considered
an enhanced voxel approach, and high-accuracy computation is carried out with fewer degrees of
freedom (DOFs) employing the fixed-grid discretization. The WGM has been applied to solve solid
and structural problems. Diaz [9] solved large-scale boundary value problems on simple domains.
Nakagoshi and Noguchi [17], and Zhang et al. [18] analyzed plate bending problems. One-dimensional
(1D) elastic-plastic problems were analyzed in [19,20]. Jang et al. [21] developed an adaptive WGM for
2D elliptic problems using a fictitious domain approach. In addition, topology optimization problems
were solved in [22–24]. Because most of the WGMs were discretized based on the fixed-grid, boundary
value problems with complicated shaped boundaries were easy to treat.

The MRA in the WGM is attractive for solving fracture mechanics problems. The severe stress con-
centration near the crack tip is represented employing hierarchical wavelet bases. The author’s previous
study [25] analyzed solid mechanics problems employing the WGM with B-spline scaling/wavelet func-
tions [26]. However, there are difficulties in treating displacement jumps across the crack surface because
the displacements are assumed continuous across the entire analysis domain. Enrichment functions of
the extended finite element method (X-FEM) [27,28] were introduced in the WGM to solve 2D crack
problems and simulate crack propagation [29]. The Heaviside function was enriched to a linear B-spline
scaling function to allow the displacement discontinuity of the crack surface. Additionally, asymptotic
fields near the crack tip were enriched to linear B-spline scaling/wavelet functions to represent the
crack tip geometry, and to improve the solution around the crack tip. Li and Ghosh [30, 31] solved
multiple crack propagation problems employing the wavelet method and extended Voronoi cell FEM.
The solution near the crack tip was improved employing multiresolution wavelet functions. Addition-
ally, dynamic fracture problems were solved using enriched meshfree method [32] and XFEM/spectral
element method [33]. Accuracy in the crack analyses are improved employing a high-order interpolant.

In the present study, 2D crack problems are solved by the combination of the WGM and X-FEM
with a high-order function. Quadratic and cubic cardinal B-splines are employed to construct the
wavelet bases in the WGM. When introducing the enrichment functions to the high-order B-splines,
continuous stress/strain fields are obtained in representing severe stress concentration near the crack
tip. In addition, complex shaped geometries are easy to treat based on the fixed-grids, and the spatial
resolution of the analysis model is easy to control. Although wavelet basis functions were introduced in
X-FEM in our previous study [29], the linear B-spline scaling/wavelet functions were only employed.
The function supports of the high-order B-spline wavelet bases are wider than those of the linear B-
spline case, and a number of the basis functions overlap each other. We examine the introduction of the
enrichment functions to the high-order B-spline wavelet bases. A highly accurate fracture mechanics
analysis will be carried out with fewer DOFs employing the present method. Accuracy in SIFs is
examined employing the linear, quadratic and cubic B-splines, and the effectiveness of the proposed
approach is demonstrated using several fracture mechanics problems with curved boundaries.

This paper is organized as follows. Chapter 2 briefly introduces multiresolution wavelet basis func-
tions with a cardinal B-spline. Chapter 3 presents the analysis for 2D crack problems employing the
WGM with high-order B-spline functions and evaluates the stress intensity factors (SIFs) in the WG
analysis. Chapter 4 solves 2D linear fracture mechanics problems, and the accuracy is examined. Chap-
ter 5 presents concluding remarks.
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2 Wavelet method

2.1 B-spline scaling/wavelet functions

So far, several scaling/wavelet functions have been adopted as wavelet basis functions for solving
partial differential equations; e.g., Daubechies wavelets [5,7], affine fractal wavelets [11], the hierarchical
Schauder basis [34], spline-based wavelets [10, 12, 22], hat interpolation wavelets [21, 24] and Gaussian
wavelets [30, 31]. The present study adopts cardinal spline wavelets proposed by Chui and Wang
[26]. Here, the basic concept of the cardinal B-splines, and the mathematical representation of the
scaling/wavelet functions are briefly described.

The B-spline scaling functions can be written with truncated power series as

ϕµi (x) =
1

(µ− 1)!

µ∑
k=0

(−1)k µCk(x− k)µ−1
+ ,

x+ = max{0, x},
xµ+ = (x+)

µ, (1)

where ϕµi (x) is the µ-th-order B-spline scaling function. The B-spline scaling/wavelet functions have
two-scale relations [26]. The two-scale sequence pµk of the (µ − 1)-th-order B-spline scaling functions
can be written as

pµk =
1

2µ−1 µCk, (k = 0, · · · , µ). (2)

Alternatively, the B-spline wavelet functions ψµ
i (x) can be constructed employing the two-scale relation

as the sequences

qµk =
(−1)k

2µ−1

µ∑
i=0

µCiϕ
2µ
i (k + 1− i), (k = 0, · · · , 3µ− 2), (3)

where qµk denote two-scale sequences of the wavelet functions. This research adopts quadratic (µ = 3)
and cubic (µ = 4) B-spline scaling/wavelet functions. 1D wavelet bases are schematically illustrated in
Figs.1 (a) and (b). For example, two-scale relations of the quadratic B-spline scaling/wavelet functions
are schematically illustrated in Figs.2 (a) and (b). They are represented by the linear combinations of
one-step higher-resolution scaling functions. In addition, the 2D B-spline wavelet bases are obtained
from tensor products of the 1D wavelet bases. The function shapes of the 2D quadratic B-spline
scaling/wavelet functions Φ3(x)(= ϕ3(x1)ϕ

3(x2)), Ψ
3,1(x)(= ϕ3(x1)ψ

3(x2)), Ψ
3,2(x)(= ψ3(x1)ϕ

3(x2))
and Ψ3,3(x)(= ψ3(x1)ψ

3(x2)) are presented in Figs.3 (a)-(d).
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Fig. 1 1D high-order B-spline scaling/wavelet functions: a Quadratic B-spline (µ = 3), b Cubic B-spline
(µ = 4)
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Fig. 2 Schematic illustrations of two-scale relations (Quadratic B-spline): a Scaling function ϕ3(x), b Wavelet
function ψ3(x)

(a) (b) (c) (d)

Fig. 3 2D quadratic B-spline wavelet bases: a Φ3(x), b Ψ3,1(x), c Ψ3,2(x), d Ψ3,3(x)

2.2 MRA in the WGM with B-spline wavelet bases

The spatial resolution of the analysis model and the function supports of the wavelet bases are discussed
in 1D case. For example, arrangements of the quadratic (µ =3) B-spline scaling functions are shown
in Fig.4 (a). Equally spaced nodes are distributed along the 1D space, and the scaling functions are
located equidistantly. The level-l model is approximated by the level-l scaling functions ϕ3l,i(2

lx − i)

(=ϕ3l,i(x)). The level-l scaling functions are located at each node (· · · , i− 1, i, i+ 1, · · · ) in the level-l

model. The level-(l − 1)/(l + 1) models are the one-step lower/higher-resolution models of the level-l
model. The function supports and the node spacing of the level -(l−1)/(l+1) scaling functions become
2−1/2 times those of the level-l scaling functions. Therefore, the spatial resolution of the analysis model
can be controlled by changing the resolution level-l.

(a)

i

Adaptive refinement

=

(b)

i-2 i-1 i i+1 i+2

Level-(l-1) model

Level-(l-1) wavelet subspace model

i-2 i-1 i i+1 i+2

i-4 i-3 i-2 i-1 ii-5 i+1 i+2 i+3 i+4 i+5

Level-l model

Fig. 4 1D arrangements of quadratic B-spline scaling/wavelet functions: a Definition of resolution level, b
Adaptive refinement

In the WGM, the wavelet functions are superposed on the scaling functions to control the spatial
resolution of the analysis model. The level-l wavelet functions are defined as ψ3

l,i(2
lx − i) (=ψ3

l,i(x)).
The wavelet functions are also arranged equidistantly, and the function supports and the node spacing
change in accordance with the resolution level-l. Arrangements of the level-(l − 1) scaling/wavelet
functions ϕ3l−1,i(x) /ψ3

l−1,i(x) are also shown in Fig.4 (a). The function space of the level-(l − 1)

wavelet functions is called the level-(l − 1) wavelet subspace. Employing MRA, the level-l model can
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be generated by superposing the level-(l− 1) wavelet subspace onto the level-(l− 1) model. This is the
so-called MRA in the WGM.

Furthermore, multilevel wavelet functions can be superposed locally on the lowest-resolution model
to control the spatial resolution adaptively. The adaptive refinements in the level-(l − 1) model are
schematically illustrated in Fig.4 (b). In this figure, the level-(l− 1) and -l wavelet functions ψ3

l−1,i(x)

and ψ3
l,i(x) are partially superposed on the level-(l− 1) model. Highly accurate numerical simulations

are carried out by changing the spatial resolution adaptively. In our previous study, MRA in the WGM
was conducted using B-spline wavelet bases, and an adaptive strategy was developed to analyze 2D
solid mechanics problems [25].

3 2D crack analysis employing the WGM

3.1 Basis functions and structured cells

To analyze 2D fracture mechanics problems, high-order B-spline scaling/wavelet functions are adopted
as the basis functions. In the proposed approach, a structured cell is employed to integrate the stiffness
matrix. Here, relationships between the basis functions and the structured cells in the different resolu-
tion models are briefly discussed. Arrangements of the 1D quadratic and cubic B-spline scaling/wavelet
functions are respectively represented in Figs.5 (a) and (b). The central coordinates (nodes) of the ba-
sis functions are also shown in the figures. Here, the lowest-resolution model is assumed to be the
level-l model, and level-l scaling functions are periodically located in the model. A domain is divided
by equally spaced level-l cells. In addition, the level-l and -(l+1) wavelet functions are superposed on
the level-l model to generate the level-(l + 1) and -(l + 2) models. The width of the cells are half that
for the level-l → -(l + 1) models. These cells are called the level-(l + 1) and -(l + 2) cells. Although
the function supports and the positions of the quadratic and cubic B-splines are slightly different, the
basis functions and the cells are generated in the analysis models consistently.

The concept of the 1D case can easily be extended to the 2D case. The nodes of the 2D quadratic
and cubic B-spline scaling/wavelet functions are respectively presented in Figs.6 (a) and (b). The
level-l scaling functions are periodically located within a unit domain, and the model is assumed to be
the level-l model. The rectangular region between the level-l scaling functions is called the level-l cell.
The level-(l + 1) and -(l + 2) models can be generated by superposing the level-l and -(l + 1) wavelet
functions. As the spatial resolution increases, the size of the cell becomes a quarter of the size of the
original cell. These cells are called the level-(l + 1) and -(l + 2) cells, respectively.

In fracture mechanics analysis, a discontinuous function is introduced to the scaling functions, and
an asymptotic solution near the crack tip is introduced to the scaling/wavelet functions. A partition of
unity (PU) condition [35] of the scaling/wavelet functions is examined for introducing the enrichment
functions in the WGM. 1D level-l µ-th-order B-spline scaling functions and level-l and -(l+1) wavelet
functions are employed. The PU condition of the 2D scaling/wavelet functions can be written as∑

i,j∈Ω

Φµ
l,i,j(x) = 1,∑

i,j∈Ω

Ψµ,m
l,i,j (x) ̸= 1 (m = 1, · · · , 3),∑

i,j∈Ω

Ψµ,m
l+1,i,j(x) ̸= 1 (m = 4, · · · , 8). (4)

Therefore, the scaling functions satisfy the PU condition, but the wavelet functions do not. Although
the wavelet functions do not have PU, fracture mechanics problems can be analyzed [29]. Furthermore,
the solutions will be improved because continuous stress/strain fields are obtained when employing the
high-order B-spline wavelet bases. We carried out convergence studies and examined the accuracy in
numerical examples.
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Fig. 5 Arrangement of the 1D high-order B-spline scaling/wavelet functions: a Quadratic B-spline, b Cubic
B-spline
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Fig. 6 Arrangement of the 2D high-order B-spline scaling/wavelet functions a Quadratic B-spline, b Cubic
B-spline

3.2 WGM for 2D fracture mechanics problems

A boundary value problem for 2D fracture mechanics problems is discussed. A cracked elastostatic
body is presented in Fig.7 (a). There are two cracks. One is an edge crack and the other is an internal
crack emanating from a hole. The analysis domain is Ω, and the boundary is Γ . The boundary consists
of the traction boundary Γt, the prescribed displacement boundary Γu, and the crack surface Γc. t
represents a traction force and u is the prescribed displacement. Ω+ and Ω− represent one side and
the other side of the crack surface Γc. A traction-free condition is imposed on Γc.

WG discretization of the 2D crack problem employing the quadratic B-spline wavelet bases is
schematically represented in Fig.7 (b). The deformation of the cracked body is approximated by the
scaling/wavelet functions. The level-l scaling functions are employed across the entire analysis domain.
The nodes and the function supports are shown in Fig.7 (b). In addition, level-l, -(l + 1), -(l + 2),
· · · wavelet functions and the enrichment functions are introduced to model the cracks. The analysis
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Fig. 7 Boundary value problem to be solved: a Cracked elastostatic body, b WG discretization (Quadratic
B-spline), c Modeling of the external boundary (Sub-cells for the boundary representation), d Modeling near
the crack tip (Sub-cells for the numerical integration)

domain is divided by equally spaced structured cells (i.e., level-l cells) to integrate the stiffness matrix
numerically. A close-up view of a external boundary of the body is schematically presented in Fig.7 (c).
To accurately model the external boundaries and the hole edges, the level-l cells are further divided
by equally spaced sub-cells. When the central coordinates of the cells and the sub-cells are within the
analysis domain, the stiffness matrix is numerically integrated.

The details of the crack modeling are presented in Fig.7 (d). To allow the presence of cracks in the
WGM, the enrichment functions are introduced. To represent severe stress concentration around the
crack tip, asymptotic solutions near crack tip are enriched to scaling/wavelet functions. In addition, the
Heaviside step function is enriched to scaling functions that represent the displacement discontinuity
of the crack face. The positions of the scaling/wavelet functions and the enrichment functions are
illustrated in Figs.7 (b) and (d). The level-(l+1) displacement uxw

l+1(x) of the extended WGM (XWGM)
can be written as

uxw
l+1(x) =

∑
i,j

al,i,jΦ
3
l,i,j(x) +

3∑
m=1

∑
i,j

bml,i,jΨ
3,m
l,i,j (x) +

∑
i,j∈Js

H(x)Φ3
l,i,j(x)cl,i,j

+
∑

i,j∈Cs

Φ3
l,i,j(x)

ne∑
n=1

γn(x)d
n
l,i,j +

3∑
m=1

∑
i,j∈Cw

Ψ3,m
l,i,j (x)

ne∑
n=1

γn(x)e
n
l,i,j (5)

where the first and second terms are the level-l quadratic B-spline scaling functions Φ3
l,i,j(x) and the

wavelet functions Ψ3,m
l,i,j (x) (m=1, 2, 3) that approximate the level-(l+1) displacements in the standard

WGM. al,i,j and bml,i,j are coefficients of the scaling/wavelet functions. The third term is the enrichment
term that represents the displacement discontinuity at the crack face. cl,i,j denotes the coefficients of
the basis functions. H(x) is the Heaviside step function, written as

H(x) =

{
1, (x in Ω+)

−1, (x in Ω−).
(6)
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The enrichment nodes in terms of the third term are denoted ”nodes Js”. Each scaling function
belonging to cells cut or partially cut by the crack segment includes nodes Js. The locations of the nodes
Js are presented in Figs.7 (b) and (d). The fourth and fifth terms are enrichment terms that represent
severe stress concentration near the crack tip for the scaling functions and the wavelet functions,
respectively. Asymptotic fields near the crack tip in linear fracture mechanics are now introduced. The
crack tip functions γn(x)(n = 1, · · · , ne) can be written as

γ1(x) =
√
r sin

θ

2
, γ2(x) =

√
r cos

θ

2
, γ3(x) =

√
r sin

θ

2
sin θ, γ4(x) =

√
r cos

θ

2
sin θ, (7)

where (r, θ) are the polar coordinates from the crack tip. ne is the number of functions. When ne=1 is
chosen, only γ1(x) is adopted; when ne=4 is chosen, all functions are employed. The fourth and fifth
terms are employed for the scaling/wavelet functions in the radius re from the crack tip. The nodes
belonging the fourth and fifth terms are respectively assigned ”nodes Cs” and ”nodes Cw” as shown
in Figs.7 (b) and (d).

3.3 WG discretization

The high-order B-spline scaling/wavelet functions do not have the so-called Kronecker-delta property
as shown in Figs.1 (a) and (b). A penalty formulation is employed to impose essential boundary
conditions. The virtual work principle including the penalty term is written, as:∫

Ω

ϵ(δuxw) : D : ϵ(uxw)dΩ + α

∫
Γu

δuxw · (uxw − ū) dΓu =

∫
Γt

δuxw · t̄ dΓt, (8)

where uxw is the displacement vector of the XWGM presented in eq. (5), and δuxw is the variation.
ϵ(uxw) denotes the strain components and ϵ(δuxw) the variation. ū and t̄ are the displacement and
traction vectors prescribed on Γu and Γt, respectively. α is a large positive number that imposes the
essential boundary conditions. D is an elastic constant matrix.

The weak form in eq. (8) is discretized employing the XWGM. The level-(l + 1) displacements
uxw
l+1(x) are represented in matrix form as

uxw
l+1(x) = Nl+1 U

xw
l+1, (9)

where the matrix Nl+1 is composed of the scaling/wavelet functions including the enrichment terms.
The vector Uxw

l+1 is the coefficient vector. The matrix Nl+1 and the coefficient vectors Uxw
l+1 are written

as

Nl+1 =
[
Φl Ψ

1
l Ψ2

l Ψ3
l ΦJs

l ΦCs

l Ψ1,Cw

l Ψ2,Cw

l Ψ3,Cw

l

]
, (10)

Uxw
l+1 =

(
al b

1
l b2l b3l cl dl e

1
l e2l e3l

)T
, (11)

where Φl and Ψm
l (m = 1, 2, 3) are components represented by the 2D level-l scaling/wavelet functions.

ΦJs

l (= H(x)Φl) is a component that represents the displacement discontinuity of the crack face in

terms of the nodes Js. In addition, ΦCs

l and Ψm,Cw

l are coupling terms of the enrichment functions

regarding the nodes Cs and Cw, respectively. The matrix components ΦCs

l and Ψm,Cw

l can be written
as

ΦCs

l =
[
γ1(x)Φl γ2(x)Φl γ3(x)Φl γ4(x)Φl

]
, (12)

Ψm,Cw

l =
[
γ1(x)Ψ

m
l γ2(x)Ψ

m
l γ3(x)Ψ

m
l γ4(x)Ψ

m
l

]
, (m = 1, 2, 3), (13)

where al and bml are coefficient vectors for the level-l scaling/wavelet functions. cl is the coefficient
vector of the nodes Js. dl and eml are coefficients belonging to the nodes Cs and Cw, respectively.
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Substituting the level-(l+1) displacement uxw
l+1(x) into the virtual work of principle of eq. (8), the

linear simultaneous equation

(Kl+1 +Kα
l+1)U

xw
l+1 = fl+1 + fα

l+1 (14)

is obtained, where Kl+1 is a stiffness matrix and fl+1 is an external force vector. Kα
l+1 and fα

l+1 are
the matrix and vector for the penalty term. They can be written using the matrix Nl+1 as

Kl+1 =

∫
Ω

BT
l+1DBl+1 dΩ, fl+1 =

∫
Γt

NT
l+1 t̄ dΓt, (15)

Kα
l+1 =

∫
Γu

NT
l+1Nl+1 dΓu, fα

l+1 =

∫
Γu

NT
l+1 ū dΓu, (16)

where Bl+1 is the displacement gradient matrix.

Gauss quadrature is chosen to numerically integrate the stiffness matrix. In the standard WGM
without the enrichment functions, 3×3 and 4×4 Gauss integrations are adopted for quadratic and
cubic B-splines based on the level-l, -(l + 1), -(l + 2), · · · cells. For the stiffness matrix including the
enrichment functions of nodes Cs, Cw and Js in the XWGM, the cells are divided into ndiv × ndiv
sub-cells for the numerical integration as shown in Fig.7 (d). The number of divisions was examined
in [29] for the linear B-spline case and the numerical solutions almost converged with ndiv =4 or 8;
we employ the same divisions in the high-order B-spline cases.

3.4 Calculation of SIFs for 2D crack problems

The J-integral [36] is adopted to evaluate the SIFs and thus examine the accuracy of the 2D fracture
mechanics analysis. A schematic illustration of the path-independent integral is shown in Fig.8 (a).
The J-integral is written, as:

J =

∫
Γ

(Wdx′2 − ti
∂uj
∂x′1

)dΓ, (17)

where Γ is a curve surrounding the crack tip and W (=σijϵij) is the strain energy density. ti(=njσji)
is the traction vector, ui is the displacement vector, and ni is the unit vector normal to Γ . x′1 and x′2
are the directions along and normal to the crack line, respectively.

Area A for domain integral

dr

Crack surface

Level-l cell
q(x) = 1

q(x) = 0

Γc

q(x) = 1

x

x

1

2

x1

Linear q(x) function

x’1

x’2
θ

r

dΓ

nΓ

x

x

1

2

x’

x’

1

2

(a) (b) Grid point

Fig. 8 J-integral and the EDI: a J-integral, b Discretization of EDI in the XWGM

For the convenience of numerical implementation, the equivalent domain integral (EDI) form is
adopted. The J-integral of the EDI form is written as

J = −
∫
A

(Wδ1i − σij
∂uj
∂x′1

)
q(x)

∂x′i
dA, (18)
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where A is area for the EDI. In the EDI form, a continuous and smooth function q(x) is needed. In
the XWGM, a plateau-type function is adopted employing the lowest-resolution cells (level-l cell) as
shown in Fig.8. When the grid points are within the radius rd from the crack tip, q(x)=1; otherwise,
q(x)=0. Mixed-mode crack problems are next treated in numerical examples. To separate the J value
into mode KI and KII components, an interaction integral is adopted. The details of the interaction
integral are presented in [27,28].

4 Numerical examples

Several 2D crack problems are solved employing the XWGM. Convergence studies are carried out
to examine the accuracy of the fracture mechanics analysis employing the quadratic and cubic B-
spline scaling/wavelet functions. Furthermore, 2D fracture test specimens are analyzed to verify the
effectiveness of the fixed-grid approach. Two kinds of the enrichment techniques are examined. One
employs (A) nodes Js and Cs (a scaling function only) and the other employs (B) nodes Js, Cs and
Cw (a scaling function and the multilevel wavelet functions). The results of the XWGM for the linear
B-spline case are also presented to examine the numerical results. Poisson’s ratio is ν =0.3, and a plane
stress condition is assumed in the numerical examples.

4.1 Edge crack problem under uniform tension

A problem of a rectangular plate with an edge crack is solved. The dimensions of the plate are width
W = 10.0 (mm) and height H =10.0 (mm) as shown in Fig.9 (a). The length of the edge crack is
a =5.0 (mm). Uniform tensile stress σ22 = 1.0 (MPa) is applied to the top and bottom of the plate.
The division for numerical integration of the stiffness matrix is chosen ndiv =8.

The enrichment technique (A) is first examined. The rectangular plate is divided by 15×15 equally
spaced structured cells (level-l cells), and the XWG model is assumed to be the level-l model as shown
in Fig.9 (b). Level-l scaling functions are periodically located on the model. The node arrangements
of the quadratic and cubic B-spline scaling functions are respectively shown in Figs.9 (c) and (d). The
function support of the level-l scaling functions is presented in the figures. Because the high-order
B-spline scaling functions span a number of cells, the nodes located in the external domain are needed
to construct the stiffness matrix. Three kinds of the uniform refinement models (i.e., the rectangular
plate is divided by 31×31, 63×63 and 127×127 structured cells) are also analyzed to carry out the
convergence study. As the spatial resolution increases in the uniform refinement models, the density
of the nodes uniformly increases. The scaling functions in terms of the cell at the crack tip are only
assigned nodes Cs as shown in Figs.9 (c) and (d). The other scaling functions in terms of the cells
across the crack segment are assigned nodes Js in the XWG models. SIF KI is evaluated using the
EDI form of the J-integral in eq. (18). The radius for the EDI is chosen as rd =5.0 (mm). The error
in the SIF is evaluated according to

error =
|KNum −KRef |

KRef
× 100(%), (19)

whereKNum is the evaluated SIF. Additionally,KRef is the reference solution. In this case,KRef=11.93
(MPa mm1/2) [37] is used.

To examine the effects of number of the enrichment functions γn(x) (n = 1, · · · , ne) at nodes
Cs, XWG analyses are carried out with ne = 1 and 4. The numerical results in the case ne = 1
for the quadratic and cubic B-spline scaling functions are presented in Table 1. The results obtained
with the linear B-spline scaling functions are also presented. As the DOFs increase, the error in the
SIF uniformly converges in all cases. The inclination of the convergence is better when higher-order
B-splines are adopted. The results for the case ne = 4 are shown in Table 2. The results are more
accurate than the results of the case ne = 1. When the quadratic and cubic B-splines are adopted in
the XWG analysis, the errors in the SIFs are less than 1% even in the level-l model. It is found that
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H
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Function support 
of a level-l scaling function

Level-l cell

Crack segment

Tensile stress

Cell at the crack tipCell at the crack tip

x1

x2

Fig. 9 Edge crack problem under uniform tension: a Analysis model to be solved, b 15×15 equally spaced
structured cells, c Level-l model (Quadratic B-spline), d Level-l model (Cubic B-spline)

Table 1 Crack analysis with the high-order B-spline scaling functions (Enrichment technique (A); ne =1)

Quadratic Cubic Linear
DOF error(%) DOF error(%) DOF error(%)

15 div. 638 3.280 736 1.565 548 5.614
31 div. 2,286 1.571 2,464 0.791 2,116 2.613
63 div. 8,654 0.785 8,992 0.410 8,324 1.272
127 div. 33,678 0.409 34,336 0.225 33,028 0.644

Table 2 Crack analysis with the high-order B-spline scaling functions (Enrichment technique (B); ne =4)

Quadratic Cubic Linear
DOF error(%) DOF error(%) DOF error(%)

15 div. 692 0.345 832 0.060 572 3.512
31 div. 2,340 0.185 2,560 0.057 2,140 1.534
63 div. 8,708 0.112 9,088 0.049 8,348 0.726
127 div. 33,732 0.077 34,432 0.047 33,052 0.370

the displacements and the stress distributions near the crack tip can be represented with fewer DOFs
in the fixed-grid approach. Additionally, the accuracy is improved when the high-order B-spline scaling
functions are employed in the XWG analysis.

Enrichment technique (B) is now examined. Because high accuracy results are obtained when ne = 4
is chosen in enrichment technique (A), convergence studies are carried out for the case ne = 1 after
the numerical examples to examine the effectiveness of the multilevel wavelet bases. The level-l models
of Figs.9 (c) and (d) are employed as the lowest resolution models for the XWG analyses with the
quadratic and cubic B-splines. The level-l, -(l+1) and -(l+2) wavelet functions are superposed on the
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Fig. 10 Crack analysis with the high-order B-spline scaling/wavelet functions (re=1.5 (mm)): a Level-(l+ 2)
model (Quadratic B-spline), b Level-(l + 2) model (Cubic B-spline)
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Fig. 11 Convegence studies for edge crack problem under tension with the different resolution models: a
Quadratic B-spline, b Cubic B-spline

level-l model to refine the solutions around the crack tip. The models are called the adaptive refinement
models. The level-(l+2) models for the quadratic and cubic B-splines are respectively shown in Figs.10
(a) and (b). A function support of the level-l quadratic and cubic wavelet functions are also presented
in the figures. In the XWG models presented in Figs.10 (a) and (b), the level-l scaling functions and the
level-l and -(l+1) wavelet functions within a radius re =1.5 (mm) of the crack tip are assigned enriched
nodes Cs and Cw. Furthermore, the other level-l scaling functions in terms of the cells crossing the
crack segment are assigned enriched nodes Js.

The errors in KI of the XWG models with the quadratic and cubic B-splines are presented in
Figs.11 (a) and (b). The horizontal axis represents the DOFs of the XWG analyses. The solid lines
represent the results of uniform refinement models of case (A) employing the 15×15, 31×31, 63×63
and 127×127 structured cells presented in Table 1. The dashed lines are the results for the adaptive
refinement models when re =1.5, 2.0, 2.5 (mm) are employed with the level-l, -(l + 1), -(l + 2) and
-(l + 3) models. The results of the solid lines (uniform refinement models) can be considered as an X-
FEM model with equally spaced quadrilateral elements (voxel-based X-FEM). Because the multilevel
wavelet functions are added around the crack tip, the XWGM is then carried out the crack analyses
with fewer DOFs compared with the voxel-based X-FEM. Therefore, effective fracture mechanics can
be carried out employing the present method. Although the wavelet functions at the nodes Cw do
not satisfy the PU condition, error in the SIFs converges. Additionally, the convergence is better than
that for uniform refinement results. Therefore, highly accurate results are obtained with fewer DOFs



13

employing the multilevel wavelet bases in the XWGM.

4.2 Circular plate with an inclined crack subjected to a compression load

The problem of a circular plate test specimen with an inclined crack is solved. The model is shown in
Fig.12 (a). This is the so-called Brazilian disk test and the problem was solved in [38]. The radius of
the plate is R= 5.0 (mm). Compressive forces P=1.0 (KN) are enforced on both sides of the cracked
specimen. The SIFs KI and KII are evaluated varying the crack length 2a and the angle of inclination
θ. In the XWGM, it is easy to model such curved surfaces because the discretization is based on a
fixed-grid. The sub-cell approach is effective in modeling the external boundaries in the XWGM.

2a

R

t : thickness

P(a) (b)
Level-l cell

θ

P

(c) (d) Sub-cell for numerical integration

Level-l cell

Sub-cell for boundary representationLevel-l, -(l+1) wavelet functions
including enrichment functions

x1

x2

Fig. 12 Circular plate with an inclined crack: a Analysis model to be solved, b 30×30 equally spaced structured
cells (Level-l cells), c Level-(l + 2) model (Quadratic B-spline), d Cells and sub-cells in the XWG model

The cracked circular plate is covered by 30×30 equally spaced structured cells (level-l cells) as
shown in Fig.12 (b). The level-l model is generated based on the level-l cells. The level-(l+ 2) models
are employed in the XWG analyses by superposing the level-l and -(l + 1) wavelet functions on the
level-l models. The inclined crack is modeled by introducing the enrichment functions Cs, Cw and Js

to the level-(l+ 2) models. The radius of the enrichments re=0.8 (mm), and the radius for the EDI is
rd=1.5 (mm). The division for the numerical integration is ndiv =4. For example, the level-(l+2) model
with the quadratic B-splines is schematically illustrated in Fig.12 (c). The level-l, and -(l+1) wavelet
functions including the enrichment functions Cs and Cw are located near the crack tip. Furthermore,
the cells and sub-cells of the numerical integration of the stiffness matrix in the level-(l + 2) model
are presented in Fig.12 (d). The sub-cells located at the external boundary are used to represent the
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boundaries. The sub-cells located within the analysis domain are employed to accurately integrate the
stiffness matrix including the enrichment functions.

The SIFs KI and KII are normalized as

KI = FI
P
√
πa

πRt
, KII = FII

P
√
πa

πRt
, (20)

where FI and FII are normalized SIFs, and t is the plate thickness. FI and FII are evaluated for crack
lengths a/R = 0.3, 0.4 and 0.5 while varying the angles of inclination θ = π/16 × i (i= 0, 2, 4, 6,
8). The results for a/R = 0.3, 0.4 and 0.5 are presented in Tables 3, 4 and 5. The SIFs Fµ

I and Fµ
II

correspond to the SIFs with quadratic (µ = 3) and cubic (µ = 4) B-spline scaling/wavelet functions.

FRef
I and FRef

II are the reference solutions in [38]. In all cases, the results are in good agreement with
the reference solutions. It is thus found that the 2D crack problems including curved surfaces are easy
to solve employing XWG analyses and the sub-cell approach.

Table 3 Comparison with normalized SIFs FI and FII (a/R =0.3)

i F 3
I F 4

I FRef
I F 3

II F 4
II FRef

II

0 1.134 1.133 1.136 0.000 0.000 0.000
2 0.321 0.320 0.320 1.661 1.662 1.662
4 -1.302 -1.305 -1.306 2.066 2.069 2.069
6 -2.593 -2.592 -2.596 1.310 1.312 1.311
8 -3.053 -3.052 -3.056 0.000 0.000 0.000

Table 4 Comparison with normalized SIFs FI and FII (a/R =0.4)

i F 3
I F 4

I FRef
I F 3

II F 4
II FRef

II

0 1.241 1.241 1.243 0.000 0.000 0.000
2 0.215 0.214 0.214 1.864 1.853 1.859
4 -1.525 -1.528 -1.528 2.096 2.101 2.100
6 -2.716 -2.719 -2.723 1.256 1.242 1.249
8 -3.115 -3.114 -3.115 0.000 0.000 0.000

Table 5 Comparison with normalized SIFs FI and FII (a/R =0.5)

i F 3
I F 4

I FRef
I F 3

II F 4
II FRef

II

0 1.385 1.385 1.387 0.000 0.000 0.000
2 0.036 0.037 0.030 2.123 2.119 2.113
4 -1.790 -1.793 -1.784 2.122 2.124 2.132
6 -2.868 -2.867 -2.885 1.206 1.195 1.188
8 -3.216 -3.215 -3.208 0.000 0.000 0.000

4.3 Cruciform test specimen including an inclined crack

A cruciform test specimen including an inclined crack is solved to further validate the XWGM. The test
specimen was analyzed in [39,40]. The model configuration is presented in Fig.13 (a). The dimensions
of the specimen are 2H=150 (mm), 2W=100 (mm), 2L=200 (mm) and 2S=330 (mm). Tensile stress
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σ22=1.0 (MPa) is applied to the top and bottom surfaces of the model. An inclined crack is introduced
to the center of the specimen, and the mixed mode SIFs KI and KII are evaluated while varying the
crack length 2a and the angle of inclination θ.

2
W

2
H2
L 2a θ

σ22

σ22

(a) (b)

(d)(c)

Level-l cell

Sub-cell to represent boundary of the body

Sub-cell for numerical integration

2S

x1

x2

Fig. 13 Cruciform test specimen including an inclined crack: a Analysis model to be solved, b 66×66 equally
spaced structured cells (Level-l cell), c Level-(l+2) model (Cubic B-spline), d Cells and sub-cells in the XWG
model

The test specimen is covered by 66×66 structured cells (level-l cells) as shown in Fig.13 (b). The
dimensions of the unit cell are 5.0×5.0 (mm), and the level-l model is generated using a fixed-grid.
The level-(l+2) models are employed. The radius for the enrichment functions Cs and Cw is re =15.0
(mm). The division for the numerical integration is ndiv =4. The radius for the EDI is re =30.0
(mm). The node arrangements of the XWG model with the cubic B-splines are presented in Fig.13(c).
The locations of the cells and sub-cells of the level-(l + 2) model are presented in Fig.13(d). The
sub-cell approach is adopted to represent the external boundary of the model, and to employ the
numerical integration of the stiffness matrix including the enrichment functions. The normalized SIFs
FI = KI/

√
πa and FII = KII/

√
πa are evaluated while varying the crack angle θ = π/12× i (i= 0, 1,

2, 3, 4, 5, 6) for crack lengths of a/W =0.6, 0.8 and 1.0.

The SIFs are also evaluated using the FEM for comparison. Commercial FEM software MSC.Marc
[41] is adopted. The crack option is set to calculate the mixed mode SIFs. The FEM model is presented
in Fig.14 (a), and a close-up view near the crack is shown in Fig.14 (b). Quadratic triangle/quadrilateral
elements are employed. The whole structure is modeled with 5.0×5.0 (mm) elements, and 1.0×1.0
(mm) elements are employed near the crack. The total numbers of nodes and elements of the FEM
model presented in Fig.14 (a) are 16,540 and 5,632, respectively. FEM modeling of a structure with
general boundaries including cracks is sometimes cumbersome because very small elements are needed
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to represent severe stress concentration near the crack tip, and double nodes are needed along the crack
segment to represent the displacement discontinuity. However, the XWGM can reduce such modeling
tasks by introducing enrichment functions in the fixed-grid approach.

(a) (b)

Fig. 14 FEM model of the cruciform test specimen: a FEM model, b Close-up view

The FI of the XWG computations is compared with the FEMs and the reference solutions. The

reference solutions FRef
I for various a/W are evaluated by following equation [39,40], as:

FRef
I = 1.1906 + 0.0076× a

W
+ 0.2051× (

a

W
)2 − 0.0042× (

a

W
)3, 0.2 ≤ a/W ≤ 1.0. (21)

The results are shown in Table 6. F 3
I and F 4

I are normalized SIF FI obtained the XWGMwith quadratic
and cubic B-splines. The differences in the SIFs are less than 1 %. In addition, the mixed mode SIFs
FI and FII obtained with the XWGM are compared with those of the FEM results for several angles
θ. The results are presented in Figs.15 (a) and (b) for FI and FII , respectively. The results are in good
agreements for all crack angles θ.

Table 6 Comparison of normalized SIF FI (a/W =0.6, 0.8, 1.0, θ =0)

a/W F 3
I F 4

I FFEM
I FRef

I

0.6 1.266 1.267 1.267 1.268
0.8 1.325 1.325 1.325 1.326
1.0 1.398 1.398 1.398 1.399

5 Conclusion

2D fracture mechanics analyses are carried out employing the XWGM. Enrichment functions of the
X-FEM are introduced in the crack modeling in the WGM with high-order B-spline scaling/wavelet
functions. It is confirmed that 2D fracture mechanics analysis can be carried out employing the WGM
with high-order B-splines by introducing the enrichment functions to represent displacement disconti-
nuity and severe stress concentration near the crack tip. Furthermore, highly accurate computations
are made and fracture mechanics parameters are evaluated using the high-order B-spline wavelet bases
instead of linear B-spline scaling functions. Because the WGM is a fixed-grid approach, it is easy to
make an analysis model with curved boundaries. In addition, by introducing the enrichment functions,
fracture mechanics analysis is easily conducted employing the XWGM.
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