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Abstract A novel meshfree discretization technique in terms of the reproducing kernel particle
method is presented for accurately evaluating mixed-mode intensity factors of cracked shear-deformable
plates. Mindlin-Reissner plate theory is adopted to solve the cracked plates problem in the Galerkin
formulation, considering transverse shear deformation. The diffraction method, visibility criterion
and enriched basis are included in the generation of meshfree interpolants for the modeling of frac-
ture. In this work, numerical integration is treated using the stabilized conforming nodal integration
(SCNI) and subdomain stabilized conforming integration (SSCI). The J-integral (contour integral) is
employed to analyze the fracture mechanics parameters. SCNI/SSCI are thus adopted to evaluate the
contour integral and to split the original J-integral into symmetric and asymmetric J-integral values.
They are calculated by decomposing the smoothed displacement, moment and shear force quanti-
ties into symmetric/asymmetric parts. In addition, a displacement ratio method is introduced to
divide the asymmetric J-integral value into corresponding moment and shear force intensity factors.
The accuracy of the intensity factors and the path-independent properties in mixed-mode fracture
problems are critically examined through several numerical examples.
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1 Introduction

Ships and ocean structures are generally composed of steel plate structures. The structures are joined
for example by welding, and it is possible that flaws may occur in the weld part during manufacturing
process or in-service once suffering external loading conditions. Fatigue and fracture phenomena
of welded steel structures have been comprehensively summarized (e.g., Maddox [1]; Suresh [2];
Fricke [3]; Anderson [4]). In a typical case of the fracture of a ship’s hull, initial defects form and
coalesce around the weld part, producing a semi-elliptical flaw. The surface flaw develops through-
the-thickness cracks (through cracks) under cyclic loadings. Additionally, the cracks occasionally
propagate along the weld line, from the plate to stiffeners, and from the plate to structural members;
e.g., longitudinal girders, transverse frames and outer shells. Damage to main members reduces
the load carrying capacity of the hull structure. It is important to design such marine structures
appropriately so that large-scale fracture accidents can be avoided according to the concept of damage
tolerance. Studies have evaluated fatigue and fracture problems for steel structures (e.g., Toyosada
et al. [5-6]; Okawa et al. [7]; Sumi et al. [8]; He et al. [9]; Qiao et al. [10]). However, challenging
tasks remain in analyzing fracture behaviors, crack trajectories and fatigue cycles in cracked plate
structures, and in the modeling of a fracture.

The shell finite element method (FEM) is an effective means proposed for analyzing very thin
and very large structures, such as a ship’s hull (e.g., Yao and Fujikubo [11]). The FEM is thus
well suited to treating a fracture with shell elements. The shell modeling is generally formulated
according to the combination of the plane stress condition and plate bending theory. Although many
studies of fracture mechanics have analyzed two-dimensional (2D) plane stress condition [4], there
are a few fracture mechanics analyses of plate bending formulations (e.g., Kirchhoff-Love theory and
Mindlin-Reissner theory), relative to the number of 2D fracture mechanics analyses. Among them,
Hui and Zehnder [12], Young and Sun [13], Viz et al. [14] and Su and Leung [15] analyzed the
fracture of plates and the moment/shear force intensity factors. Dirgantara and Aliabadi [16] dealt
with cracks in thin plates by employing a dual-boundary element method [17]. Dolbow et al. [18]
numerically investigated mixed-mode cracked plates by employing the extended FEM [19]. Wang et
al. [20] formulated a boundary collocation method for cracked plates analysis. Zehnder and Viz [21]
summarized fracture mechanics in thin plates and shells under different loading conditions. A cracked
thin shell analysis was carried out in [22] by isogeometric analysis [23-27]. The moment and shear
force intensity factors for several crack configurations and combinations of loading conditions were
presented by Sih [28] and Murakami [29]. It is necessary to extract moment/shear force intensity
factors from the J-integral predicting crack propagation phenomena in a shell structure [30-31].
In spite of the success and the variety of existing numerical methods for evaluation of mixed-mode
intensity factors in cracked plates, there is still a growing interest in the development of new methods.

A novel discretization technique in terms of a meshfree Galerkin formulation for analyzing the
mixed-mode intensity factors in cracked shear-deformable plates is presented. The reproducing ker-
nels (RKs) (Liu et al. [32]) are adopted as interpolation functions, and the meshfree Mindlin-Reissner
plate formulation (Wang and Chen [33]; Wang and Sun [34]; Sadamoto et al. [35]) is used. A diffrac-
tion method, visibility criterion (Organ et al. [36]; Krysl and Belytschko [37]) and enriched basis
(Fleming et al. [38]; Joyot et al. [39]) are included for the RKs to represent the asymptotic field near
the crack tip in the meshfree modeling. The stiffness matrix is numerically integrated by employ-
ing stabilized conforming nodal integration (SCNI) (Chen et al. [40-41]) and subdomain stabilized
nodal integration (SSCI) (Wang and Chen [42]; Wang and Lin [43-45]; Tanaka et al. [46]; Wang and
Peng [47]). The mixed-mode intensity factors are evaluated using the J-integral (contour integral),
which is discretized based on the nodal integration techniques. The contour integral is decomposed
into symmetric and asymmetric J-integral values by splitting the displacement, moment and shear
force quantities into line symmetric and asymmetric parts across the crack segments. In addition, a
displacement ratio is employed to extract the corresponding moment and shear force intensity factors
from the asymmetric J-integral value according to an idea presented by Rigby and Aliabadi [48] and
Dirgantara and Aliabadi [30].

In a previous study, Tanaka et al. [49] evaluated the 2D in-plane mixed-mode stress intensity fac-
tors (SIFs) using a decomposition method based on meshfree modeling, and obtained high-accuracy
of the SIFs and a path-independent property. The decomposition method and meshfree discretization
are thus extended to the plate bending formulation when evaluating mixed-mode intensity factors.
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Although a purely mode-I moment intensity factor was analyzed under several model configurations
and loading conditions by Tanaka et al. [50], adoption of the decomposition method and displacement
ratio method for the evaluations of the mixed-mode moment/shear force intensity factor in meshfree
crack modeling has not been reported in the literature yet. The present paper conducts a mesh-
free discretization for mixed-mode crack problems, evaluating the intensity factors, and critically
examining the path-independent properties through a series of representative numerical examples.

The remainder of the paper is organized as follows. Section 2 describes the Mindlin-Reissner plate
formulation, crack modeling and discretization employing the meshfree Galerkin method. Section 3
presents the evaluation of the J-integral, and a technique used to separate the mixed-mode intensity
factors. Numerical examples for mixed-mode crack problems are presented in Section 4. Concluding
remarks are given in Section 5.

2 A meshfree Galerkin formulation for shear-deformable plates

2.1 Mindlin-Reissner plate theory

Let us consider a shear-deformable plate containing a through crack shown in Fig.1a assuming that
the material under a low strain condition is isotropic and elastic. The rectangular plate is embedded
in a Cartesian coordinate system (x1-x2-x3). The middle section of the cracked plate and its boundary
are denoted S and ∂S, respectively. The through crack ∂Sc is embedded in the plate. S+/S− represent
the upper/lower regions of the through crack. The plate thickness is t.
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Fig. 1 Boundary value problem for a cracked shear-deformable plate: a A shear-deformable plate including a
through crack, b a meshfree discretization for the cracked plate

The displacement vector u(x) in the shear-deformable plate can be written as:

u(x) =

u1(x)
u2(x)
u3(x)

 =

−zβ1(x)
−zβ2(x)
w(x)

 , (1)

where β1(x)(=β1) and β2(x)(=β2) are the rotational components. w(x)(= w) is a deflection com-
ponent. In the shear-deformable plate theory, the vector form of the strain components ε can be
decomposed into shear strain and bending deformation components εb and εs, i.e., ε={εb εs}T .
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The components can be written as:

εb =

 ε11
ε22
2ε12

 =


−z ∂β1

∂x1

−z ∂β2

∂x2

−z
(

∂β2

∂x1
+ ∂β1

∂x2

)
 ,

εs =

{
2ε31
2ε23

}
=

{
∂w
∂x1

− β1
∂w
∂x2

− β2

}
, (2)

where z (=x3) (|z|≤t/2) is coordinate of the plate thickness direction. When an isotropic elastic
material is assumed, the stress-strain relation is:

σ = Dε, (3)

where σ is vector form of the stress components. It is written as, σ={σ11 σ22 σ12 σ23 σ31}T . D is
an elastic matrix for a shear-deformable plate, given by:

D =
E

(1− ν2)


1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 κ1−ν

2 0
0 0 0 0 κ1−ν

2

 . (4)

E, ν and κ are the Young’s modulus, Poisson’s ratio and the shear correction factor, respectively.
κ=π2/12 is chosen [51].

By using the principle of virtual work, the equilibrium equation for a shear-deformable plate
without a gravity force term yields:∫

Ω

δεTDε dΩ +

∫
Γ

δβT m̄ dΓ −
∫
Ω

δw p dΩ = 0, (5)

where β={β1 β2}T is vector form of the deflection angles. m̄={m̄1 m̄2}T denotes a vector for the
prescribed moments applied to the plate edges. p is the distributed pressure acting on the plate. δ
represents the variational operator.

The moment and shear force components M={M11 M22 M12}T and Q={Q1 Q2}T based on
the vector forms of the strain components ε={εb εs}T and elastic constants D, have the form:

M11

M22

M12

Q1

Q2

 =

∫ t/2

−t/2

D

{
zεb

εs

}
dz. (6)

The three-point Newton-Cotes quadrature rule is employed for numerically integrating the plate
thickness direction of Eq.(6).

2.2 RK discretization

The meshfree approximation for field variables in the Mindlin-Reissner plate is presented. The nodes
xI (I=1, 2, ..., NP) are distributed on the mid-plane S as shown in Fig.1b. The deflection and
deflection angles at point x are w(x), β1(x) and β2(x), respectively. Each node has three degrees
of freedom; i.e., wI , β1I and β2I for the I-th node. For simple explanation, the physical values and
degrees of freedom are represented as di(x) and diI . The subscript i (=1, 2, 3) corresponds to the
deflection and deflection angles.
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The RK is employed as a meshfree interpolant, and the deflection and deflection angles at position
x are represented by the sum of the RKs as:

dh(x) =
NP∑
I=1

ΨI(x)dI , (7)

where dh(x)={dh1 (x) dh2 (x) dh3 (x)} is the approximated value vector and dI={d1I d2I d3I} is the
coefficient vector. ΨI(x) gives the RKs of the I-th node and is expressed as:

ΨI(x) = HT (xI − x)b(x)ϕaI(xI − x), (8)

where H(x), b(x) and ϕaI(x) are the basis vector, coefficient vector and original kernel function,
respectively. A complete quadratic basis is chosen as the basis vector to impose the Kirchhoff mode
reproducing condition (Wang and Chen [33], [42]; Sadamoto et al. [35]) as:

H(x) = {1 x1 x2 x21 x1x2 x22}. (9)

This condition is necessary to address the shear locking problem in the meshfree plate bending
formulation. Additionally, a cubic spline function is taken as the original kernel function ϕaI(x) in
Eq.(8):

ϕaI(xI − x, hI) =
10

7πh2I

1− 3
2s

2
I +

3
4s

3
I (0 ≤ sI ≤ 1)

1
4 (2− sI)

3 (1 ≤ sI ≤ 2)
0 (2 ≤ sI)

, (10)

where sI (=||xI − x||/hI) is the normalized distance from the center of the kernel function, and hI
is a parameter that controls the functional support size.

Nodes
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x2

1

x3
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B

Fig. 2 Control of the nodal density with parameter hp
I in meshfree modeling

When analyzing a crack whose size is small compared with the problem domain, meshfree mod-
eling often requires controlling the nodal density for the purpose of efficient and high accuracy
computations. A schematic illustration of meshfree models with an inclined scattered nodal distri-
bution is shown in Fig.2. The nodal density gradually increases from node A to node B. A control
parameter αI is introduced in hI (i.e., hI (=αIh

p
I)), and the RKs are developed so as to satisfy the

Kirchhoff mode reproducing condition. αI is set to be constant for a uniformly distributed model. hpI
is the characteristic length of the I-th node, which determines the node distance between the I-th
node and its neighbors. The normalized distance sI is gradually varied as the node density changes
from node A to node B.
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2.3 Crack modeling

Meshfree crack modeling was presented by Tanaka et al. [49-50]. The modeling is briefly reviewed
here. A through crack embedded in a plate shown in Fig.1 is considered. A crack tip is represented
by a node, and a crack segment ∂Sc is modeled as an assembly of nodes. x′1 and x′2 are local
coordinates from the crack tip, and (r′,θ′) denotes a position in the local polar coordinate system.
In representing the displacement discontinuity along the crack segment, the RKs across the segment
are completely/partially cut. A diffraction method and visibility criterion (Organ et al. [36]; Krysl
and Belytschko [37]) are introduced to modify the shapes of RKs. An enriched basis is included in
the RKs to accurately capture the severe stress concentration around the crack tip according to the
literature (Fleming et al. [38]; Joyot et al. [39]).

A schematic illustration of the crack modeling with RKs is represented in Fig.3. S+/S− denotes
upper/lower regions of the crack. xc is a crack tip node. A diffraction method is adopted to represent
the displacement discontinuity, and to improve the accuracy of the fracture mechanics parameter
evaluations. When including the crack tip node xc within the function support of the node xI , the
diffraction method is adopted. The RKs are modified so as to wrap around the crack tip node. The
normalized distance sI in the original kernel ϕaI(x) of Eq.(10) is modified as ŝI to represent the
displacement discontinuity across the crack segment:

ŝI =

(
s1 + s2(x)

s0(x)

)λ
s0(x)

hI
, (11)

where s0(x)=||x− xI ||, s1=||xc − xI ||, and s2(x)=||x− xc|| are normalized distances presented in
Eq.(10). The shape factor λ is set to be unity.

When a crack segment completely crosses the RKs, double nodes are created along the segment. A
visibility criterion is adopted for the RKs to represent the displacement discontinuity in the meshfree
modeling. The RK is divided into two parts S+ and S− across the segment. If a node xJ belongs to
domain S+, numerical integration of the stiffness matrix in terms of node xJ is partially carried out
for domain S+ as shown in Fig.3.

s

s
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s2(x)

x

Jx
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Diffraction method

Visibility criterion

Crack segment

Crack tip

S+

S -
Support of Ix

Support of cx

Support of Jx

Fig. 3 Modification of the RKs for meshfree crack modeling employing the diffraction method and visibility
criterion

An enriched basis is included in the basis vector H(x) in Eq.(9) to effectively approximate the
severe stress concentration around the crack tip. When making an RK around the crack tip, an
enriched basis for representing asymptotic crack tip fields is introduced in the basis vector:

H(x) = {1 x1 x2 x21 x1x2 x22
√
r′ sin(θ′/2)}, (12)

where (r′,θ′) is the local polar coordinate from the crack tip as shown in Fig.1a. The enriched basis
vector is only adopted for the quadrature points within the function support of xc.
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2.4 Nodal integration techniques

In solving the Galerkin formulation in Eq.(5), a numerical integration technique, as well as the
fracture mechanics parameter evaluations, is needed to fulfill the internal and external force terms.
The physical values dj(x) and dj,k(x) are smoothed by means of SCNI and SSCI, and their physical

values, i.e., d̃j(x) and d̃j,k(x) are thus derived. Here, the nodal integration techniques are briefly
summarized.

(a) (b)

KxKx

Ω
Γ

K
K

ΓKi

ΩKi

nn

Fig. 4 Nodal integration techniques: a SCNI, b SSCI

A Voronoi cell diagram and the nodal integration technique are represented in Fig.4a. The physical
values dj(x) (j= 1, 2, 3) are smoothed throughout the Voronoi cell, i.e.,

d̃hj (xK) =
1

AK

∫
ΩK

dhj (x) dΩ

=
NP∑
I=1

1

AK

∫
ΩK

ΨI(x)djI dΩ, (13)

where (˜) represents a smoothed physical quantity. The physical value d̃hj (x) is averaged over the
entire domain ΩK , and the values are evaluated at node xK . AK is the area of domain ΩK as shown
in Fig.4a.

The derivatives dj,k(x) (k=1, 2) are smoothed within a Voronoi cell employing SCNI. The surface
integration form of the derivatives is transformed into a line integration form according to the Gauss
divergence theorem:

d̃hj,k(xK) =
1

AK

∫
ΩK

dhj,k(x) dΩ

=
1

AK

∫
ΓK

dhj (x)nk dΓ

=
NP∑
I=1

bIk(xK)djI , (14)

bIk(xK) =
1

AK

∫
ΓK

ΨI(x)nk dΓ, (15)

where ΓK is the boundary of a Voronoi cell and nk denotes the normal to the boundary as shown in
Fig.4a.

In crack modeling, SSCI is employed to capture both the severe stress concentration near the crack
tip and displacement discontinuity along the crack segment, as well as to evaluate the J-integral.
The Voronoi cell in Fig.4a is further divided into a number of triangular subdomains ΩKi as shown
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in Fig.4b. A physical value d̃hj (xKi) is then approximated by:

d̃hj (xKi) =
1

AKi

∫
ΩKi

dhj (x) dΩ

=
NP∑
I=1

1

AKi

∫
ΩKi

ΨI(x)djI dΩ, (16)

where AKi
and ΓKi

are the area and the boundary of the subdomain ΩKi
in Fig.4b. The value is

averaged within ΩKi and is evaluated at the gravity center of the subdomain. The derivatives of the

physical components d̃j,k(xKi) are evaluated through the following expressions:

d̃hj,k(xKi
) =

NP∑
I=1

bIk(xKi
)djI , (17)

bIk(xKi
) =

1

AKi

∫
ΓKi

ΨI(x)nk dΓ. (18)

The smoothed operation in Eq.(18) is called the SSCI. A five point Gauss quadrature rule is adopted
to numerically integrate each segment of the domain ΩK and subdomain ΩKi .

When evaluating the shear strain of the meshfree Mindlin-Reissner formulation in Eq.(2), the
nodal integration technique in Eqs.(13) or (16) is also applied as in Tanaka et al. [50]. The Voronoi
cell represented in Fig.4a is divided into a number of triangular subdomains, and a 13-point Gauss
quadrature rule is taken for each subdomain to evaluate the surface integration.

By applying the SCNI/SSCI to the meshfree discretization, the displacement-strain relationship
of the shear-deformable plate can thus be derived according to the smoothed B-matrix as:

ε̃h =
NP∑
I=1

B̃IdI , B̃I =


0 −zbI1 0
0 0 −zbI2
0 −zbI2 −zbI1
bI1 −bI 0
bI2 0 −bI

 . (19)

The smoothed strain components ε̃ can be evaluated using the Voronoi cells or subdomains. The
smoothed displacement, strain and stress components are introduced for the virtual work principle
in Eq.(5). The discretization form can be evaluated. In this study, the essential boundary condition
is treated by using a penalty technique, which has already detailed in Tanaka et al. [50].

3 Evaluation of mixed-mode intensity factors

3.1 J-integral for Mindlin-Reissner plate theory

We consider a through crack embedded in a plate as shown in Fig.1. The local coordinate system
x′1-x

′
2 is taken from the crack tip. The x′1-direction is set parallel to the crack. The crack tip region

and the contour integral are represented in Fig.5a. ds is a segment of the contour ΓJint. A path-
independent integral in a Mindlin-Reissner plate has been proposed (Sosa and Eischen [52]; Sosa and
Herrmann [53]). When the traction on the crack face and the pressure distribution on the plate are
neglected, the J-integral components can be written as:

Jk =

∫
ΓJint

{
Wδkj −

(
M ′

ijβ
′
i,j +Q′

jw
′
,k

)}
n′j ds, (20)

where Jk (k=1, 2) denotes the J-integral values for x′k-directions. δkj is the Kronecker delta, and
( )′ denotes physical values evaluated in the local coordinate system as shown in Fig.5b. n′j is the
normal to the contour. The strain energy density W in the shear-deformable plate is written, as:

W =
1

2

{
M ′

ijβ
′
i,j +Q′

j(β
′
j + w′

,j)
}
. (21)
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Fig. 5 J-integral for a cracked shear-deformable plate: a a contour integral, b definition of the physical values
based on the local coordinate system x′1-x

′
2

In the Mindlin-Reissner plate formulation, there are three moment/shear force intensity factors,
namely K1, K2 and K3. They correspond to symmetric moment M22, asymmetric moment M12 and
shear force Q2 as shown in Figs.6a, b and c, respectively, and are expressed as:

K1 = lim
r′→0

√
2r′M ′

22(r
′, 0), (22)

K2 = lim
r′→0

√
2r′M ′

12(r
′, 0), (23)

K3 = lim
r′→0

√
2r′Q′

2(r
′, 0). (24)

(c)(b)(a)

Q’2

M’12M’22

x’1
x’2

x’3

Fig. 6 The moment and shear force intensity factors for a cracked shear-deformable plate: a symmetric bending
mode K1, b asymmetric bending mode K2, c shear mode K3

The relation between the intensity factors and J-integral value J1 can be written as:

J1 =
12π

Et3

{
K2

1 +K2
2 +

t2

10
(1 + ν)K2

3

}
. (25)

3.2 Mode-splitting of the mixed-mode intensity factors

To decompose the J-integral value J1 into mixed-mode moment/shear force intensity factors K1,
K2 and K3, a decomposition method and a displacement ratio method are employed (Rigby and
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Aliabadi [48]; Dirgantara and Aliabadi [30]). The J-integral value J1 is thus separated into symmet-
ric/asymmetric parts, as:

J1 = JS
1 + JAS

1 , (26)

where JS
1 and JAS

1 are the symmetric and asymmetric J-integral values. Decomposition is used to
evaluate the symmetric/asymmetric J-integral values. The J-integral value J1 is decomposed as:

J l
1 =

∫
ΓJint

{
W lδ1j −

(
M l

ijβ
l
i,j +Ql

jw
l
,1

)}
n′j ds, (27)

W l =
1

2

{
M l

ijβ
l
i,j +Ql

j(β
l
j + wl

,j)
}
, (28)

( )l (l=S, AS) of Eqs.(27) and (28) are the smoothed displacement, moment and shear force values
for symmetric and asymmetric fields in the local coordinate system (x′1-x

′
2).

x

x2

1 ΓJint

Crack tip

x’1

x’2 r’

n ’

θ’

(b)(a)

(x’ , x’ )

Crack segment

Crack tip

x’

x’

1

2

21

(x’ , -x’ )21

Fig. 7 Evaluation of the contour integral: a a rectangular contour, b two symmetric points (x′1, x
′
2) and

(x′1,−x′2) across the crack segment

The smoothed displacements, moments and shear forces can be separated using the symmet-
ric/asymmetric parts across the crack segments and the decomposition method. Fig.7a schemati-
cally depicts a rectangular contour at a crack tip that is used to evaluate the J-integral values. The
physical values are calculated using the two symmetric points (x′1, x

′
2) and (x′1,−x′2) across the crack

segment as shown in Fig.7b:

uS(x′1, x
′
2) =

uS1 (x
′
1, x

′
2)

uS2 (x
′
1, x

′
2)

uS3 (x
′
1, x

′
2)


=

u′1(x
′
1, x

′
2) + u′1(x

′
1,−x′2)

u′2(x
′
1, x

′
2)− u′2(x

′
1,−x′2)

u′3(x
′
1, x

′
2) + u′3(x

′
1,−x′2)

 , (29)

uAS(x′1, x
′
2) =

uAS
1 (x′1, x

′
2)

uAS
2 (x′1, x

′
2)

uAS
3 (x′1, x

′
2)


=

u′1(x
′
1, x

′
2)− u′1(x

′
1,−x′2)

u′2(x
′
1, x

′
2) + u′2(x

′
1,−x′2)

u′3(x
′
1, x

′
2)− u′3(x

′
1,−x′2)

 , (30)
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MS(x′1, x
′
2) =

MS
11(x

′
1, x

′
2)

MS
22(x

′
1, x

′
2)

MS
12(x

′
1, x

′
2)


=

M ′
11(x

′
1, x

′
2) +M ′

11(x
′
1,−x′2)

M ′
22(x

′
1, x

′
2) +M ′

22(x
′
1,−x′2)

M ′
12(x

′
1, x

′
2)−M ′

12(x
′
1,−x′2)

 , (31)

MAS(x′1, x
′
2) =

MAS
11 (x′1, x

′
2)

MAS
22 (x′1, x

′
2)

MAS
12 (x′1, x

′
2)


=

M ′
11(x

′
1, x

′
2)−M ′

11(x
′
1,−x′2)

M ′
22(x

′
1, x

′
2)−M ′

22(x
′
1,−x′2)

M ′
12(x

′
1, x

′
2) +M ′

12(x
′
1,−x′2)

 , (32)

QS(x′1, x
′
2) =

{
QS

1 (x
′
1, x

′
2)

QS
2 (x

′
1, x

′
2)

}
=

{
Q′

1(x
′
1, x

′
2) +Q′

1(x
′
1,−x′2)

Q′
2(x

′
1, x

′
2)−Q′

2(x
′
1,−x′2)

}
, (33)

QAS(x′1, x
′
2) =

{
QAS

1 (x′1, x
′
2)

QAS
2 (x′1, x

′
2)

}
=

{
Q1(x

′
1, x

′
2)−Q1(x

′
1,−x′2)

Q2(x
′
1, x

′
2) +Q2(x

′
1,−x′2)

}
, (34)

where ul(x′1, x
′
2),M

l(x′1, x
′
2) andQl(x′1, x

′
2) (l=S, AS) are symmetric/asymmetric component vectors

for the displacement, moment and shear force, respectively. The separated J-integral values JS
1 and

JAS
1 can be written with the intensity factors K1, K2 and K3 as:

JS
1 =

12π

Et3
K2

1 , (35)

JAS
1 =

12π

Et3

[
K2

2 +
t2(1 + ν)

10
K2

3

]
. (36)

In addition, a displacement ratio method (Rigby and Aliabadi [48]; Dirgantara and Aliabadi [30])
is employed to decompose JAS

1 of Eq.(36) into K2 and K3. When the displacements near the crack
tip correspond to the asymptotic fields of linear fracture mechanics theory, equations can be derived
for deflection ∆w′ and deflection angle ∆β′

1 along the crack opening according to the local polar
coordinate system (r′,θ′):

∆β′
1 = β′

1(r
′,+π)− β′

1(r
′,−π) = 48

Et3

√
2r′K2, (37)

∆w′ = w′(r′,+π)− w′(r′,−π) = 24(1 + ν)

5Et

√
2r′K3.

(38)

The ratio between ∆β′
1 and ∆w′ can be derived with the intensity factors K2 and K3 as:

∆β′
1

∆w′ =
10

(1 + ν)t2
K2

K3
. (39)
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Based on the above expressions, JAS
1 can further be decomposed in terms of K2 as:

JAS
1 =

12π

Et3

[
10

t2(1 + ν)

(
∆w′

∆β′
1

)2

+ 1

]
K2

2 , (40)

and in terms of K3:

JAS
1 =

12π(1 + ν)

10Et

[
t2(1 + ν)

10

(
∆β′

1

∆w′

)2

+ 1

]
K2

3 . (41)

3.3 J-integral evaluation based on nodal integration

Nodal integration is employed to evaluate the mixed-mode intensity factors of the shear-deformable
plate. The contour integral can be calculated by summing the smoothed values in the subdomains
and the segments along the rectangular contour. The physical quantities in the meshfree analysis can
be used for the J-integral evaluation in the post processing without making a special subroutine for
the numerical integration. The meshfree discretization of the contour integral and the mode-splitting
technique employing the decomposition and displacement ratio methods are described.

msd

msd +1

msd +2

x

x2

1
x3

Crack segment

Crack tip

r
(a) (b)

A rectangular contour

Fig. 8 J-integral discretized by SSCI: a a contour integral discretized by the SSCI, b close-up view of meshfree
discretization for the contour integral

The meshfree discretization of the contour integral is represented in Fig.8a. A rectangular contour
2r× 2r is set to surround the crack tip. SSCI is adopted in the vicinity of the crack tip including the
contour to numerically integrate the stiffness matrix and the contour integral. The equally spaced
triangular subdomains ΩKi in Fig.4b are arranged along the contour. The J-integral form in Eqs.(27)
and (28) is discretized, as:

J l
1 =

NSSCI∑
m=1

(
W̃ lδ1j −

[
M̃ l

ij β̃
l
i,j + Q̃l

jw̃
l
,1

])
m
n′j dsm, (42)

W̃ l =
1

2

[
M̃ l

ij β̃
l
i,j + Q̃l

j(β̃
l
j + w̃l

,j)
]
m
, (43)

where dsm is a segment of the contour divided by the subdomains as shown in Fig.8b. NSSCI is the
number of subdomains along the contour. Additionally, (˜) signifies smoothed physical quantities.
The displacements and their derivatives are evaluated using Eqs.(16) and (18). The moment and
shear forces are evaluated through the relations of Eq.(6) and the smoothed B-matrix in Eq.(19).
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L

a

Crack tipCrack segment

L

a

r’

1β∆
w∆

(a) (b)

Fig. 9 Schematic of the displacement extrapolation technique used in meshfree analysis: a meshfree discretiza-
tion near the crack tip, b evaluation of ∆β′

1/∆w
′ through displacement extrapolation

The moment intensity factor K1 can be directly calculated from JS
1 according to Eq.(35). Mean-

while, the moment and shear force intensity factors K2 and K3 can be evaluated using Eq.(36) and
the displacement ratio method based on the relationship of Eqs.(40) and (41). Displacement extrapo-
lation is adopted to evaluate the ratio ∆β′

1/∆w
′. A schematic illustration of meshfree crack modeling

around the crack tip is sketched in Fig.9a. The crack tip region is discretized by SSCI, and the width
of the subdomain belonging to the crack tip node is denoted L. A close-up view of the region near
the crack tip is shown in Fig.9b. It is noted that displacement extrapolation sometime introduces
error in the intensity factors. A number of sampling points are placed along the segments 0<r′<L/a
on ∂Sc, and the ratio ∆β′

1/∆w
′ is then evaluated at each sampling point. The evaluated value is

averaged employing the least-squares method, and is used for mode separation of the moment and
shear force intensity factors K2 and K3 from JAS

1 with the relations of Eqs.(40) and (41).

4 Numerical examples

Several numerical examples of cracked shear-deformable plates are considered, and the evaluated
mixed-mode moment/shear force intensity factors are then investigated and discussed to show the
accuracy and performance of the proposed meshfree formulation and discretization as well as the
J-integral technique. In all numerical examples, the original moment/shear force intensity factors Ki

(i=1, 2, 3) are transformed through:

F1 =
K1

M0
√
a
, (44)

F2 =
K2

M0
√
a
, (45)

F3 = − (1 + ν)t√
10

K3

M0
√
a
, (46)

where Fi denotes the normalized intensity factors. M0 is the applied moment and a is the half crack
length. t is the plate thickness. A linear elastic material is assumed. The penalty coefficient is set as
1.0×107 in all numerical examples.

4.1 Finite plate with a slanted edge crack

A finite rectangular plate including a slanted edge crack is analyzed. The dimensions of the cracked
plate are presented in Fig.10a. The plate width is b=10 mm, the plate height is 2c=20 mm, and the
plate thickness is t=5 mm. The crack length is a and the slant angle is ω. A uniform moment M0 is
applied to the top/bottom edges of the plate. A simply supported condition is applied to the edges.
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Young’s modulus is E=210 GPa and Poisson’s ratio is ν=0.3. Liu et al. [54] analyzed the problems
employing an infinite element method (Liu and Chiou [55-57]) and used displacement extrapolation
to evaluate the moment intensity factor of the cracked shear-deformable plate. Although this is
clearly a mixed-mode crack problem, Liu et al. [54] presented only the moment intensity factor K1.
The numerical results in Liu et al. [54] are digitized and compared with the results of the present
study. The path-independent property and accuracy of the moment intensity factor are examined
while varying the angle ω=π/4, 3π/8, π/2 rad. and the ratios of the crack length to the plate width
a/b=0.1 to 0.7.

(a) (b)

a 2
c

b

M 0

M 0

Simply support

ω

(c)

Fig. 10 Slant edge crack in a finite plate: a analysis model to be solved, b meshfree discretization, c close-up
view of the region of the crack tip

A meshfree modeling of the cracked plate is represented in Fig.10b. The model is for ω=π/4
rad. and a/b=0.4. The nodes are distributed on the cracked plate. The node distance along the
crack segment ∂Sc is hpI=a/10. Reproducing kernels are located at each node to approximate the
field variables. Voronoi cell diagram is adopted to generate the domain for the nodal integration
techniques, i.e., SCNI and SSCI. Stress/strains are smoothed over the whole analysis domain by
employing the SCNI, while severe stress concentration near the crack tip can be represented by
the SSCI. The meshfree discretization near the crack tip is represented in Fig.10c. A number of
rectangular contours are set to evaluate the moment intensity factor in verifying the path-independent
property. SSCI with triangular subdomains is adopted to numerically integrate the stiffness matrix
and the contour integral around the through crack, while SCNI with the Voronoi cell is applied in
the external region of the crack. The parameter of the function support size is αI=1.25 to 1.4 in all
cases. JS

1 is evaluated using Eqs.(42) and (43). The moment intensity factor K1 is calculated from
JS
1 using Eq.(35).
The path-independent property is explored first. A normalized moment intensity factor F1 is

analyzed. The obtained numerical results particularly accounted for a/b=0.4 are presented in Figs.11a
and b for ω=π/4 and 3π/8 rad., respectively. Additionally, three node distances along the crack
segment ∂Sc are employed for hpI=a/10, a/15 and a/20 to examine the accuracy of the intensity
factors. The horizontal direction is path r for the contour integral, and the vertical axis is F1. The
numerical results for ω=π/4 and 3π/8 rad. are in good agreement with the reference solutions. The
path-independent property can also be found in all cases. It is confirmed that the numerical results
converge when hpI≤a/10 is employed as observed in Figs.11a and b.

The accuracy of the moment intensity factor is further examined to verify the effectiveness of
the meshfree crack modeling and the J-integral evaluation employing SSCI. The slant angles and
crack lengths for this investigation are taken as ω=π/4, 3π/8, π/2 rad. and for a/b=0.1 to 0.7.
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Fig. 11 Comparison of the normalized moment intensity factor F1 for different contours where the crack length
is a/b=0.4: a ω=π/4 rad., b ω=3π/8 rad. between the present meshfree formulation and the reference method

The meshfree models are generated and F1 is evaluated. hpI=a/10 is chosen. The numerical results
are then visualized in Fig.12. The open symbols are the numerical results while the lines represent
the reference solutions. Importantly, the proposed method offers a good agreement of the normalized
moment intensity factor F1 as compared with the reference solution. It is thus found that the proposed
meshfree formulation, discretization and moment intensity factor evaluation employing the nodal
integration technique are effective.

a/b

F
1

F1
Ref. (ω=π/4)

F1
Ref. (ω=3π/8)

F1
Ref. (ω=π/2)

F1
Num. (ω=π/4)

F1
Num. (ω=3π/8)

F1
Num. (ω=π/2)

Fig. 12 Normalized moment intensity factor F1 for ω=π/4, 3π/8 and π/3 rad. for a/b=0.1 to 0.7

4.2 Finite plate with an inclined center crack

An inclined center crack in a finite rectangular plate is analyzed. The model geometry and dimensions
are depicted in Fig.13a. The width of the plate is 2b=20 mm, the height is 2c=80 mm, and the
crack length is 2a=1.0 mm. The angle of inclination is denoted ω. A moment M0 is applied to
top/bottom edges. Additionally, a simply supported boundary condition is applied to the two edges.
Young’s modulus is E=200 GPa. Poisson’s ratio ν=0.0, 0.25, 0.3 and 0.5 are chosen. Two reference
solutions available in the literature are taken for the comparison purpose, i.e., Sih [28] and Joseph
and Erdogan [58] for ω=0 rad., and Sih [28] for ω=0 to π/2 rad.. Numerical data of the moment
intensity factor were presented by Joseph and Erdogan [58] and are employed for the evaluation. The
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mixed-mode intensity factors K1, K2 and K3 are represented by:

K1 = ψ1M0

√
a cos2(ω), (47)

K2 = ψ2M0

√
a cos(ω) sin(ω), (48)

K3 = −
√
10

(1 + ν)t
ψ3M0

√
a cos(ω) sin(ω), (49)

where ψ1, ψ2 and ψ3 are parameters that depend on Poisson’s ratio ν and they are determined by
an integral equation. The digitized values for ν=0.0, ν=0.25/0.3 and ν=0.5 (t/a=2.0) are given in
Table 1.

Table 1 Parameters of ψ1, ψ2 and ψ3 for the reference solutions

ν ψ1 ψ2 ψ3

0.0 0.77575 0.64592 0.05624
0.25/0.3 0.81171 (0.3) 0.68610 (0.25) 0.06119 (0.25)

0.5 0.83419 0.71734 0.06795

(a) (c)

2c

2b

M 0

M 0

2a

Simply support

(b)

2c

2b

M 0

M 0

2a ω

Simply support

Fig. 13 An inclined center crack in a rectangular finite plate under bending loads: a inclined center crack
problem, b center crack problem (ω=0 rad.), c meshfree modeling of a center crack problem (ω=0 rad.)

As a preliminary study of mixed-mode crack problems, the moment intensity factor is analyzed
for examination of the convergence, path-independency and accuracy of the present formulation and
discretization. The center crack problem as illustrated in Fig.13b is analyzed. The angle of inclination
is ω=0 rad.. In the meshfree modeling, only half of the plate is solved because of the symmetrical
boundary conditions relating to the symmetry of the problem. The meshfree model of the shaded
region in Fig.13b is illustrated in Fig.13c. The node distance along the segment is hpI=a/10. Because
the through crack is much smaller than the whole structure, uniformly distributed nodes are employed
around the crack and the node density is gradually changed from the crack region to the external
region. The parameter αI is set with values ranging from 1.25 to 1.4. The whole meshfree model is
analyzed by SCNI, and SSCI is applied only to the crack tip and crack segment. Three meshfree
models are employed for the node distances hpI=a/10, a/15 and a/20 along the crack segment ∂Sc to
examine the accuracy of the moment intensity factor. The intensity factor is numerically evaluated
using the proposed method and the obtained numerical values are then compared with reference
solutions.

The path independency and accuracy of the moment intensity factor are examined first. The
normalized intensity factors F1 are plotted in Figs.14a, b and c for Poisson’s ratio ν=0.0, 0.3 and
0.5, respectively. The plate thickness is t=1.0; i.e., t/a=2.0. F1 is examined with different contours r.
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The intensity factors have almost the same values independent of the path r. Additionally, the results
coincide well with the reference solutions given by Sih [28] and Joseph and Erdogan [58]. Additionally,
almost the same values are obtained for hpI=a/10, a/15 and a/20. It is therefore considered that the
moment intensity factor converges at a node density hpI≤a/10, as in the previous numerical examples.
The node density hpI=a/10 is chosen for all the following numerical examples.

(a)

(c)
r (mm)

F
1

(b)

r (mm)

F
1

r (mm)

F
1

Sih GC (1977)

Joseph PF & Erdogan F (1991)

Num. (h
I

p=a/10 on    )

Num. (h
I

p=a/15 on    )

Num. (h
I

p=a/20 on    )

Fig. 14 Comparisons of the normalized moment intensity factor F1 for various contours of the J-integral
evaluation when t/a=2.0: a ν=0.0, b ν=0.3, c ν=0.5

To further examine the accuracy of the moment intensity factor, F1 is examined by changing the
ratio of the plate thickness and crack length t/a. The results are represented in Figs.15a and b for
t/a for 1.0≤t/a≤9.0 and 0.0≤t/a≤1.0, respectively. Value of Poisson’s ratio ν=0.0, 0.3 and 0.5 are
chosen. It is found that F1 in the meshfree modeling coincides with the reference solutions given by
Sih [28] and Joseph and Erdogan [58] for 1.0<t/a< 9.0. In addition, the numerical results are in good
agreement with the results of Joseph and Erdogan [58] as the plate becomes thinner, while there are
deviations between the numerical results and reference solutions of Sih [28] for 0.0≤t/a≤1.0.

According to the discussion of the meshfree model for ω=0 rad., an inclined center crack in a
finite plate is analyzed. The analysis model is again represented in Fig.13a. The meshfree model
of the shaded region of Fig.13a is represented in Fig.16. The angle ω is set to be varied from zero
to π/2 rad.. The meshfree model is for ω=π/4 rad. and is discretized for hpI=a/10 on ∂Sc. The
parameter αI is set from 1.25 to 1.4. The mixed-mode crack problem for t/a=2.0 in the case of the
Mindlin-Reissner plate was analyzed by Dolbow et al. [18] using the plate formulation. The through
crack is modeled using the extended FEM (Moës et al. [19]), and the mixed-mode intensity factors
are evaluated using an interaction integral.

Although there are deviations from the reference solutions of Sih [28] when the ratio t/a is less
than 1.0, reference solutions of Joseph and Erdogan [58] and the results obtained by the present
formulation are in good agreement for t/a>1.0 and the purely mode-I moment intensity factor as
shown in Fig.15. Therefore, the plate thickness is set as 1.0; i.e., t/a=2 is chosen to verify the
mixed-mode fracture problems. The reference solution of Sih [28] is chosen for comparison purposes.
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Fig. 15 Normalized moment intensity factor F1 for various plate thicknesses: a t/a=1.0-9.0, b t/a=0.1-1.0

Fig. 16 Meshfree model for an inclined through crack ω=π/4 rad.

The normalized moment/shear force intensity factors F1, F2 and F3 for ω=0 to π/2 rad. are
depicted in Figs.17a, b, and c, respectively. Notice that these numerical results are computed with
the parameters that correspond to the Poisson’s ratio ν=0.0, 0.25/0.3 and 0.5, respectively. All
numerical results are in good agreement with the reference solutions. To further examine the present
approach, the path independency is examined for the mixed-mode intensity factors. The numerical
results are then plotted in Figs.18a and b. A crack angle is ω=π/4 rad.. Additionally, the node
distance is hpI=a/10. The normalized intensity factors are divided by the reference solutions. All
moment/shear force intensity factors have path independency. As a result, it can be concluded that
the mixed-mode intensity factors can be effectively evaluated using the proposed contour integral
with the decomposition method and the displacement ratio method. In the present study, the moment
intensity factor K1 is evaluated based on an energetic method, while the intensity factors K2 and
K3 are calculated based on a displacement extrapolation technique. Although a good agreement can
be found in the presented numerical results, it is important to note that the accuracy of K2 and K3

is deteriorated when the plate thickness decreases. Further research and investigation is needed for
the mode separation of K2 and K3.

5 Conclusion

A novel meshfree discretization technique was presented to evaluate mixed-mode moment/intensity
factors of a cracked shear-deformable plate. A meshfree Mindlin-Reissner formulation was employed,
while the RK particle method was used for meshfree interpolation. A diffraction method, visibility
criterion and enriched basis were introduced for the meshfree crack modeling. SCNI/SSCI was used in
evaluating the Galerkin formulation. A contour integral was discretized employing nodal integration.
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Fig. 17 Normalized SIFs F1, F2, and F3: a ν=0.0, b ν=0.25/0.3, c ν=0.5

A decomposition method and displacement ratio method were employed to separate the J-integral
value into mixed-mode intensity factors. The evaluated intensity factors have high accuracy and
more interestingly they are path independence, which clearly reveal the effectiveness of the proposed
meshfree formulation, crack modeling and discretization in estimating the mixed-mode intensity
factors of cracked shear-deformable plates.
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