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SUMMARY

This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite
element method. The wavelet Galerkin method is a new methodology to solve partial differential equations
where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain
is divided into equally spaced structured cells and scaling functions are periodically placed throughout the
domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region
having a high stress concentration, such as near a hole or notch. Thus, the method can be considered
a refinement technique in fixed-grid approaches. However, since the basis functions are assumed to be
continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement
discontinuities across the crack surface. In the present research, we introduce enrichment functions in
the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress
concentration around the crack tip by applying the concept of the extended finite element method. This
paper presents the mathematical formulation and numerical implementation of the proposed technique. As
numerical examples, stress intensity factor evaluations and crack propagation analyses for two-dimensional
cracks are presented. Copyrigdt2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fracture mechanics analysis has been widely used to evaluate the integrity, safety and reliability
of damaged structures such as aircraft, ships and power plants. The finite element method (FEM)
is often used as a powerful computational tool to treat such crack problems. Commercial FEM
software (e.g., ABAQUS, MSC.MARC and ANSYS) can produce finite element (FE) models

of two-dimensional (2D) and three-dimensional (3D) cracks and calculate stress intensity factors
(SIFs) using the FE models. However, the modeling of the crack and calculation of SIFs in the FE
procedures still involve complicated tasks even for a skillful engineer, because special FE modeling

is required; e.g., the use of double nodes to represent crack surfaces and a very fine mesh to represent
stress singularities near a crack tip.
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2 S. TANAKA ET AL.

Researchers have developed numerical approaches to improve computational efficiency and

decrease the number of degrees of freedom (DOFs) in fracture mechanics analysis when employing
the FEM. The superposition method was introduced to provide an analytical solution for stress
fields near a crack tip, and FE solutions were superposed to improve the approximation of stress
singularities [1]. Quarter-point elements were developed to collapse one side of the element and shift
the mid-side node in the crack tip direction for isoparametric elements. The quarter-point technique
can represent thel (,/r) singularity of a crack tip stress field in an elastic body [2][3][4][5][6].
As an alternative to displacement-based FEMs, hybrid singular elements [7][8][9][10][11] and the
hybrid-Trefftz method [12][13][14] have been proposed. Although almost all research work treated
the simple stationary crack problem, FEM was used to solve crack problem in earlier pioneering
work.

Wavelet methods have been proposed as a powerful mathematical tool for representing a signal or
function, and they have been applied in the research fields of signal processing and image processing
[15][16][17][18][19]. In recent years, it has been found that the wavelet Galerkin method (WGM)
is an efficient tool for solving partial differential equations [20][21][22]. In solid/structural analysis
using the WGM, a scaling function and wavelet function are used to represent displacements or
stresses. The scaling/wavelet functions have so-called multiresolution properties. The functions
can produce a hierarchical structure of solutions. Furthermore, the basis functions have compact
support, and the solution can be refined in regions of high gradients such as stress concentrations
near a hole or notch. There are no remeshing processes in contrast to conventional FEMs. There has
been much research in which the WGM with multiscale and multiresolution properties of the basis
functions has been applied, such as in research on structural analysis [23][24][25][26][27][28], the
solid mechanics problem [29][30][31][33], topology optimization [34][35] and the development of
wavelet finite elements [36][37]. The reproducing kernel (RK) approach using wavelet hierarchical
bases has also been proposed. Liu et al. [38] developed multiple scale methods using RKs and
wavelet analysis. Liu et al. [39] also formulated the moving least-square reproducing kernel
(MLSRK). Fourier analysis being employed to verify the approach. In the literature, the so-called
synchronized convergence phenomenon was presented. Li et al. [40] proposed a synchronized
reproducing kernel (SRK). Furthermore, Li et al. [41][42] proposed aRK hierarchical partition
of unity. A class of basic wavelet functions is adopted to construct the hierarchical partition.
An application to strain localization in inelastic solids is presented in [43] using the hierarchical
partition of unity of RKs.

The multiresolution properties of the wavelet functions enhance high-stress gradients around a
crack tip. However, few papers have solved fracture mechanics problems. Because most WGM basis
functions are assumed to be continuous in the Galerkin formulation, there are difficulties in treating
displacement jumps across the crack surface. In recent years, the extended finite element method (X-
FEM) [44][45][46] has been proposed for the efficient treatment of crack problems in the framework
of FEMs. New basis functions (enrichment functions) based on the concept of "the partition of unity
(PU)” [47][48] have been introduced, and they easily represent the discontinuity of the crack surface
and the high-stress concentration region near the crack tip. Furthermore, the use of the X-FEM can
enhance crack propagation analysis because crack geometries can be represented by enrichment
functions independently of FE meshes, and the crack propagation analysis is performed without
remeshing. Lee et al. [49] and Nakasumi et al. [50] proposed a coupling technique employing both
the X-FEM and mesh superposition method to effectively treat crack modeling and analyze crack
propagation. In addition, Li et al. [51] solved cohesive crack propagation in brittle materials using
the extended Voronoi-cell finite-element model (X-VCFEM). Employing the method, polynomial
functions, branch functions and multi-resolution wavelet functions are introduced to solve cohesive
crack problems. The X-VCFEM was extended by adding crack merging to the growth mechanism
[52].
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 3

Fracture mechanics analyses using the WGM and X-FEM are presented for 2D crack problems
in this paper. Linear B-spline scaling/wavelet basis functions [53] are used in the WG formulation.
Although the basis functions do not satisfy the so-called orthogonality condition in wavelet theory,
the approach is suitable for solving boundary value problems. The basis functions have an explicit
form, and integration and differentiation can be performed analytically. The basis functions have
compact support. In the WG discretization of solids/structures, the analysis domain is divided into
equally spaced structured cells and the scaling functions are periodically placed on the grid cells.
To represent the boundary of a body, a cell crossing the boundary is divided into equally spaced
sub-cells. The sub-cells that are located in the external region are not involved in the numerical
integration of the stiffness matrix. The method can be used to model a complicated structure
automatically. Furthermore, wavelet functions having different length scales are superposed on the
scaling functions to refine the solution. The method can thus be considered a refinement of the fixed-
grid (voxel-type) approach [54].

In solid/structural analysis using the WGM, researchers sometimes discuss the handling of
general boundaries. The fictitious domain approach [29][34] and the use of boundary-corrected
wavelet functions [30][31] are commonly used. In the former, the analysis domain is extended
to its exterior, but very small stiffness is given to the exterior region. In the latter, the original
scaling/wavelet functions are modified so as to fit the boundary shapes. The wavelet-based finite
element approach [32] is a technique that can avoid handling problems associated with boundaries.
In the authors’ previous study, solid mechanics problems were solved employing the WGM
with B-splines [55]. Although a fictitious domain is often adopted to treat general boundaries in
WGMs, a technique to remove the fictitious domain was proposed in that work. In the present
paper, enrichment functions are introduced to solve crack problems on the basis of the X-FEM.
A Heaviside function is enriched linear B-spline scaling function that represents discontinuous
displacements of the crack surfaces. In addition, an asymptotic solution near the crack tip is enriched
with both a linear B-spline scaling function and wavelet function. Crack propagation analysis is
demonstrated by relocating the enrichment functions without remeshing and rebuilding the analysis
model.

The layout of this paper is as follows. Section 2 presents the WG formulation for the analysis of
crack problems and crack propagation analysis using the WGM and X-FEM. Section 3 presents the
SIF calculation technique and discretization employing the proposed method. Numerical examples
of SIF evaluations and crack propagation analyses are presented to validate the proposed technique
in Section 4. Conclusions are given in Section 5.

2. FRACTURE MECHANICS ANALYSIS USING THE WGM AND X-FEM

2.1. Multiresolution properties and B-spline wavelet bases

Scaling/wavelet functions are used as basis functions in the WGM. There is a hierarchical structure
of the basis functions according to the so-called multiresolution properties in wavelet theory. In this
chapter, the multiresolution properties and B-spline wavelet bases are briefly presented. For more
details, see references [15][16][17][18][19].

The multiresolution properties are represented by a sequence of nested closed sylispaces
Z} in the Hilbert spacd.?(R),

{0yc---cViCcVoCViCVy---C L*(R). (1)

Scaling functions are generated for these subspeiceBhe levels scaling functionp; () can be
defined as | 4
Gin(x) =22¢(Dx—k), j ke @)
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wherej is a scale parameter aitdis a translate parameter. Because the spgckes within the
spaceV; 4, any function inV; is representable by a sum of basis function¥pf; such that

d(x) = pro(2x — k). 3)
k

This is the so-called two-scale relations of scaling functions and the set of coeffjgjearts called
the two-scale sequence. Furthermore, a complementary sulddpacesubspacd’; is introduced,
such that the subspadé, ; is represented by the direct sum¥f; andV; as:

Visi=V;+ W (4)

Wavelet functions can be generated Wi, as well as scaling functions. The levelvavelet function
¥; k() can be written as

V() =229z — k), j. ke (5)

BecauseW; is contained inV;_., the wavelet function can be expressed in terms of the scaling
function at the next higher scale with a two-scale sequégcgas:

U(z) =Y qud(2z — k). (6)
k

The coefficienty,, in eq. (3) andy, in eq. (6) are defined as a set of scaling/wavelet functions.

If a set of wavelet functionsy; »(x) in L?(R), form an orthonormal set, the functiaf x ()
satisfies:

(i k(@) 1 () = 8jjr Ok )

where (|) represents the inner product operator and is the Kronecker delta. If an orthogonal
wavelet basis set is used, the direct sum of eq. (4) becomes an orthogonal sum,

Vi =ViEpw;, v, LW, 8

where@ represents the orthogonal sum. Therefore, the spa¢®) can be decomposed by the
sum of the subspacé¥; as:

P®) = PwW W, PW-. 9

A function f(z) € L*(R) is approximated by its projectio; f(z)(= f;(x)) onto the spac¥; as:

Pif(z) = ajrdjn(x). (10)

k

The P; f(z) approachesf(z) as j — oo. If the scaling functionsp; ,(z) are orthogonal, the
coefficientss; 5, are obtained as follows:

ajk = (P k() f(2)). (11)

The difference betweefi(z) € V, 41 andP; f(z) can be decomposed over the set/gf.:
@) = Pif(x) =) bjatbsn(z) € W, (12)
k

whereb; ;. are the coefficients of the wavelet function. If the,, () are orthogonal, the coefficients
are obtained as follows:

bjk = (j k()| f (). (13)
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 5

Equations. (10) and (12) are used repeatedly with successike values, and we thus have a
hierarchical structure of the scaling/wavelet functions:

J
fin(@) = aj,kbion(@) + DY bixthix(@), (14)

k i=jo k

where ¢, 1(z),a;,  are scaling functions with coefficients at levg), and v; i (z),b; 1 (i =
jo,- -+ ,4) are wavelet functions with coefficients at leyglto level j. As another representation of
eq. (14), the functiorf; 1 (x) can be derived by the superposition of leyel-1 scaling functions
®j+1,k(x) with coefficientsa; 11 , and using eq. (10), as:

Fie1(@) =" a1 0i10(2). (15)

k

This is the so-called multiresolution property of the scaling/wavelet functions in wavelet theory. The
theory can be expanded to 2D and 3D problems in a straightforward manner. The tensor product
of the 1D scaling/wavelet functions is one of the existing techniques for constructing 2D and 3D
scaling/wavelet functions. The 2D representation is discussed in next section.

So far, several pairs of scaling/wavelet functions have been proposed [15][16][17][19]. B-spline
wavelet bases are adopted in this research. Because the B-spline wavelet bases are bi-orthogonal
wavelet family, the bases do not satisfy the orthogonality condition. The detail descriptions of the
B-spline bases are written in [15][53]. On the other hand, it is possible to solve solid/structural
problems in the WG formulation because the basis function has a simple form and compact
support and is easy to differentiate and integrate. /Hh#h-order B-spline scaling/wavelet bases
are represented by piecewiée — 1)-th-order polynomial functions, and their derivatives up to
(m — 2)-th-order are continuous. The Lb-th-order B-spline scaling function can be written as a
power series:

1 m
(m) - - _1\k (p — Lym—1
¢ (:E) (m — 1), kz:o( 1) mck(x k)+ (16)
x4 = max{0,z} a7
l‘T = (er)ma (18)
where the function support is
supp ¢\ = [0,m]. (19)
The two-scale sequengg(k = 0,--- ,m) of the B-spline scaling function™ (z) in eq. (3) is
1
Pk = om—1 mCh (20)
In a similar way, the B-spline wavelgt™ (x) has a two-scale sequenggk = 0,--- ,3m — 2) in
eqg. (6):
a = (1" i Crp®™ (k+1-1) (21)
gm—1 l m :
The function support is
supp ™ = [0,2m — 1]. (22)

In this analysis, linear(=2) B-spline scaling/wavelet functions are used as wavelet Galerkin basis
functions. The function forms are shown in Figs. 1 (a) and (b).
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Figure 1. 1D linear (second-order) B-spline bases [(a) Scaling function, (b) Wavelet function]

2.2. Standard displacement description in a 2D WGM

Before introducing displacement fields for a crack problem in the WGM, displacement
representation without a crack is first shown. The lgvel1 2D displacement vectat; ., (x) can
be written with the level; linear (second-order) B-spline scaling/wavelet functions as:

wjpr(z Z'U/]qu)],k,l +szym‘1’]m (23)

i=1 k,l

where®; () and¥’ , ,(x) are levelj scaling/wavelet functions, and, . ; andv} , ; (i = 1,2,3)

are their coefficients. Subscriptsand! (=integers) are the translation parameters. The wavelet
functions can be set locally on the scaling functions where high-gradients representation is needed.
The 2D scaling/wavelet functions are described by the tensor product of 1D scaling/wavelet
functions as

B pa(@) = ¢ (21)6) (w2)
W)y (@) = 683 (21)07) (22)
02, (@) = 03 (21)05) (22)
Pri(@) = 1/);,12(171)1/)](-,21) (z2), (24)

Whereqb( )(xl) and¢ (xz) are 1D linear B-spline scaling functions amﬁz) o (1) andz/J ( 2)

are the wavelet functlons for the; and x5 directions respectively. The 2D linear B -spline
scaling/wavelet basis functions are shown in Figs. 2 (a)-(d). The integration domains of the 2D
level-j scaling/wavelet functions are shown in Figs. 3(a)-(d). To refine the solution, 2D wavelet
functions of levelg/ + 1,5 + 2, --- can be added in eq. (23). In the 2D representation, the wavelet

coefficients are organized in three quadrants corresponding to the tensor pﬁééﬁp@@ﬁswﬁ) (z2),

) (x1)¢( ) (22), andwj k(:cl)wﬁ) (z2) in the levels + 1 displacement vector of eq. (23). We have
o[z.»talned a one-to-one decomposition of the displacements into the sum of its lower resolution
approximation plus the residual associated with the wavelet coefficients. This decomposition can
be iterated on the lower resolution approximation of the displacement to yield a multi-level wavelet
decomposition.

Function location with different resolution levels of the linear B-spline scaling/wavelet functions
are shown in Fig. 4 (a), and the 1D arrangements alonglirection are shown in Fig. 4 (b).
The symbols represent the centers of the scaling/wavelet functions. Analysis for a teading
function is assumed as the original (lowest) resolution level, and the model is called the;”level-
model”. The levels scaling functions are located at the corners of the cells. In the first refinement,
level-j wavelet functions are added locally to the leyaftodel. The centers of the wavelet functions
are located between the levebkcaling functions. We thus call the model the "leyel-1 model”.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 7

In a similar manner, level-+ 2, level- + 3 - - - wavelet functions are added in the second and third

- refinements where high spatial resolution is needed. The analysis models are called the "level-
j + 2 model”, "level-j + 3 model”- - -, respectively. It is thus considered that WGM is an effective
refinement technique for the fixed-grid (voxel-type) approach [54].

In fracture mechanics analysis using the WGM, two approaches are adopted to accurately
integrate the stiffness matrix. One is the cell refinement approach and the other is sub-cell refinement
approach. The wavelet function is piecewise-linear and the function support is halved when the
resolution; — j + 1, as shown in Fig. 4 (b). In the cell refinement approach, a structured cell is
divided to accurately integrate the stiffness matrix based on the locations of the scaling/wavelet
functions. Here, we define the size/resolution of the structured cells. In Fig. 4 (a), the rectangular
region surrounded by the center of leyiedealing function is called the "levelcell”. A level-; cell
is divided into 2, 4x4, and &8, - - - cells for the level; + 1, level-j + 2, level4 + 3, - - - models;
the cells are called "level+1 cell”, "level-j+2 cell”, and "levels+3 cell”, - - - . Cell refinement can
be performed locally where wavelet functions are located.

In addition, a sub-cell refinement approach is adopted to accurately integrate the stiffness matrix
including enrichment functions and to represent the boundary shapes. Further division is performed
to the "levely cell”, "level-j + 1 cell”, and "level + 2 cell”, - - -. For example, an illustration of a
4x 4 sub-cells division is shown in Fig. 4 (c). The sub-cell refinement approach can also be adopted
where the refinements are needed. In both refinement approastie&adliss quadrature is adopted
based on the cells and sub-cells.

AN
LXK
"t“:’:“:‘\‘\
GBS
ey 'l'::‘:‘:“:“\‘x%

>

(d)
Figure 2. 2D basis functions [(@);,x:(), (0) ¥} ; ; (@), (€) T3 ;. ,(x), (d) ¥, ()]

Level-j scaling function Level-j wavelet function Level-j wavelet function Level-j wavelet function

& & & & L & &b 1 & /
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Figure 3. Integration domains for levglscaling/wavelet functions [(a; ;. ;(x), (b) \I/Jl’m(m), (c)
2 (@), ()93, ()]

2.3. Fracture mechanics analysis using the WGM and X-FEM

In fracture mechanics analysis using the WGM, displacements or stresses are represented by
the superposition of scaling/wavelet functions as shown in eq. (23). The wavelet functions with
different length scales can be superposed locally on the scaling functions. High stress gradients
near a crack tip can be represented effectively by superposing the wavelet functions. However, the
displacements or stresses are assumed continuous in the WG discretization, and it is difficult to treat
the displacement discontinuities of crack surfaces. In this study, enrichment functions are introduced

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
Prepared usingimeauth.cls DOI: 10.1002/nme



8 S. TANAKA ET AL.

Level-j model Level-j+1 model Level-j+2 model Level-j+3 model
(a) (Original resolution) > (1st refinement) > (2nd refinement) (3rd refinement)

Level-j scaling function Level-j wavelets Level-j+1 wavelets Level-j+2 wavelets

----------------------

Refinement zone

x v N v | -G e
X T > T
Level- cell Level-j+1 cell Level-j+2 cell Level-j+3 cell
(b) Level-j scaling function Level-j wavelets Level-j+1 wavelets Level-j+2 wavelets
Gauss point
(c) 4x4 sub-cell division 4x4 sub-cell division 4x4 sub-cell divison 4x4 sub-cell division
. N L )
4 ' 1 : \ o '
X1 o
Leveljcell ' Level-j+1 cell " Levelj*2 cell T Level+3 cell

Figure 4. Refinements using wavelet functions [(a) Location of scaling/wavelet functions in 2D case and
cells, (b) Location of scaling/wavelet functions in the 1D case, (c) A sub-cell refinement approach]

employing the concept of the X-FEM.

The X-FEM was proposed by [44][45] to solve crack problems. A standard FE approximation
is enriched near a crack by incorporating both discontinuous fields and near-tip asymptotic fields
employing the partition-of-unity (PU) method [47][48]. The method can model crack geometry
independently of the FE mesh. Furthermore, crack propagation analysis can be performed easily by
only relocating the enrichment functions appropriately. There are no remeshing processes. In the
WG discretization, two kinds of enrichment functions are introduced as well as the X-FEM.

WG discretization for a crack problem is now described. A schematic illustration of a crack
emanating from a hole edge in an elastic solid body is shown in Fig. 5(a). The analysis domain
and boundary are respectively denofeécndI'. The traction conditiort is enforced orl’; and
the displacement boundary conditianis enforced orl",. The crack surfac€. is assumed to be
traction-free. The upper-side and lower-side domains of the crack are déhotad)_. The WG
discretization is shown in Fig. 5(b). Equally spaced structured cells are used in the discretization.
To accurately integrate the stiffness matrix and to represent the boundary of the body and the hole
edge, cell and sub-cell refinement approaches discussed in the previous section are adopted. A cell
and sub-cell, whose center is judged to be in the external domain, is not involved in the numerical
integration; hence, the boundary of the body can be accurately represented. In this section, numerical
formulation with levels scaling/wavelet functions is described.

An enlarged view of the region near the crack tip is shown in Fig. 6(a).(Fi#® coordinate
system has its origin at the crack tip. The0) direction is oriented into the body and parallel to
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Figure 5. Crack problem for the WGM [(a) Analysis model with a crack emanating from a hole, (b) WG
discretization]
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Figure 6. Enlarged view of the crack region [(a) Local coordinéteg) relative to the crack tip, (b) WG
modeling for a stationary crack, (c) WG modeling for crack propagation analysis]

the crack face. Crack modeling with the enrichment functions is shown in Fig. 6(b). The locations
of scaling/wavelet functions and enrichment functions are presented. Here, we show an enrichment
technique for a crack employing levglscaling/wavelet functions. An enrichment function that
represents the asymptotic solution near crack tip is adopted for both scaling functions and wavelet
functions. Hereafter, a set of enrichment nodes is referred to as "dadder the scaling functions

and "nodesC,,” for the wavelet functions. The enrichment function that represents displacement
jumps of the crack surface is used for scaling functions only. A set of enrichment nodes is referred
to as "nodesJ,". The nodesC,, C, andJ, are presented in Fig. 6(b). In the crack modeling,
level-j scaling functions are periodically set on the grids in the analysis domain. To accurately
represent the severe stress concentration near the crack tip, the centers of the wavelet functions that
are located within. of the crack tip are used. In addition, the center of the scaling/wavelet function
within r. of the crack tip is enriched as nodé€§ andC,,. Although the wavelet coefficients are
known to be used to predict where the refiement is needed in multiresolution analyses [27][35],
radiusr, is introduced to refine the solution in this study. Furthermore, scaling functions belonging
the crack surface are enriched as nodggxcept for the node€; andC,,. Following the above
discussion, the enriching terms are added to the Igvelk displacements ;. (x) in eq. (23). The
displacement.’?, (x) is written as

3 4
ujty (z) = Z W1 gk () + Z Zv;,k,l\y;‘,k,l(m) + Z P k() Z'Yn(m)b?,k,l
k,l n=1

i=1 k.l k,leC,

3 4
+Z Z ‘I’é,k,z(m)Z%(m)C?,k,l+ Z H()®j k1 (x)djry.  (25)
n=1

i=1 k,leC\ kleds
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10 S. TANAKA ET AL.

In eq. (25), the first and second terms represent standard WG displacements as shown by eq. (23).
The third and fourth terms are enrichment terms that represent the severe stress concentration around
a crack tip. The third term is the enrichment with scaling functions (n@dgs and the fourth

term is the enrichment with wavelet functions (nodgs). b, ; andc}, ; (n=1,--- ,4) are the
coefficients of the enrichment terms,(x) (n = 1, - - - , 4) are functions that the asymptotic solution

near the crack tip as:

0 %)
yi(x) = /rsin 2 y2(x) = /7 cos 2

y3(x) = /rsin g sin®, ~y4(x) = /rcos g sin 6, (26)

where(r, #) are the local polar coordinates at the crack tip in Fig. 6(b). The fifth term represents
discontinuous displacement of the crack surface enriched with jesedling functionsH (x) is

a Heaviside discontinuous function add,; denotes coefficients. The scaling functions across
the crack surface in the support area are enriched ndgexcept for node€, and C,,. The
discontinuous functioi (x) is

wo-{ 4 e

where ), andQ_ are the upper and lower sides of the crack. The integration domains of the
enrichment node€’,, C,, and J, with the scaling/wavelet functions are the same as those of
the original scaling/wavelet functions, as shown in Fig. 3(a)-(d). The enrichment terms have
discontinuity and trigonometric functions. The sub-cell refinement approach is adopted to accurately
integrate the stiffness matrix including the enrichment functions and the representation of the
boundaries. However, fine sub-cell refinement provides low computational efficiency; the relation
between the number of sub-cell divisions and the accuracy of the solution is discussed in the
numerical examples.

The PU property of this approach is briefly described. The enrichment of the discontinuous
function H (x) in eq. (25) is the same as that of the standard X-FEM formulation. Next, we discuss
the enrichment of the asymptotic solution near the crack tip (tip enrichments) when scaling/wavelet
functions are used. Eqg. (25) is rearranged in terms of nédleand C,, to obtain the following
relation:

4
wi@) = Y ®i@ S uji+ > Y m(@byy

ol kleC, n=1
3 4
+ Z Z WY a(@) § Vjeg + Z Z’Vﬂ(w)c?,k,l ; (28)
i=1 k,l k,leCy, n=1

where the first and second terms are enrichments for the scaling function and wavelet functions,
respectively. We check the PU property of the scaling/wavelet functions:

> () =1, > W (x)AL (i=1,-,3). (29)

kleQ kleQ

Linear B-spline scaling functions have the PU property, but the wavelet functions do not. The lack
of PU sometimes generates a loss of accuracy, e.g., [56][57][58]. Although the proposed technique
cannot perfectly satisfy the PU condition, the use of wavelet function and the multiresolution
properties are attractive for solving crack problems and crack propagation analyses.

Fig. 6 (c) is a schematic illustration of WG discretization for 2D crack propagation analysis. Crack
propagation analysis as well as stationary-crack analysis can be performed easily by relocating the

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 11

enrichment functions without remeshing. Although the authors proposed an adaptive strategy using
the WGM [55], the same spatial resolution is kept in the step-by-step crack propagation analysis
without resetting the spatial resolution. When the crack extends, scaling/wavelet functions within
r. Of the crack tip are enriched using nod€s and C,,. Scaling functions that cross the crack
segment are enriched using nodgs The cells relating to enrichment nod€s, C,, andJ, are

divided into cells and sub-cells to perform accurate numerical integration of the stiffness matrix.
The DOFs related to the enrichment functions are included in the displacements in eg. (35) and the
stiffness matrix is reconstructed as shown in eq. (41). The processes are repeated incrementally in
crack propagation analysis because there are no FE modeling and remeshing procedures. It is thus
easy to perform crack growth simulation employing the concept of the X-FEM.

2.4, Governing equation

The governing equation for the analysis of infinitesimal small strain linearly elastostatic crack
problems using the WGM and X-FEM is presented. The equation of equilibrium is

V-o+pg=0 in Q, (30)
ol - n=0 on T, (31)
ol - n=t on Ty, (32)

u=1u on Iy, (33)

whereo is the Cauchy stress tensor ands the normal of the boundatfy. p is the density of the

body andy is the body force. On the crack surfdcg traction-free condition is assumed. The linear
B-spline wavelet function does not have the so-called Kronecker delta property. Thus, a penalty
formulation is introduced to enforce the displacement boundary condition in eq. (33):

/ e(du”®) : D : e(u"*)d) + a/
Q

u® - (u* —a)dl, = / du® -t dly +/ du"” - pg ds,
Iy Iy Q

(34)

where u™? is the displacement vector amds** is its variation.e(u™?*) and e(du™?) are the
symmetric parts of the displacement gradients and their variatidrienotes the elastic constants,

andc is a penalty constant having a large positive value. Although the large velue for the penalty
constant worsens the condition number of the stiffness matrix, it is easy to implement in the
computer program and to solve linear equations because there are no additional DOFs to the system.

Eq. (25) can be rewritten in matrix form as,
upfy (@) = N (@) UL, (35)

where N "% (z) andU4; are matrices and vectors in terms of the scaling/wavelet functions of eq.
(25). Strain components are obtained by taking derivatives of eq. (35). When the resolutigh level-
scaling/wavelet functions are adopted, the mal¥ix* () can be represented as,

Ni(@) = [®; w92 w8 wiC w0 it gl (36)

where®; and\P§, (i = 1,2, 3) are components represented by the original lgv&taling/wavelet
functions.rbjcs and\Pé’Cw (1 =1,2,3) are represented by tip enrichment functions of nadgsand

C.. ®J* is an enrichment function component of nodgs In addition, & and \I,;;cw can be
expanded as:

CEECE R A il @)
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12 S. TANAKA ET AL.

OHC =[O W W @i (i=1,2,3). (38)

where®’" and \Il;?”", (n=1,---,4) are components in terms of tip enrichment functiensr)
and the original scaling/wavelet functions. In a similar manner, the coefficient velGittsare
written as,

= (vl wf vl by oo ¢ & )’ (39)
wherew; andv;—, (i =1,2,3) are coefficients for the level-scaling/wavelet functions:; and ¢’

are coefficient vectors in terms of the enrichment naddesndC,,. d; is the coefficient vector for
enrichment noded,.

The expression for the displacement vectdf?, (z) in eq. (35) is substituted into eq. (34).
Rearranging the equation, we obtain linear simultaneous equations for the analysis gf level-
scaling/wavelet functions

(K1 + K§) U = Fian + Fi + £ (40)

K, is stiffness matrix, which can be expanded as:

Kj+1 =
Kej2; K<I>j‘l'} K<I>j‘1'3°? K<I>jq>,cb‘ K ¢1.Cuw o K 930w Ko a7
J 377 7373 I3
Rajei 0 Faged Faieos Ketgtow 0 Kgigsou Ka1a7s
J o J JoJ J o J a3
K‘Pg"lfi Ky35Cs Kyag1.Cuw Ky3g3.Cu K gagds
77 J J a 73
K $Cs 405 K §Cs g1.0uw o KyCs y3.0u K 3G 95
J J J J J J J J
KglCuwglCw  Kg10uwgscw HKy1,Cuwgls
J J J J J J
Sym.
Kg3.Cuwg3Cw  Kgd.0uwgds
J J J J
Kq:‘.’-*cp;fs
(41)
The f;, is a force vector which is also expressed as:
fiv1= 5 ()" - Edl (42)
j+1 = Jj+1 t
I
T
o= (Fa; far o Fuy fooo Farew o fagen Jor) (43)

In addition, matrixK’s;, ; and vectorfs, ; are related to the penalty formulations. Wﬁfﬁl is body
force vector, these can also be represented as:

K=o / v (2)T N () dT, (44)
i =o / w8 ()" - wdly, (45)

Ty
0= [ N@"pg a0 (46)

Q

where matrixV; (z) is represented in eq. (35) with levebcaling/wavelet functions.
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 13

3. CALCULATION OF SIFS AND CRACK PROPAGATION ANALYSIS

A technique to calculate SIFs in 2D mixed-mode crack problems and discretization employing the
WGM and X-FEM are briefly presented. The Slkg andK;; are computed using the domain form

of the interaction integral method [60]. The adoption for the analyses of X-FEM and the detailed
descriptions are described [44][45][46Y; and K;; can be evaluated by splitting theintegral

[61]. Fig. 7 (a) is a schematic illustration of the domain integral. Two contbyrandI'; are
defined by including a crack tip.c,. andI'_ denote upper and lower crack surfaces. The domain

form can be written to be 5
J=— / (Wéy; — 01 =2 )‘I(‘”)dA (47)
A Oy

ozl
The areaA is enclosed byl'(=To+T'cy +T'1 +Tc—) and W(=o;j¢;;) is strain energy. We

consider two independent equilibrium states of an elastostatic solid. Statea;" (), o(}))(=J)
is an actual state and StateTQz)(ugz), eg), aﬁ)) is auxiliary state. The auxiliary state is determined
by introducing the asymptotic solution near the crack tip in linear fracture mechanics theory. The

superimposed statg+2) (u{'**) {17? 511+?)) is obtained as

JU+2) = g 4 @) 4 j(0+2) (48)

wherel(1*2) is the interaction integral term for botH") and.J(?). The interaction integral for the
domain integral form is

ou'” dul!) )
1042 = /A loﬁ);;,l 0 G Wy 1) 14, (49)
J

7 17

interaction strain energy. The functionig(is continuous and smooth and has the propgiiy) = 1
onT; andg(x) = 0 onTy. The interaction integral in eq. (49) can be written as

The local coordinate’, is taken to be parallel to the crack fagg+2 (= o} el?) = 6{Ve})) is the

2
1092 = SR K+ K KD, (50)

wherex'!V and K} andk(* and k(% are the SIFs of the two states. In additid#,= £ for the
plane strain condition anfl’ = E/(1 — v?) for the plane stress conditioft is Young’s modulus

andv is Poisson’s ratio. When the auxiliary state is chosen as mode II(T}@. =1, Kﬁ) =0)or
mode I (i.e.,Kf’ =0, Kﬁ) = 1), we obtain the mode | or mode Il SIFs of the actual state as

E/ E/
1 1
K} ) r(1+2), K( )

70+2), (51)
Because the WGM is based on the fixed-grid approach, it is simple to obtain the fuggtipn

and domainA. The WG discretization for the interaction integral is shown in Fig. 7 (b). The grid
points represent the locations of the centers of the lowest-resolution-level scaling functions. Here,
we define the radius; from the crack tip. The function(x) is defined on the grids. The function

q(x) = 1 when the coordinate of the grids withip, andq(x) = 0 otherwise.

Fig. 7 (c) is a schematic illustration of crack propagation analysis. We used the maximum
circumferential criterion [65] to obtain the crack angleThe angle’’ is calculated using the SIFs

K" andK ) according to

1
/o -1-
0" = 2tan 1| %

(52)
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Lowest resolution grid points

o @ Crack tip
& (n+1 step)

“"Crack tip
.(n step)
Crack tip

Crack surface (n-1 step)

v

Area A for domain integral

(a) (b) (c)

Figure 7. Calculation of SIFs [(a) Domain integral form of théntegral, (b) Definition of the gf) function
in the WGM, (c) Crack extension from stepto stepn + 1]

To analyze crack propagation from stefo stepn + 1, the increment in the crack lengtha
is taken to be a specified value which is small compared with the total crack length. As the crack
extends, the enrichment nod€s, C,, and.J, are relocated to fit the crack geometry. The processes
are repeatedly executed in the crack propagation analysis. Fracture toughpesdl be adopted
to check whether the crack has propagate or not. However, the crack path is evaluated without the
use ofK;¢.

4. NUMERICAL EXAMPLES

4.1. Rectangular plate with an edge crack

WG analysis of a rectangular plate with an edge crack is performed. Th& 515 evaluated to
study convergence using domain integral formJeiihtegral of eq. (47). Fig. 8 (a) is a schematic
illustration of the analysis model. The dimensions of the rectangular platd ard¥ = 10 mm.

The length of the edge crack is= 5 mm. Uniform stress is enforced on the upper and lower
edges of the plate. The WG discretization model is shown in Fig. 8 (b). In the analysis, the lowest
resolution level is assumed to be as leyelhe rectangular plate is divided inté x 15 equally
spaced structured cells and the leyalealing function is located on the grid points (i.e., the level-
model). To refine the solution, level+ 1 and levels + 2 models are used. The function locations

of the scaling/wavelet functions are shown in Fig. 4.

4.1.1. Evaluation of the sub-cell refinement approdchthe WGM, cell and sub-cell refinement
approaches are adopted for the numerical integration of the stiffness matrix, as mentioned in
section 2.2. The cell refinement approach is used for this integration, which includes the original
scaling/wavelet functions. The sub-cell refinement approach is used for an accurate integration,
which includes the enrichment functionss and to represent boundary shapes. In this section, the sub-
cell refinement approach for the trigonometric function of na@esndC,, are discussed.

WG crack modeling based on the X-FEM is illustrated in Fig. 8 (c). The enrichment GAd€%,
andJ, are used. Enrichment nodé€s are introduced with the levglscaling function, and’,, are
introduced with level and levels + 1 wavelet functions within-, of the crack tip. The radius, is
set 1.0 mm. The level—+ 2 model forr, =1.0 mm is shown in Fig. 8 (d)/-integral is adopted to
obtain SIFK; using the domain form in eq. (47). The raditysfor evaluating the function ) in
eq. (47) is set to 5.0 mm.

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 15

In the levels model, a level; cell is divided intondiv x ndiv sub-cells. In the levej-model, a
level-j+1 cell is also dividedin a similar way. The number of divisiesv is chosen 2, 4, 8, and 16.
Table | shows the calculated results of Stfr. When finer divisions are adopted, the St will
converge because the stiffness matrix including the enrichment functions are accurately integrated.

bt A structured cell

(a) (b)

[A Enriched node Js (+ Scaling function) h

O Enriched node Cs (+ Scaling function)
X Enriched node Cw (+ Wavelet function))

I I
T T
N NEICHS/N N

1
P =S

i
X
x

T
ISENENY |
M

yi 1.7 L ,;"_)Et
1

Crack segment Cell and sub-cell
1 | | \ refinement approach
I I I

gt

it
i

il i
*

i

Level-j cell

(c) (d)

Figure 8. Rectangular plate with a edge crack [(a) Analysis model to be solved, (b) WG model; (level-
model), (c) Crack modeling using nod€s, C.,, andJs, (d) WG model (level; + 2 model,re = 1.0mm)]

Table I. Convergence study for the sub-cell refinement appreachl.0 mm,n =4)

K, (MPa y"mm)
Division of a sub-cell refinement approach
ndiv x ndiv 1x1 2x2 4x4 8x8 16x16

Level-j model K™ | 13.509 11.534 11.517 11.511 11.508
Level-j+1 model K""™| 12.131 11.822 11.805 11.800 11.798
Level-j+2 model K"“™| 12.010 11.841 11.832 11.829 11.828

4.1.2. Evaluation of tip enrichement functiokide discuss the performance of tip enrichment
functions of node€’; andC,,. Two approaches are examined in terms of the number of enrichments
~vi(x)(i=1,--- ,n)ineq. (26), i.e.pn =1 andn =4. Enrichment noded; are also introduced with
level-j scaling functions in the crack surface area in both analyses. The radsigaried among

0.6, 1.0, 1.4 and 1.8 mm. The sub-cell refinement approaétv = 4) is adopted to accurately
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16 S. TANAKA ET AL.

integrate the stiffness matrix including the enrichment functions.

The numerical results are presented in Fig. 9. In this figure, the horizontal axis gives the number
of degrees of freedom and the vertical axis gives the errdf gfwhich is the difference between
the numerical results and the reference solution [63]. The solid lines represent the results employing
one tip enrichment{ = 1) and the dashed lines represent the results employing four tip enrichments
(n = 4). They represent the error in the models of leyel + 1 andj + 2 for radii r.=0.6, 1.0, 1.4
and 1.8 mm. The uniform-refinement models are obtained by dividing the rectangular plate into
15 x 15, 31 x 31 and63 x 63 equally spaced structured cells and the analyses are performed using
a scaling function only. The enrichment functi@h is set using the nodes nearest the crack tip.
They can be considered as models of leyel + 1 andj + 2 according to the standard fixed-grid
(voxel-type) model employing the X-FEM. The numerical results show that the error decreases as
radiusr. increases. Analyses employing four tip enrichments=(4) are more accurate than for
one-tip enrichmentr/{ = 1) analyses. Additionally, the solutions of models forj + 1 andj + 2
continuously converge although the convergence rate between thg leviemodel and level: + 2
model decreases.

The path independency of theintegral of the domain integral form is now demonstrated. The
level-j, j + 1, andj + 2 model ¢.=1.0 mm) is used and the radiug for evaluating the function
g(x) in eq. (47) is varied from 1.0 to 5.0 mm. Four enrichment functiorrsA] are adopted. The
results are presented in Table Il. The numerical results yielded better accuracy in all cases. Path
independency is slightly impared whep =1.0 mm. In that case, the enrichment functions are
included for the domain integration. Incompleteness of the PU condition seems to influence the
path independency of the domain integration although the SIF is obtained with high accuracy.

10

15x15 uniform ref. -O-r,=0.6 (n=1)
-IFr,=1.0 (n=1)
—A-r,=1.4 (n=1)
=/ r,=1.8 (n=1)
=& Uniform ref. (n=1)
63x63 uniform ref. =@ -r,= 0.6 (n=4)

31x31 uniform ref.

Level j

Error (%)

4B-r,=1.0 (n=4)
1+ RN S~ —A-r_=1.4 (n=4)
A o ~ e
Ax-_\_* ~% —¥-r,= 1.8 (n=4)
Leveljb1 -7 o — Wevel j+2 —dk¢- Uniform ref. (n=4)
1000 10000

Degree of freedoms

Figure 9. Convergence df; for the edge crack problem

Table II. Path independence of the edge crack probters=C.0 mm,n =4)

K, (MPa vmm)
rq (Mm) 1.0 2.0 3.0 4.0 5.0
Level-/ model KN 11.99 11.52 11.51 11.50 11.51
/ Error (%) 0.51 3.47 3.49 3.59 3.53
Num
Level-j+1 model K 11.85 11.81 11.80 11.79 11.80
Error (%) 0.70 1.04 1.07 1.17 1.1
Num
Level-j+2 model K 11.82 11.83 11.83 11.82 11.83
Error (%) 0.92 0.82 0.85 0.92 0.86
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
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4.1.3. Examination of the accuracy for nodal density of tip enrichment func#aasiracy of the
solution with different nodal densities for the tip enrichment functions is discussed. The edge
crack model as shown in Fig. 8 (a) is used. The enrichment n6ye€’,, and J, are adopted.
Enrichment node€’; are introduced with the level-scaling function, and’,, are introduced

with level-j, 5 +1,--- ,5+ 5 and j + 6 wavelet functions. Onlyy; (x)(n = 1) is adopted as the

tip enrichement function for enrichment%, andC,,. Two kinds of approaches are adopted. One

is with constant nodal density, i.e,=0.8 mm. The other is a gradually varying nodal density, i.e.,

r. =1.4 mm for levelj scaling functions and.=1.2, 1.0,---, 0.4, 0.2 mm for level,j + 1, -- -,

j+ 5,7+ 6 wavelet functions, respectively. The function locations at lgvel6 model are shown

in Fig. 10 (a) and (b). The convergence of the &lFis presented in Fig. 11. As a comparison, the
solution of the uniform refinement models {55, 31x31, and 6% 63 equally spaced structured

cell models) are also shown. Both results converge uniformly. In addition, convergence of the
uniform enrichment is slow because many DOFs are needed in accordance with higher wavelet
functions are adopted. In contrast, convergence is improved in the gradual enrichment approach.
Although uniform enrichment is adopted in successive numerical examples, the results would imply
further improvements in accuracy in fracture mechanics analysis employing WGM.

el

(a) (b)

Figure 10. Location of the tip enrichment functions at ley&é model [(a) Nodal density is constant, (b)
Nodal density is gradation]

=0~ Uniform enrichment re=0.8 mm (n=1)
-{1- Gradational enrichment (n=1)
-6 Uniform ref. (n=1)

15x15 uniform ref.

Level j

31x31 uniform ref.

Error (%)

Level j+1
63x63 uniform ref.

Level j+2

Level j+5 .
Level j+3 J Level j+6

1 . 1 )
1000 10000 100000

Degree of freedoms

Figure 11. Convergence & for the edge crack problem (=1)

4.1.4. Condition number of different resolution WG modefe condition number for different
resolution models are evaluated. As the scaling/wavelet functions used are non-orgonal, higher
bandwidths appear when higher resolution wavelet functions are used. Increases in condition
number invite inaccuracies in the numerical solution. In addition, although direct sparse solver [68]
is used in this study, convergence deterioration sometime occurs when iterative solver is adopted in
the solution process. It is then important qualitative evaluation of condition numbers based on the

Copyright®© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(2012)
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bandwidth of the different resolution models. Edge crack model used in section 4.1.3 is examined.
One tip enrichmentr( =1), with radiusr.=0.8 mm and uniform nodal density, is shown in Fig.

10 (a). Eigen value analysis is performed for the stiffness m#rix K, in eqg. (40). The penalty

term K, is only used to suppress the three rigid rotation modes of the stiffness matrix. The condition
number is defined as(K + K,,) = | Amaz/Amin|- Mdmaz @NdA,,;, are the maximum and minimum
eigen-values. The penalty constant in eq. (34) is set=tb.0e+4. The numerical results are listed

in Table. 1ll. When higher wavelet functions are adopted, the condition number becomes larger. In
section 4.1.2 and 4.1.3, the convergence studies are performed based on radius of tip enrichments
and the resolution levels of the wavelet functions. In the numerical results, the convergence rate is
decreased as higher wavelet functions are used in spite of the improvement of the accuracy. The
results imply increase of condition number influence the impairment of the solution in the wavelet
approach. In addition, because the condition number increases when large penalty constant is used,
the constant should be defined appropriately.

Table Ill. Condition numbers for each refinement step£0.8 mm,n =1)

level-/ model level-j+1 model | level-/+2 model | level-/+3 model | level-/+4 model | level-/+5 model
Amax 6.00E+02 1.50E+03 3.08E+03 6.86E+03 1.50E+04 3.08E+04
Amin 9.07E-02 9.06E-02 9.06E-02 2.68E-02 3.19E-03 3.68E-04
k(K+K,) 6.62E+03 1.66E+04 3.39E+04 2.56E+05 4.70E+06 8.37E+07

Employing the proposed approach, the spatial resolution near the crack tip can be easily controlled
using the wavelet functions and enrichment functions. The local refinements reduce the calculation
time relative to applying the uniform-refinement model of the fixed-grid approaches. It is thus found
that WG analyses using X-FEM modeling are effective in solving crack problems.

4.2. Mixed-mode problem

4.2.1. Shear edge crack problem this section, analyses for mixed-mode problem are presented.
Path independency of the interaction integral in eq. (49) is discussed first. The shear edge crack
problem is chosen, as set out in Fig. 12 (a). The size of the rectangular plate and the edge crack
area/W=1/2, H/W=16/7 andW =7 mm. Shear stress=1.0 MPa is enforced at the top of the
plate; the bottom is clamped. Levgkcaling/wavelet functions and levgkl wavelet function are
adopted. The rectangular plate is divided intoxB2 equally spaced structured cell. Leyedealing
functions that cross the crack segment are enriched using nhd@he level; scaling/wavelet
functions andj + 1 wavelet function are enriched in the raditts=1.0 mm for node<”, andC,,.

Four tip enrichmentsn=4) are specified. The sub-cell refinement approaetii(=4) is adopted

to integrate the enrichment functiod andC,,, accurately. The WGM is shown in Fig. 12 (b).

The numerical results for SIHS; and K are listed in Table IV (a) and (b), respectively. The error

is evaluated with the reference solution of [62]. Although path independency is slightly impaired
whenry ==1.0, high accuracy SIFs are obtained in all cases.

4.2.2. Rectangular plate with inclined crack¥G analyses for a rectangular plate with inclined
cracks are presented. Schematic illustrations of the analysis models are presented in Fig. 13 (a)-(d).
A rectangular plate with an inclined crack (model A) is solved as shown in Fig. 13 (a). The width
of the rectangular plate &7 =10 mm and the height 87 =20 mm. The crack length & =6

mm. The crack anglé is varied among 15, 30, 45, 60 and 75 degrees. Uniform siresenforced

at the upper and lower edges of the plate. The WG model (levet-model) for an inclined angle

45 degrees is shown in Fig. 13 (b). The rectangular plate is dividedlinto30 equally spaced
structured cells and a levglscaling function is set on the grids, and the model is assumed to be a
level-j model. To refine the solution, a levgl- 2 model is used. Level-and levels + 1 wavelet
functions are located within,=1.0 mm of each crack tip. Enrichment functio@%, C,, and J,

are used to model the crack. Furthermore, the problem of two cracks emanating from a hole in a
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T

— — — —
a/W=1/2
H/W=16/7
W=7

4_3,|

I Q

(a) (b)

Figure 12. Shear edge crack problem [(a) rectangular plate with a edge crack, (b) WG model {level-
model,r.=1.0)]

Table IV. Path independency for the interaction integral for different resolution models [(ak §lkb)

SIFK ]
(a) K, (MPa Ymm)
rg (mm) 1.0 15 2.0 25 3.0
. KN 33.59 33.49 33.45 3343 33.43
Level-/ model
Error (%)| 1.21 1.50 1.62 1.66 1.68
. Km 33.74 33.72 33.69 33.68 33.67
Level-j+1 model

Error (%)| 0.75 0.83 0.92 0.95 0.96

kNm | 3375 | 3374 | 3371 | 3370 | 3370
Error (%)| 0.73 0.76 0.85 0.88 0.89

Level-/+2 model

(b) K, (MPa vmm)
rg (Mm) 1.0 1.5 2.0 25 3.0
. K, 4.53 4.52 4.51 4.51 4.51
Level-/ model

Error (%)| 0.35 0.58 0.79 0.81 0.79

Num
Level/+1 model K, 453 452 452 452 452
Error (%)| 0.51 0.55 0.65 0.67 0.65

Num
Level/+2 model K, 452 452 452 452 452
Error (%)| 0.55 0.58 0.65 0.67 0.65

rectangular plate (model B) is solved. The analysis model is shown in Fig. 13 (¢). The inclined angle
0 is 45 degrees. The model size and WG discretization are the same as those for model A except for
the hole geometry. The hole diameter is assumed 425 mm. The numerical integration of the
stiffness matrix does not include a sub-cell whose center is judged to be within the hole. Because
the WGM is based on a fixed-grid approach, it is easy to treat an arbitrary shape. The gddius
evaluating a function &) in eq. (49) is set to 1.5 mm for both models.

In the analyses of models A and B, the crack and hole edge intersect the cells. The sub-cell
refinement approach is needed to integrate stiffness matrix including the discontinuous function of
nodesJ; and to represent hole geometry. Number of divisidiw for sub-cell refinement approach
is discussed. Model A and model B £45 degrees) in Fig. 13 (b) and (d) are chosen for the
convergence studies. Four tip enrichment functions-4) are adopted in both cases. Analyses for
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model+, j + 1 andj + 2 are performed. The normalized SIFsandF;; are obtained according to
Fr=K/l\/ma andF;;=Kl\/ma. Here, FN“™ and F*™ are the numerical results faxiv =1, 2,

4, 8, and 16. When finer divisions are adopted, the S}Fand K;; converge because the stiffness
matrix including the enrichment functions and the hole edge representation is accurately integrated.

Table V. Convergence study for the sub-cell approach [(a) normalized'SIf®) normalized SIH ;]

(a)

Division of a sub-cell refinement approach

ndiv x ndiv Fi, Fy 1x1 2x2 4x4 8x8 16x16
Fum 0.689 0.672 0.657 0.657 0.656
Fum 0.628 0.575 0.567 0.566 0.564
fNum 0.667 0.662 0.659 0.658 0.658
U 0.626 0.575 0.568 0.566 0.564
FNum 0.668 0.660 0.659 0.659 0.658
Fyum 0.584 0.567 0.566 0.564 0.566

Level-j model

Level-j+1 model

Level-j+2 model

(b)

Division of a sub-cell refinement approach
ndiv x ndiv Fi. Fi 1x1 2x2 4x4 8x8 16x16
g 0.706 0.671 0.649 0.649 0.648
Fylum 0.607 0.551 0.547 0.542 0.541
Fum 0.684 0.655 0.653 0.652 0.652
Fyhum 0.602 0.555 0.544 0.543 0.541
Fum 0.645 0.653 0.653 0.653 0.652
Fyhum 0.557 0.543 0.543 0.541 0.543

Level-j model

Level-j+1 model

Level-j+2 model

The numerical results for model A and B are shown for the inclined atetel5, 30, 45, 60
and 75 degrees. Divisions for the sub-cell approaetiy( =8) is adopted. The results for model A
are presented in Table VI. In addition, numerical results for model B are shown in Table VII. The
results are compared with the reference solution for model A [63] and for model B [64]. In table
VI and VII, FJ*/ Fll are the reference solutions. They found to be in good agreement with in
both cases. The results show that the StFsand K;; are evaluated accurately and efficiently using
the interaction integral for the domain integral form. The spatial resolution of the jev&l-model
near the crack tip corresponds® x 120 uniform refinements of the fixed-grid model. The length
of a structured cell (levej-cell) is1.=1/6 mm. The ratio of the cell length.§ for the crack length
(2a) is assumed to bd/2a)=1/24. Thus, the SIFs can be calculated when the tafitn is about
1/24 when using in the proposed technique.

Table VI. Normalized SIF$; andF;; for model A

) (deg) FIRef FINum F”Ref F”Num

15 1.2183 | 1.2116 | 0.2725 | 0.2710
30 0.9840 | 0.9793 | 0.4800 | 0.4793
45 0.6611 | 0.6587 | 0.5674 | 0.5643
60 0.3332 | 0.3318 | 0.5022 | 0.5005
75 0.0896 | 0.0894 | 0.2939 | 0.2930

4.3. Analysis of crack propagation in a 2D rectangular plate
Crack propagation analyses for a crack in a rectangular plate are performed. The analysis model
is shown in Fig. 14 (a). The dimensions of the plate 2ifFé = 2H =10 mm. The initial crack
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Figure 13. Rectangular plate with inclined cracks [(a) rectangular plate with a inclined crack (model A), (b)

WG model for model A (levelr + 2 model,r.=1.0), (c) two cracks emanating from a hole in a rectangular
plate (model B), (d) WG model for model B (levgk 2 model,r.=1.0)]

Table VII. Normalized SIFg; and F; for model B

0 (deg) FIRef FINum F”Ref F“Num

15 1.3030 | 1.2913 | 0.2630 | 0.2583
30 1.0380 | 1.0308 | 0.4630 | 0.4616
45 0.6540 | 0.6528 | 0.5410 | 0.5412
60 0.2570 | 0.2608 | 0.4650 | 0.4669
75 1-0.0290 | -0.0225 | 0.2630 | 0.2648

length is assumed to Ba=2 mm. Young’s moduls i#'=3300 MPa, and Poisson’s ratious0.33.

Two kinds of analyses are performed. One is crack propagation analysis under uniform shear loads
(112 = 721=1.0 MPa) as shown in Fig. 14 (b). The other is that under uniform tension leggsl(0

MPa) as shown in Fig. 14 (c). The inclined angle of the initial crack is assumedite-B8 degrees.

The WG model under a shear load is shown in Fig. 15 (a). The rectangular plate is divided into
63 x 63 equally spaced structured cells. A levescaling function is set on the grids. The model

is assumed to be a levglmodel. Levels + 1 models are used to refine the solution of the crack
propagation analyses. Levglwavelet functions are set on the leyetnodel withinr.=0.25 mm

of the crack tip. The enlarged view of the shear load problem is presented in Fig. 15 (b). The
incrementAq of crack propagation is assumed to be 0.35 mm in all steps. The ragdios the
domain integral is assumed to be 0.3 mm. A sub-cell refinement appredeh-£16) is adopted to
accurately integrate the stiffness matrix including the enrichment funofign€’,, and.J.

Numerical results for the shear load problem are shown in Fig. 16 (a) and those for tension
problem are shown in Fig. 16 (b). The crack paths are compared with the experimental results [65].
The ratio of the cell lengthl() to the crack length2u) is assumed to bé(/2a) ~1/25. The ratio
is the same as that in Section 4.2. The crack paths are smooth and in good agreement with the
reference solutions. It is thus found that crack propagation analyses using the WGM and X-FEM
approach are effective.
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Figure 14. Crack propagation analysis for a crack in a rectangular plate [(a) A crack subjected to shear loads,
(b) An inclined crack subjected to uniform tension]
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Figure 15. WG model [(a) WG model and location of enrichment functions, (b) Enlarged view]

(@)

— Reference [65]
o WGM + X-FEM

— Reference [65]
o WGM + X-FEM 0°

X, direction
o

X, direction
o

o O
O O

[e]
U
N

0
X, direction

(a)

-2 0 2 4
X, direction

(b)

Figure 16. Numerical result with for a crack propagation in a 2D rectangular plate [(a) Shear loads problem,
(b) Tension loads problem]

4.4. Crack propagation analysis for a edge crack problem

The propagation of an edge crack problem is analyzed. The experiments and numerical calculation
were performed by Norikura et al. [66]. The numerical calculation is carried out employing the
body force method. The analysis model is shown in Fig. 17 (a). The dimensions of the rectangular
plate are2iW=100 mm,2H =150 mm. The diameter of the hole i%=20 mm. Young’s modulus is

3300 MPa and Poisson’s ratio#s0.33. Uniform stresg=1.0 MPa is enforced on the left side of

the plate as the boundary condition. The initial crack size is assumeddte2®emm. The distance
between the edge crack and the center of the hole=sisc mm. The rectangular plate is divided

into 243 x 162 equally spaced structured cells and the boundary hole is represented employing the
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sub-cell approach. The sub-cell refinement approadbv(= 16) is adopted. The original model is
assumed to be a levglmodel. Levels scaling/wavelet functions are used as the basis functions. The
level-j wavelet functions are used within=1.2 mm of the crack tip. Crack propagation analyzed
for Ae=1.5 and 3.0 mm. Fig. 17 (b) is a schematic illustration of the WG discretization. In addition,
the radius for domain integration is assumed tajel.35 mm in all steps.

The numerical results are shown in Fig. 18. For comparison, the numerical calculation results of
[66] are shown. The ratio of the cell length)(to the crack lengthd) is assumed to bé ./ a) ~1/65.
The ratio is small compared with the case presented in Section 4.2. The crack paths are smooth
and the analyses can be performed with high accuracy. In addition, although the crack paths are
independent of the incremeida in the initial stage, the crack tip penetrates more quickly in the
small increment caseNe=1.5 mm) when the crack tip approaches the hole edge.

e R
2H

Figure 17. A edge crack propagation analysis [(@) Analysis model, (b) WG discretization model for

L=15mm]
30 r
20 +
c
§e)
k3]
O 10
5
!
O —e— Reference [66] (Aa = 5.0)
—0— WGM + XFEM (Aa = 1.5)
—A— WGM + XFEM (Aa = 3.0)
_10 1 1 1 1 1 1
20 30 40 50 60 70 80

X, direction

Figure 18. Numerical results for a edge crack propagation analysis

4.5. Crack propagation analysis for two parallel cracks in a rectangular plate
Crack propagation analysis for two parallel cracks in a rectangular plate is performed. The
experiments and numerical simulation were performed by Higuchi et al. [67]. Schematic illustration
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of the analysis model is shown in Fig. 19 (a). The two cracks are located parallel to each other at
different horizontal and vertical positions. The dimensions of the rectangular pla&8/a200 mm
and2H=300 mm. Uniform stress af=1.0 MPa is enforced on the upper and lower edges. Young’s
modulus isE=210 GPa and Poisson’s ratiois0.3. The details of the two cracks are shown in Fig.

19 (b). The left crack is referred to as crack 1 and the right crack is referred to as crack 2. The tips
of crack 1 are called tip A and tip B as shown in Fig. 19 (b). The crack length541 mm. The
vertical distance i$=9 mm and the horizontal distancefis&=15 mm. The analysis model is divided

into 324 x 216 equally spaced structured cells. The sub-cell refinement appraach € 16) is
adopted. The model is assumed to be a lgweledel, and level- scaling functions are set on the

grid points. In the analysis, levglscaling/wavelet functions are used. The leydlinctions are

used withinr.=0.7 mm of the center of the crack tips. The increm&atin each step is assumed

to be 1.1 mm. The WG crack modeling using X-FEM is shown in Fig. 19 (c). The radius for the
domain integral is assumed to bge=0.9 mm.

Crack paths and behaviors are shown in Figs. 20 (a)-(h). The horizontal distance between
two cracks is denoted as S’, and the vertical distance is denoted 2a’ in these figures. The crack
propagation behaviors are follows. The cracks extend independently from step (a) to step (b). The
cracks overlap in at step (c). The crack tips approach each other from step (d) to step (h). Finally,
the cracks connect. The SIFs of tip A and tip B of crack 1 are shown in Table. VIII. Th&SIF
of tip B takes a maximum value in step (d). At the same time, the/SFslightly increases. The
behaviors of the SIFs are considered to explain the deflection of the crack tips. The crack paths are
compared with the reference solution [67] and found to coincide well. The ratio of the cell length
(I.) to the crack length2@) is assumed to béd(/2a) ~1/24. It is thus considered that the analyses
can be performed with high accuracy.

(0)
T T
: Crack 1 \:
L A B !
| rz_a"iza ‘r/ : H C;ackZE
| omk ™ : s :
: o )
(b)
2W
R R
(e)

Figure 19. Crack propagation for two parallel cracks [(a) Analysis model to be solved, (b) Enlarged view of
the two cracks, (¢) WG model]

5. CONCLUSION

This paper presented fracture mechanics analyses using the WGM and X-FEM for 2D crack
problems. Linear B-spline scaling/wavelet basis functions were used as basis functions. Enrichment
functions were introduced to solve crack problems according to the concept of the X-FEM.
A Heaviside function, which is an enriched linear B-spline scaling function that represents
discontinuous displacements of the crack surfaces, was used. In addition, the asymptotic solution
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Figure 20. Crack paths of the two parallel cracks

Table VIII. SIFs for tip A and tip B (crack 1)

KA Ki K? Ki®
4.87 0.01 4.87 -0.01
5.89 0.03 5.79 0.10
6.98 0.04 6.50 0.19
8.12 0.06 6.84 0.19
9.30 0.06 6.83 0.15
10.50 0.05 6.55 0.08
11.80 0.07 6.14 0.01
13.19 0.04 5.70 -0.03
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near the crack tip was enriched by both a linear B-spline scaling function and wavelet function
to represent the severe stress concentration around the crack tip. Crack propagation analysis was
demonstrated by relocating the enrichment functions without remeshing and rebuilding the analysis
model. Numerical examples of SIFs evaluations and crack propagation analyses were presented to
validate the proposed technique. The WG approach based on the X-FEM was found to be effective
for crack problems and crack propagation analysis.
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