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SUMMARY

This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite
element method. The wavelet Galerkin method is a new methodology to solve partial differential equations
where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain
is divided into equally spaced structured cells and scaling functions are periodically placed throughout the
domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region
having a high stress concentration, such as near a hole or notch. Thus, the method can be considered
a refinement technique in fixed-grid approaches. However, since the basis functions are assumed to be
continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement
discontinuities across the crack surface. In the present research, we introduce enrichment functions in
the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress
concentration around the crack tip by applying the concept of the extended finite element method. This
paper presents the mathematical formulation and numerical implementation of the proposed technique. As
numerical examples, stress intensity factor evaluations and crack propagation analyses for two-dimensional
cracks are presented. Copyrightc⃝ 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fracture mechanics analysis has been widely used to evaluate the integrity, safety and reliability
of damaged structures such as aircraft, ships and power plants. The finite element method (FEM)
is often used as a powerful computational tool to treat such crack problems. Commercial FEM
software (e.g., ABAQUS, MSC.MARC and ANSYS) can produce finite element (FE) models
of two-dimensional (2D) and three-dimensional (3D) cracks and calculate stress intensity factors
(SIFs) using the FE models. However, the modeling of the crack and calculation of SIFs in the FE
procedures still involve complicated tasks even for a skillful engineer, because special FE modeling
is required; e.g., the use of double nodes to represent crack surfaces and a very fine mesh to represent
stress singularities near a crack tip.
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Researchers have developed numerical approaches to improve computational efficiency and
decrease the number of degrees of freedom (DOFs) in fracture mechanics analysis when employing
the FEM. The superposition method was introduced to provide an analytical solution for stress
fields near a crack tip, and FE solutions were superposed to improve the approximation of stress
singularities [1]. Quarter-point elements were developed to collapse one side of the element and shift
the mid-side node in the crack tip direction for isoparametric elements. The quarter-point technique
can represent the (1/

√
r) singularity of a crack tip stress field in an elastic body [2][3][4][5][6].

As an alternative to displacement-based FEMs, hybrid singular elements [7][8][9][10][11] and the
hybrid-Trefftz method [12][13][14] have been proposed. Although almost all research work treated
the simple stationary crack problem, FEM was used to solve crack problem in earlier pioneering
work.

Wavelet methods have been proposed as a powerful mathematical tool for representing a signal or
function, and they have been applied in the research fields of signal processing and image processing
[15][16][17][18][19]. In recent years, it has been found that the wavelet Galerkin method (WGM)
is an efficient tool for solving partial differential equations [20][21][22]. In solid/structural analysis
using the WGM, a scaling function and wavelet function are used to represent displacements or
stresses. The scaling/wavelet functions have so-called multiresolution properties. The functions
can produce a hierarchical structure of solutions. Furthermore, the basis functions have compact
support, and the solution can be refined in regions of high gradients such as stress concentrations
near a hole or notch. There are no remeshing processes in contrast to conventional FEMs. There has
been much research in which the WGM with multiscale and multiresolution properties of the basis
functions has been applied, such as in research on structural analysis [23][24][25][26][27][28], the
solid mechanics problem [29][30][31][33], topology optimization [34][35] and the development of
wavelet finite elements [36][37]. The reproducing kernel (RK) approach using wavelet hierarchical
bases has also been proposed. Liu et al. [38] developed multiple scale methods using RKs and
wavelet analysis. Liu et al. [39] also formulated the moving least-square reproducing kernel
(MLSRK). Fourier analysis being employed to verify the approach. In the literature, the so-called
synchronized convergence phenomenon was presented. Li et al. [40] proposed a synchronized
reproducing kernel (SRK). Furthermore, Li et al. [41][42] proposed aRK hierarchical partition
of unity. A class of basic wavelet functions is adopted to construct the hierarchical partition.
An application to strain localization in inelastic solids is presented in [43] using the hierarchical
partition of unity of RKs.

The multiresolution properties of the wavelet functions enhance high-stress gradients around a
crack tip. However, few papers have solved fracture mechanics problems. Because most WGM basis
functions are assumed to be continuous in the Galerkin formulation, there are difficulties in treating
displacement jumps across the crack surface. In recent years, the extended finite element method (X-
FEM) [44][45][46] has been proposed for the efficient treatment of crack problems in the framework
of FEMs. New basis functions (enrichment functions) based on the concept of ”the partition of unity
(PU)” [47][48] have been introduced, and they easily represent the discontinuity of the crack surface
and the high-stress concentration region near the crack tip. Furthermore, the use of the X-FEM can
enhance crack propagation analysis because crack geometries can be represented by enrichment
functions independently of FE meshes, and the crack propagation analysis is performed without
remeshing. Lee et al. [49] and Nakasumi et al. [50] proposed a coupling technique employing both
the X-FEM and mesh superposition method to effectively treat crack modeling and analyze crack
propagation. In addition, Li et al. [51] solved cohesive crack propagation in brittle materials using
the extended Voronoi-cell finite-element model (X-VCFEM). Employing the method, polynomial
functions, branch functions and multi-resolution wavelet functions are introduced to solve cohesive
crack problems. The X-VCFEM was extended by adding crack merging to the growth mechanism
[52].
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Fracture mechanics analyses using the WGM and X-FEM are presented for 2D crack problems
in this paper. Linear B-spline scaling/wavelet basis functions [53] are used in the WG formulation.
Although the basis functions do not satisfy the so-called orthogonality condition in wavelet theory,
the approach is suitable for solving boundary value problems. The basis functions have an explicit
form, and integration and differentiation can be performed analytically. The basis functions have
compact support. In the WG discretization of solids/structures, the analysis domain is divided into
equally spaced structured cells and the scaling functions are periodically placed on the grid cells.
To represent the boundary of a body, a cell crossing the boundary is divided into equally spaced
sub-cells. The sub-cells that are located in the external region are not involved in the numerical
integration of the stiffness matrix. The method can be used to model a complicated structure
automatically. Furthermore, wavelet functions having different length scales are superposed on the
scaling functions to refine the solution. The method can thus be considered a refinement of the fixed-
grid (voxel-type) approach [54].

In solid/structural analysis using the WGM, researchers sometimes discuss the handling of
general boundaries. The fictitious domain approach [29][34] and the use of boundary-corrected
wavelet functions [30][31] are commonly used. In the former, the analysis domain is extended
to its exterior, but very small stiffness is given to the exterior region. In the latter, the original
scaling/wavelet functions are modified so as to fit the boundary shapes. The wavelet-based finite
element approach [32] is a technique that can avoid handling problems associated with boundaries.
In the authors’ previous study, solid mechanics problems were solved employing the WGM
with B-splines [55]. Although a fictitious domain is often adopted to treat general boundaries in
WGMs, a technique to remove the fictitious domain was proposed in that work. In the present
paper, enrichment functions are introduced to solve crack problems on the basis of the X-FEM.
A Heaviside function is enriched linear B-spline scaling function that represents discontinuous
displacements of the crack surfaces. In addition, an asymptotic solution near the crack tip is enriched
with both a linear B-spline scaling function and wavelet function. Crack propagation analysis is
demonstrated by relocating the enrichment functions without remeshing and rebuilding the analysis
model.

The layout of this paper is as follows. Section 2 presents the WG formulation for the analysis of
crack problems and crack propagation analysis using the WGM and X-FEM. Section 3 presents the
SIF calculation technique and discretization employing the proposed method. Numerical examples
of SIF evaluations and crack propagation analyses are presented to validate the proposed technique
in Section 4. Conclusions are given in Section 5.

2. FRACTURE MECHANICS ANALYSIS USING THE WGM AND X-FEM

2.1. Multiresolution properties and B-spline wavelet bases

Scaling/wavelet functions are used as basis functions in the WGM. There is a hierarchical structure
of the basis functions according to the so-called multiresolution properties in wavelet theory. In this
chapter, the multiresolution properties and B-spline wavelet bases are briefly presented. For more
details, see references [15][16][17][18][19].

The multiresolution properties are represented by a sequence of nested closed subspaces{Vj ; j ∈
Z} in the Hilbert spaceL2(R),

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ⊂ L2(R). (1)

Scaling functions are generated for these subspacesVj . The level-j scaling functionϕj,k(x) can be
defined as

ϕj,k(x) = 2j/2ϕ(2jx− k), j, k ∈ Z (2)
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wherej is a scale parameter andk is a translate parameter. Because the spaceVj lies within the
spaceVj+1, any function inVj is representable by a sum of basis functions ofVj+1 such that

ϕ(x) =
∑
k

pkϕ(2x− k). (3)

This is the so-called two-scale relations of scaling functions and the set of coefficientspk are called
the two-scale sequence. Furthermore, a complementary subspaceWj to subspaceVj is introduced,
such that the subspaceVj+1 is represented by the direct sum ofWj andVj as:

Vj+1 = Vj +Wj . (4)

Wavelet functions can be generated forWj as well as scaling functions. The level-j wavelet function
ψj,k(x) can be written as

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z. (5)

BecauseWj is contained inVj+1, the wavelet function can be expressed in terms of the scaling
function at the next higher scale with a two-scale sequence{qk} as:

ψ(x) =
∑
k

qkϕ(2x− k). (6)

The coefficientspk in eq. (3) andqk in eq. (6) are defined as a set of scaling/wavelet functions.

If a set of wavelet functions,ψj,k(x) in L2(R), form an orthonormal set, the functionψj,k(x)
satisfies:

⟨ψj,k(x)|ψj′,k′(x)⟩ = δjj′δkk′ , (7)

where⟨|⟩ represents the inner product operator andδjj′ is the Kronecker delta. If an orthogonal
wavelet basis set is used, the direct sum of eq. (4) becomes an orthogonal sum,

Vj+1 = Vj

⊕
Wj , Vj ⊥ Wj , (8)

where
⊕

represents the orthogonal sum. Therefore, the spaceL2(R) can be decomposed by the
sum of the subspacesWj as:

L2(R) = · · ·
⊕

Wj−1

⊕
Wj

⊕
Wj+1 · · · . (9)

A functionf(x) ∈ L2(R) is approximated by its projectionPjf(x)(= fj(x)) onto the spaceVj as:

Pjf(x) =
∑
k

aj,kϕj,k(x). (10)

The Pjf(x) approachesf(x) as j → ∞. If the scaling functionsϕj,k(x) are orthogonal, the
coefficientsaj,k are obtained as follows:

aj,k = ⟨ϕj,k(x)|f(x)⟩. (11)

The difference betweenf(x) ∈ Vj+1 andPjf(x) can be decomposed over the set ofψj,k:

f(x)− Pjf(x) =
∑
k

bj,kψj,k(x) ∈Wj , (12)

wherebj,k are the coefficients of the wavelet function. If theψj,k(x) are orthogonal, the coefficients
are obtained as follows:

bj,k = ⟨ψj,k(x)|f(x)⟩. (13)
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Equations. (10) and (12) are used repeatedly with successive(j, k) values, and we thus have a
hierarchical structure of the scaling/wavelet functions:

fj+1(x) =
∑
k

aj0,kϕj0,k(x) +

j∑
i=j0

∑
k

bi,kψi,k(x), (14)

where ϕj0,k(x), aj0,k are scaling functions with coefficients at levelj0, and ψi,k(x), bi,k(i =
j0, · · · , j) are wavelet functions with coefficients at levelj0 to levelj. As another representation of
eq. (14), the functionfj+1(x) can be derived by the superposition of level-j + 1 scaling functions
ϕj+1,k(x) with coefficientsaj+1,k and using eq. (10), as:

fj+1(x) =
∑
k

aj+1,kϕj+1,k(x). (15)

This is the so-called multiresolution property of the scaling/wavelet functions in wavelet theory. The
theory can be expanded to 2D and 3D problems in a straightforward manner. The tensor product
of the 1D scaling/wavelet functions is one of the existing techniques for constructing 2D and 3D
scaling/wavelet functions. The 2D representation is discussed in next section.

So far, several pairs of scaling/wavelet functions have been proposed [15][16][17][19]. B-spline
wavelet bases are adopted in this research. Because the B-spline wavelet bases are bi-orthogonal
wavelet family, the bases do not satisfy the orthogonality condition. The detail descriptions of the
B-spline bases are written in [15][53]. On the other hand, it is possible to solve solid/structural
problems in the WG formulation because the basis function has a simple form and compact
support and is easy to differentiate and integrate. Them-th-order B-spline scaling/wavelet bases
are represented by piecewise(m− 1)-th-order polynomial functions, and their derivatives up to
(m− 2)-th-order are continuous. The 1Dm-th-order B-spline scaling function can be written as a
power series:

ϕ(m)(x) =
1

(m− 1)!

m∑
k=0

(−1)k mCk(x− k)m−1
+ (16)

x+ = max{0, x} (17)

xm+ = (x+)
m, (18)

where the function support is

supp ϕ(m) = [0,m]. (19)

The two-scale sequencepk(k = 0, · · · ,m) of the B-spline scaling functionϕ(m)(x) in eq. (3) is

pk =
1

2m−1 mCk (20)

In a similar way, the B-spline waveletψ(m)(x) has a two-scale sequenceqk(k = 0, · · · , 3m− 2) in
eq. (6):

qk =
(−1)k

2m−1

m∑
l

mClϕ
(2m)(k + 1− l). (21)

The function support is

supp ψ(m) = [0, 2m− 1]. (22)

In this analysis, linear (m=2) B-spline scaling/wavelet functions are used as wavelet Galerkin basis
functions. The function forms are shown in Figs. 1 (a) and (b).
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Figure 1. 1D linear (second-order) B-spline bases [(a) Scaling function, (b) Wavelet function]

2.2. Standard displacement description in a 2D WGM

Before introducing displacement fields for a crack problem in the WGM, displacement
representation without a crack is first shown. The level-j + 1 2D displacement vectoruj+1(x) can
be written with the level-j linear (second-order) B-spline scaling/wavelet functions as:

uj+1(x) =
∑
k,l

uj,k,lΦj,k,l(x) +

3∑
i=1

∑
k,l

vi
j,k,lΨ

i
j,k,l(x), (23)

whereΦj,k,l(x) andΨi
j,k,l(x) are level-j scaling/wavelet functions, anduj,k,l andvi

j,k,l (i = 1, 2, 3)
are their coefficients. Subscriptsk and l (=integers) are the translation parameters. The wavelet
functions can be set locally on the scaling functions where high-gradients representation is needed.
The 2D scaling/wavelet functions are described by the tensor product of 1D scaling/wavelet
functions as

Φj,k,l(x) = ϕ
(2)
j,k(x1)ϕ

(2)
j,l (x2)

Ψ1
j,k,l(x) = ϕ

(2)
j,k(x1)ψ

(2)
j,l (x2)

Ψ2
j,k,l(x) = ψ

(2)
j,k (x1)ϕ

(2)
j,l (x2)

Ψ3
j,k,l(x) = ψ

(2)
j,k (x1)ψ

(2)
j,l (x2), (24)

whereϕ(2)j,k(x1) andϕ(2)j,l (x2) are 1D linear B-spline scaling functions andψ(2)
j,k (x1) andψ(2)

j,l (x2)
are the wavelet functions for thex1 and x2 directions respectively. The 2D linear B-spline
scaling/wavelet basis functions are shown in Figs. 2 (a)-(d). The integration domains of the 2D
level-j scaling/wavelet functions are shown in Figs. 3(a)-(d). To refine the solution, 2D wavelet
functions of levelsj + 1, j + 2, · · · can be added in eq. (23). In the 2D representation, the wavelet
coefficients are organized in three quadrants corresponding to the tensor productsϕ

(2)
j,k(x1)ψ

(2)
j,l (x2),

ψ
(2)
j,k (x1)ϕ

(2)
j,l (x2), andψ(2)

j,k (x1)ψ
(2)
j,l (x2) in the level-j + 1 displacement vector of eq. (23). We have

obtained a one-to-one decomposition of the displacements into the sum of its lower resolution
approximation plus the residual associated with the wavelet coefficients. This decomposition can
be iterated on the lower resolution approximation of the displacement to yield a multi-level wavelet
decomposition.

Function location with different resolution levels of the linear B-spline scaling/wavelet functions
are shown in Fig. 4 (a), and the 1D arrangements alongx1 direction are shown in Fig. 4 (b).
The symbols represent the centers of the scaling/wavelet functions. Analysis for a level-j scaling
function is assumed as the original (lowest) resolution level, and the model is called the ”level-j
model”. The level-j scaling functions are located at the corners of the cells. In the first refinement,
level-j wavelet functions are added locally to the level-j model. The centers of the wavelet functions
are located between the level-j scaling functions. We thus call the model the ”level-j + 1 model”.
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Prepared usingnmeauth.cls DOI: 10.1002/nme



FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 7

In a similar manner, level-j + 2, level-j + 3 · · · wavelet functions are added in the second and third
· · · refinements where high spatial resolution is needed. The analysis models are called the ”level-
j + 2 model”, ”level-j + 3 model” · · · , respectively. It is thus considered that WGM is an effective
refinement technique for the fixed-grid (voxel-type) approach [54].

In fracture mechanics analysis using the WGM, two approaches are adopted to accurately
integrate the stiffness matrix. One is the cell refinement approach and the other is sub-cell refinement
approach. The wavelet function is piecewise-linear and the function support is halved when the
resolutionj → j + 1, as shown in Fig. 4 (b). In the cell refinement approach, a structured cell is
divided to accurately integrate the stiffness matrix based on the locations of the scaling/wavelet
functions. Here, we define the size/resolution of the structured cells. In Fig. 4 (a), the rectangular
region surrounded by the center of level-j scaling function is called the ”level-j cell”. A level-j cell
is divided into 2×2, 4×4, and 8×8, · · · cells for the level-j + 1, level-j + 2, level-j + 3, · · · models;
the cells are called ”level-j+1 cell”, ”level-j+2 cell”, and ”level-j+3 cell”, · · · . Cell refinement can
be performed locally where wavelet functions are located.

In addition, a sub-cell refinement approach is adopted to accurately integrate the stiffness matrix
including enrichment functions and to represent the boundary shapes. Further division is performed
to the ”level-j cell”, ”level-j + 1 cell”, and ”level-j + 2 cell”, · · · . For example, an illustration of a
4×4 sub-cells division is shown in Fig. 4 (c). The sub-cell refinement approach can also be adopted
where the refinements are needed. In both refinement approaches, 2×2 Gauss quadrature is adopted
based on the cells and sub-cells.

x1
x2

(a) (b) (c) (d)

Figure 2. 2D basis functions [(a)Φj,k,l(x), (b)Ψ1
j,k,l(x), (c)Ψ2

j,k,l(x), (d)Ψ3
j,k,l(x)]

(a)

Level-j scaling function

(b) (c) (d)

x1

x2

Level-j wavelet function Level-j wavelet function Level-j wavelet function

Figure 3. Integration domains for level-j scaling/wavelet functions [(a)Φj,k,l(x), (b) Ψ1
j,k,l(x), (c)

Ψ2
j,k,l(x), (d)Ψ3

j,k,l(x)]

2.3. Fracture mechanics analysis using the WGM and X-FEM

In fracture mechanics analysis using the WGM, displacements or stresses are represented by
the superposition of scaling/wavelet functions as shown in eq. (23). The wavelet functions with
different length scales can be superposed locally on the scaling functions. High stress gradients
near a crack tip can be represented effectively by superposing the wavelet functions. However, the
displacements or stresses are assumed continuous in the WG discretization, and it is difficult to treat
the displacement discontinuities of crack surfaces. In this study, enrichment functions are introduced

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme



8 S. TANAKA ET AL.

(Original resolution) (1st refinement)

Refinement zone

 Level-j model Level-j+1 model

Level-j cell

(2nd refinement)
Level-j+2 model

(3rd refinement)
Level-j+3 model

(a)

x1

x2

Level-j wavelets Level-j+1 wavelets Level-j+2 waveletsLevel-j scaling function

Level-j+1 cell Level-j+2 cell Level-j+3 cell

Level-j cell

(c)

x1

x2

Level-j+1 cell Level-j+2 cell Level-j+3 cell

Level-j wavelets Level-j+1 wavelets Level-j+2 waveletsLevel-j scaling function
(b)

Gauss point

4x4 sub-cell division 4x4 sub-cell division 4x4 sub-cell divison 4x4 sub-cell division

Figure 4. Refinements using wavelet functions [(a) Location of scaling/wavelet functions in 2D case and
cells, (b) Location of scaling/wavelet functions in the 1D case, (c) A sub-cell refinement approach]

employing the concept of the X-FEM.

The X-FEM was proposed by [44][45] to solve crack problems. A standard FE approximation
is enriched near a crack by incorporating both discontinuous fields and near-tip asymptotic fields
employing the partition-of-unity (PU) method [47][48]. The method can model crack geometry
independently of the FE mesh. Furthermore, crack propagation analysis can be performed easily by
only relocating the enrichment functions appropriately. There are no remeshing processes. In the
WG discretization, two kinds of enrichment functions are introduced as well as the X-FEM.

WG discretization for a crack problem is now described. A schematic illustration of a crack
emanating from a hole edge in an elastic solid body is shown in Fig. 5(a). The analysis domain
and boundary are respectively denotedΩ andΓ. The traction conditiont is enforced onΓt and
the displacement boundary conditionu is enforced onΓu. The crack surfaceΓc is assumed to be
traction-free. The upper-side and lower-side domains of the crack are denotedΩ+ andΩ−. The WG
discretization is shown in Fig. 5(b). Equally spaced structured cells are used in the discretization.
To accurately integrate the stiffness matrix and to represent the boundary of the body and the hole
edge, cell and sub-cell refinement approaches discussed in the previous section are adopted. A cell
and sub-cell, whose center is judged to be in the external domain, is not involved in the numerical
integration; hence, the boundary of the body can be accurately represented. In this section, numerical
formulation with level-j scaling/wavelet functions is described.

An enlarged view of the region near the crack tip is shown in Fig. 6(a). The(r, θ) coordinate
system has its origin at the crack tip. The(r, 0) direction is oriented into the body and parallel to

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
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Figure 5. Crack problem for the WGM [(a) Analysis model with a crack emanating from a hole, (b) WG
discretization]
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Figure 6. Enlarged view of the crack region [(a) Local coordinates(r, θ) relative to the crack tip, (b) WG
modeling for a stationary crack, (c) WG modeling for crack propagation analysis]

the crack face. Crack modeling with the enrichment functions is shown in Fig. 6(b). The locations
of scaling/wavelet functions and enrichment functions are presented. Here, we show an enrichment
technique for a crack employing level-j scaling/wavelet functions. An enrichment function that
represents the asymptotic solution near crack tip is adopted for both scaling functions and wavelet
functions. Hereafter, a set of enrichment nodes is referred to as ”nodesCs” for the scaling functions
and ”nodesCw” for the wavelet functions. The enrichment function that represents displacement
jumps of the crack surface is used for scaling functions only. A set of enrichment nodes is referred
to as ”nodesJs”. The nodesCs, Cw andJs are presented in Fig. 6(b). In the crack modeling,
level-j scaling functions are periodically set on the grids in the analysis domain. To accurately
represent the severe stress concentration near the crack tip, the centers of the wavelet functions that
are located withinre of the crack tip are used. In addition, the center of the scaling/wavelet function
within re of the crack tip is enriched as nodesCs andCw. Although the wavelet coefficients are
known to be used to predict where the refiement is needed in multiresolution analyses [27][35],
radiusre is introduced to refine the solution in this study. Furthermore, scaling functions belonging
the crack surface are enriched as nodesJs except for the nodesCs andCw. Following the above
discussion, the enriching terms are added to the level-j + 1 displacementsuj+1(x) in eq. (23). The
displacementuwx

j+1(x) is written as

uwx
j+1(x) =

∑
k,l

uj,k,lΦj,k,l(x) +

3∑
i=1

∑
k.l

vi
j,k,lΨ

i
j,k,l(x) +

∑
k,l∈Cs

Φj,k,l(x)

4∑
n=1

γn(x)b
n
j,k,l

+

3∑
i=1

∑
k,l∈Cw

Ψi
j,k,l(x)

4∑
n=1

γn(x)c
n
j,k,l +

∑
k,l∈Js

H(x)Φj,k,l(x)dj,k,l. (25)
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In eq. (25), the first and second terms represent standard WG displacements as shown by eq. (23).
The third and fourth terms are enrichment terms that represent the severe stress concentration around
a crack tip. The third term is the enrichment with scaling functions (nodesCs), and the fourth
term is the enrichment with wavelet functions (nodesCw). bnj,k,l andcnj,k,l (n = 1, · · · , 4) are the
coefficients of the enrichment terms.γn(x) (n = 1, · · · , 4) are functions that the asymptotic solution
near the crack tip as:

γ1(x) =
√
r sin

θ

2
, γ2(x) =

√
r cos

θ

2
,

γ3(x) =
√
r sin

θ

2
sin θ, γ4(x) =

√
r cos

θ

2
sin θ, (26)

where(r, θ) are the local polar coordinates at the crack tip in Fig. 6(b). The fifth term represents
discontinuous displacement of the crack surface enriched with level-j scaling functions.H(x) is
a Heaviside discontinuous function anddj,k,l denotes coefficients. The scaling functions across
the crack surface in the support area are enriched nodesJs except for nodesCs andCw. The
discontinuous functionH(x) is

H(x) =

{
1, (x ∈ Ω+)
−1, (x ∈ Ω−)

, (27)

whereΩ+ andΩ− are the upper and lower sides of the crack. The integration domains of the
enrichment nodesCs,Cw and Js with the scaling/wavelet functions are the same as those of
the original scaling/wavelet functions, as shown in Fig. 3(a)-(d). The enrichment terms have
discontinuity and trigonometric functions. The sub-cell refinement approach is adopted to accurately
integrate the stiffness matrix including the enrichment functions and the representation of the
boundaries. However, fine sub-cell refinement provides low computational efficiency; the relation
between the number of sub-cell divisions and the accuracy of the solution is discussed in the
numerical examples.

The PU property of this approach is briefly described. The enrichment of the discontinuous
functionH(x) in eq. (25) is the same as that of the standard X-FEM formulation. Next, we discuss
the enrichment of the asymptotic solution near the crack tip (tip enrichments) when scaling/wavelet
functions are used. Eq. (25) is rearranged in terms of nodesCs andCw to obtain the following
relation:

uwx
j+1(x) =

∑
k,l

Φj,k,l(x)

uj,k,l +
∑

k,l∈Cs

4∑
n=1

γn(x)b
n
j,k,l


+

3∑
i=1

∑
k,l

Ψi
j,k,l(x)

vi
j,k,l +

∑
k,l∈Cw

4∑
n=1

γn(x)c
n
j,k,l

 , (28)

where the first and second terms are enrichments for the scaling function and wavelet functions,
respectively. We check the PU property of the scaling/wavelet functions:∑

k,l∈Ω

Φj,k,l(x) = 1,
∑
k,l∈Ω

Ψi
j,k,l(x) ̸= 1 (i = 1, · · · , 3). (29)

Linear B-spline scaling functions have the PU property, but the wavelet functions do not. The lack
of PU sometimes generates a loss of accuracy, e.g., [56][57][58]. Although the proposed technique
cannot perfectly satisfy the PU condition, the use of wavelet function and the multiresolution
properties are attractive for solving crack problems and crack propagation analyses.

Fig. 6 (c) is a schematic illustration of WG discretization for 2D crack propagation analysis. Crack
propagation analysis as well as stationary-crack analysis can be performed easily by relocating the
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FRACTURE MECHANICS ANALYSIS USING WGM AND X-FEM 11

enrichment functions without remeshing. Although the authors proposed an adaptive strategy using
the WGM [55], the same spatial resolution is kept in the step-by-step crack propagation analysis
without resetting the spatial resolution. When the crack extends, scaling/wavelet functions within
re of the crack tip are enriched using nodesCs andCw. Scaling functions that cross the crack
segment are enriched using nodesJs. The cells relating to enrichment nodesCs, Cw andJs are
divided into cells and sub-cells to perform accurate numerical integration of the stiffness matrix.
The DOFs related to the enrichment functions are included in the displacements in eq. (35) and the
stiffness matrix is reconstructed as shown in eq. (41). The processes are repeated incrementally in
crack propagation analysis because there are no FE modeling and remeshing procedures. It is thus
easy to perform crack growth simulation employing the concept of the X-FEM.

2.4. Governing equation

The governing equation for the analysis of infinitesimal small strain linearly elastostatic crack
problems using the WGM and X-FEM is presented. The equation of equilibrium is

∇ · σ + ρg = 0 in Ω, (30)

σT · n = 0 on Γc, (31)

σT · n = t̄ on Γt, (32)

u = ū on Γu, (33)

whereσ is the Cauchy stress tensor andn is the normal of the boundaryΓ. ρ is the density of the
body andg is the body force. On the crack surfaceΓc, traction-free condition is assumed. The linear
B-spline wavelet function does not have the so-called Kronecker delta property. Thus, a penalty
formulation is introduced to enforce the displacement boundary condition in eq. (33):∫
Ω

ϵ(δuwx) : D : ϵ(uwx)dΩ+ α

∫
Γu

δuwx · (uwx − ū) dΓu =

∫
Γt

δuwx · t̄ dΓt +

∫
Ω

δuwx · ρg dΩ,

(34)

whereuwx is the displacement vector andδuwx is its variation.ϵ(uwx) and ϵ(δuwx) are the
symmetric parts of the displacement gradients and their variations.D denotes the elastic constants,
andα is a penalty constant having a large positive value. Although the large velue for the penalty
constant worsens the condition number of the stiffness matrix, it is easy to implement in the
computer program and to solve linear equations because there are no additional DOFs to the system.

Eq. (25) can be rewritten in matrix form as,

uwx
j+1(x) = Nwx

j+1(x)U
wx
j+1, (35)

whereNwx
j+1(x) andUwx

j+1 are matrices and vectors in terms of the scaling/wavelet functions of eq.
(25). Strain components are obtained by taking derivatives of eq. (35). When the resolution level-j
scaling/wavelet functions are adopted, the matrixNwx

j+1(x) can be represented as,

Nwx
j+1(x) =

[
Φj Ψ1

j Ψ2
j Ψ3

j ΦCs

j Ψ1,Cw

j Ψ2,Cw

j Ψ3,Cw

j ΦJs

j

]
, (36)

whereΦj andΨi
j , (i = 1, 2, 3) are components represented by the original level-j scaling/wavelet

functions.ΦCs

j andΨi,Cw

j (i = 1, 2, 3) are represented by tip enrichment functions of nodesCs and

Cw. ΦJs

j is an enrichment function component of nodesJs. In addition,ΦCs

j andΨi,Cw

j can be
expanded as:

ΦCs

j =
[
Φγ1

j Φγ2

j Φγ3

j Φγ4

j

]
, (37)
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Ψi,Cw

j =
[
Ψi,γ1

j Ψi,γ2

j Ψi,γ3

j Ψi,γ4

j

]
, (i = 1, 2, 3). (38)

whereΦγn

j andΨi,γn

j , (n = 1, · · · , 4) are components in terms of tip enrichment functionsγn(x)
and the original scaling/wavelet functions. In a similar manner, the coefficient vectorsUwx

j+1 are
written as,

Uwx
j+1 =

(
uj v1

j v2
j v3

j bj c1j c2j c3j dj

)T
, (39)

whereuj andvi
j , (i = 1, 2, 3) are coefficients for the level-j scaling/wavelet functions.bj andcij

are coefficient vectors in terms of the enrichment nodesCs andCw. dj is the coefficient vector for
enrichment nodesJs.

The expression for the displacement vectoruwx
j+1(x) in eq. (35) is substituted into eq. (34).

Rearranging the equation, we obtain linear simultaneous equations for the analysis of level-j
scaling/wavelet functions

(Kj+1 +Kα
j+1)U

wx
j+1 = fj+1 + fα

j+1 + fρg
j+1. (40)

Kj+1 is stiffness matrix, which can be expanded as:

Kj+1 =

KΦjΦj
K

ΦjΨ
1
j

· · · K
ΦjΨ

3
j

K
ΦjΦ

Cs
j

K
ΦjΨ

1,Cw
j

· · · K
ΦjΨ

3,Cw
j

K
ΦjΦ

Js
j

K
Ψ1

jΨ1
j

· · · K
Ψ1

jΨ3
j

K
Ψ1

jΦ
Cs
j

K
Ψ1

jΨ
1,Cw
j

· · · K
Ψ1

jΨ
3,Cw
j

K
Ψ1

jΦ
Js
j

. . . · · · · · · · · · · · · · · · · · ·
K

Ψ3
jΨ3

j
K

Ψ3
jΦ

Cs
j

K
Ψ3

jΨ
1,Cw
j

· · · K
Ψ3

jΨ
3,Cw
j

K
Ψ3

jΦ
Js
j

K
Φ

Cs
j Φ

Cs
j

K
Φ

Cs
j Ψ

1,Cw
j

· · · K
Φ

Cs
j Ψ

3,Cw
j

K
Φ

Cs
j Φ

Js
j

K
Ψ

1,Cw
j Ψ

1,Cw
j

· · · K
Ψ

1,Cw
j Ψ

3,Cw
j

K
Ψ

1,Cw
j Φ

Js
j

Sym. . . . · · · · · ·
K

Ψ
3,Cw
j Ψ

3,Cw
j

K
Ψ

3,Cw
j Φ

Js
j

K
Φ

Js
j Φ

Js
j


.

(41)
Thefj+1 is a force vector which is also expressed as:

fj+1 =

∫
Γt

Nwx
j+1(x)

T · t̄ dΓt (42)

fj+1 =
(
fΦj fΨ1

j
· · · fΨ3

j
fΦCs

j
fΨ1,Cw

j
· · · fΨ3,Cw

j
fΦJs

j

)T
. (43)

In addition, matrixKα
j+1 and vectorfα

j+1 are related to the penalty formulations. Withfρg
j+1 is body

force vector, these can also be represented as:

Kα
j+1 = α

∫
Γu

Nwx
j+1(x)

TNwx
j+1(x) dΓu (44)

fα
j+1 = α

∫
Γu

Nwx
j+1(x)

T · ū dΓu (45)

fρg
j+1 =

∫
Ω

Nwx
j+1(x)

T · ρg dΩ (46)

where matrixNwx
j+1(x) is represented in eq. (35) with levelj scaling/wavelet functions.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2012)
Prepared usingnmeauth.cls DOI: 10.1002/nme
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3. CALCULATION OF SIFS AND CRACK PROPAGATION ANALYSIS

A technique to calculate SIFs in 2D mixed-mode crack problems and discretization employing the
WGM and X-FEM are briefly presented. The SIFsKI andKII are computed using the domain form
of the interaction integral method [60]. The adoption for the analyses of X-FEM and the detailed
descriptions are described [44][45][46].KI andKII can be evaluated by splitting theJ-integral
[61]. Fig. 7 (a) is a schematic illustration of the domain integral. Two contoursΓ0 andΓ1 are
defined by including a crack tip.ΓC+ andΓC− denote upper and lower crack surfaces. The domain
form can be written to be

J = −
∫
A

(Wδ1i − σij
∂uj
∂x′1

)
q(x)

∂x′i
dA. (47)

The areaA is enclosed byΓ(= Γ0 + ΓC+ + Γ1 + ΓC−) and W (=σijϵij) is strain energy. We
consider two independent equilibrium states of an elastostatic solid. State 1J (1)(u

(1)
i , ϵ

(1)
ij , σ

(1)
ij )(=J)

is an actual state and State 2J (2)(u
(2)
i , ϵ

(2)
ij , σ

(2)
ij ) is auxiliary state. The auxiliary state is determined

by introducing the asymptotic solution near the crack tip in linear fracture mechanics theory. The
superimposed stateJ (1+2)(u

(1+2)
i , ϵ

(1+2)
ij , σ

(1+2)
ij ) is obtained as

J (1+2) = J (1) + J (2) + I(1+2), (48)

whereI(1+2) is the interaction integral term for bothJ (1) andJ (2). The interaction integral for the
domain integral form is

I(1+2) =

∫
A

[
σ
(1)
ij

∂u
(2)
i

∂x′1
+ σ

(2)
ij

∂u
(1)
i

∂x′1
−W (1+2)δ1j

]
∂q(x)

∂x′j
dA. (49)

The local coordinatex′1 is taken to be parallel to the crack face.W (1+2)(= σ
(1)
ij ϵ

(2)
ij = σ

(2)
ij ϵ

(1)
ij ) is the

interaction strain energy. The function q(x) is continuous and smooth and has the propertyq(x) = 1
onΓ1 andq(x) = 0 onΓ0. The interaction integral in eq. (49) can be written as

I(1+2) =
2

E′ (K
(1)
I K

(2)
I +K

(1)
II K

(2)
II ), (50)

whereK(1)
I andK(1)

II andK(2)
I andK(2)

II are the SIFs of the two states. In addition,E′ = E for the
plane strain condition andE′ = E/(1− ν2) for the plane stress condition.E is Young’s modulus
andν is Poisson’s ratio. When the auxiliary state is chosen as mode I (i.e.,K

(2)
I = 1,K

(2)
II = 0) or

mode II (i.e.,K(2)
I = 0,K

(2)
II = 1), we obtain the mode I or mode II SIFs of the actual state as

K
(1)
I =

E′

2
I(1+2), K

(1)
II =

E′

2
I(1+2). (51)

Because the WGM is based on the fixed-grid approach, it is simple to obtain the functionq(x)
and domainA. The WG discretization for the interaction integral is shown in Fig. 7 (b). The grid
points represent the locations of the centers of the lowest-resolution-level scaling functions. Here,
we define the radiusrd from the crack tip. The functionq(x) is defined on the grids. The function
q(x) = 1 when the coordinate of the grids withinrd, andq(x) = 0 otherwise.

Fig. 7 (c) is a schematic illustration of crack propagation analysis. We used the maximum
circumferential criterion [65] to obtain the crack angleθ′. The angleθ′ is calculated using the SIFs
K

(1)
I andK(1)

II according to

θ′ = 2tan−1 1

4

K
(1)
I

K
(1)
II

±

√√√√(K(1)
I

K
(1)
II

)2

+ 8

 . (52)
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Crack Tip

Γ

n

x’1

Γ0

n

A

Ω

C+

Area A for domain integral

ΓC-

Γ

n

A

C+ΓΓ

ΓC-ΓΓ

dr

(a) (b)

Crack surface

Γ1

Lowest resolution grid points

q(x) = 1

q(x) = 0

∆a

∆
a

θ'

Crack tip
(n-1 step)

Crack tip
(n step)

Crack tip
(n+1 step)

(c)

Figure 7. Calculation of SIFs [(a) Domain integral form of theJ-integral, (b) Definition of the q(x) function
in the WGM, (c) Crack extension from stepn to stepn+ 1]

To analyze crack propagation from stepn to stepn+ 1, the increment in the crack length∆a
is taken to be a specified value which is small compared with the total crack length. As the crack
extends, the enrichment nodesCs, Cw andJs are relocated to fit the crack geometry. The processes
are repeatedly executed in the crack propagation analysis. Fracture toughnessKIC will be adopted
to check whether the crack has propagate or not. However, the crack path is evaluated without the
use ofKIC .

4. NUMERICAL EXAMPLES

4.1. Rectangular plate with an edge crack

WG analysis of a rectangular plate with an edge crack is performed. The SIFKI is evaluated to
study convergence using domain integral form ofJ-integral of eq. (47). Fig. 8 (a) is a schematic
illustration of the analysis model. The dimensions of the rectangular plate areH =W = 10 mm.
The length of the edge crack isa = 5 mm. Uniform stress is enforced on the upper and lower
edges of the plate. The WG discretization model is shown in Fig. 8 (b). In the analysis, the lowest
resolution level is assumed to be as levelj. The rectangular plate is divided into15× 15 equally
spaced structured cells and the level-j scaling function is located on the grid points (i.e., the level-j
model). To refine the solution, level-j + 1 and level-j + 2 models are used. The function locations
of the scaling/wavelet functions are shown in Fig. 4.

4.1.1. Evaluation of the sub-cell refinement approachIn the WGM, cell and sub-cell refinement
approaches are adopted for the numerical integration of the stiffness matrix, as mentioned in
section 2.2. The cell refinement approach is used for this integration, which includes the original
scaling/wavelet functions. The sub-cell refinement approach is used for an accurate integration,
which includes the enrichment functionss and to represent boundary shapes. In this section, the sub-
cell refinement approach for the trigonometric function of nodesCs andCw are discussed.

WG crack modeling based on the X-FEM is illustrated in Fig. 8 (c). The enrichment nodesCs,Cw

andJs are used. Enrichment nodesCs are introduced with the level-j scaling function, andCw are
introduced with level-j and level-j + 1 wavelet functions withinre of the crack tip. The radiusre is
set 1.0 mm. The level-j + 2 model forre =1.0 mm is shown in Fig. 8 (d).J-integral is adopted to
obtain SIFKI using the domain form in eq. (47). The radiusrd for evaluating the function q(x) in
eq. (47) is set to 5.0 mm.
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In the level-j model, a level-j cell is divided intondiv × ndiv sub-cells. In the level-j model, a
level-j+1 cell is also dividedin a similar way. The number of divisionsndiv is chosen 2, 4, 8, and 16.
Table I shows the calculated results of SIFKI . When finer divisions are adopted, the SIFKI will
converge because the stiffness matrix including the enrichment functions are accurately integrated.

H

W

σ22

a

(a) (b)

(c)

A structured cell

Level-j cell

Crack segment

re

Enriched node Cs (+ Scaling function)

Enriched node Js (+ Scaling function)

Enriched node Cw (+ Wavelet function)

(d)

Cell and sub-cell 

refinement approach

Figure 8. Rectangular plate with a edge crack [(a) Analysis model to be solved, (b) WG model (level-j
model), (c) Crack modeling using nodesCs, Cw, andJs, (d) WG model (level-j + 2 model,re = 1.0mm)]

Table I. Convergence study for the sub-cell refinement approach (re =1.0 mm,n =4)

ndiv  x ndiv 1x1 2x2 4x4 8x8 16x16

Level-j  model KI
Num 13.509 11.534 11.517 11.511 11.508

Level-j+1 model KI
Num 12.131 11.822 11.805 11.800 11.798

Level-j+2 model KI
Num 12.010 11.841 11.832 11.829 11.828

KI (MPa mm)

Division of a sub-cell refinement approach

4.1.2. Evaluation of tip enrichement functionsWe discuss the performance of tip enrichment
functions of nodesCs andCw. Two approaches are examined in terms of the number of enrichments
γi(x)(i = 1, · · · , n) in eq. (26), i.e.,n =1 andn =4. Enrichment nodesJs are also introduced with
level-j scaling functions in the crack surface area in both analyses. The radiusre is varied among
0.6, 1.0, 1.4 and 1.8 mm. The sub-cell refinement approach (ndiv = 4) is adopted to accurately
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integrate the stiffness matrix including the enrichment functions.

The numerical results are presented in Fig. 9. In this figure, the horizontal axis gives the number
of degrees of freedom and the vertical axis gives the error ofKI , which is the difference between
the numerical results and the reference solution [63]. The solid lines represent the results employing
one tip enrichment (n = 1) and the dashed lines represent the results employing four tip enrichments
(n = 4). They represent the error in the models of levelj, j + 1 andj + 2 for radii re=0.6, 1.0, 1.4
and 1.8 mm. The uniform-refinement models are obtained by dividing the rectangular plate into
15× 15, 31× 31 and63× 63 equally spaced structured cells and the analyses are performed using
a scaling function only. The enrichment functionCs is set using the nodes nearest the crack tip.
They can be considered as models of levelj, j + 1 andj + 2 according to the standard fixed-grid
(voxel-type) model employing the X-FEM. The numerical results show that the error decreases as
radiusre increases. Analyses employing four tip enrichments (n = 4) are more accurate than for
one-tip enrichment (n = 1) analyses. Additionally, the solutions of models forj, j + 1 andj + 2
continuously converge although the convergence rate between the level-j + 1 model and level-j + 2
model decreases.

The path independency of theJ-integral of the domain integral form is now demonstrated. The
level-j, j + 1, andj + 2 model (re=1.0 mm) is used and the radiusrd for evaluating the function
q(x) in eq. (47) is varied from 1.0 to 5.0 mm. Four enrichment functions (n=4) are adopted. The
results are presented in Table II. The numerical results yielded better accuracy in all cases. Path
independency is slightly impared whenrd =1.0 mm. In that case, the enrichment functions are
included for the domain integration. Incompleteness of the PU condition seems to influence the
path independency of the domain integration although the SIF is obtained with high accuracy.

Degree of freedoms

E
rr

o
r 

(%
)

re = 0.6 (n=1)

re = 1.0 (n=1)

re = 1.4 (n=1)

re = 1.8 (n=1)

Uniform ref. (n=1)

re = 0.6 (n=4)

re = 1.0 (n=4)

re = 1.4 (n=4)

re = 1.8 (n=4)

Uniform ref. (n=4)

Level j

Level j+1 Level j+2

15x15 uniform ref.

31x31 uniform ref.

63x63 uniform ref.

Figure 9. Convergence ofKI for the edge crack problem

Table II. Path independence of the edge crack problem (re =1.0 mm,n =4)
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4.1.3. Examination of the accuracy for nodal density of tip enrichment functionsAccuracy of the
solution with different nodal densities for the tip enrichment functions is discussed. The edge
crack model as shown in Fig. 8 (a) is used. The enrichment nodesCs,Cw andJs are adopted.
Enrichment nodesCs are introduced with the level-j scaling function, andCw are introduced
with level-j, j + 1, · · · , j + 5 and j + 6 wavelet functions. Onlyγ1(x)(n = 1) is adopted as the
tip enrichement function for enrichmentsCs andCw. Two kinds of approaches are adopted. One
is with constant nodal density, i.e.,re=0.8 mm. The other is a gradually varying nodal density, i.e.,
re =1.4 mm for level-j scaling functions andre=1.2, 1.0,· · · , 0.4, 0.2 mm for level-j, j + 1, · · · ,
j + 5, j + 6 wavelet functions, respectively. The function locations at levelj + 6 model are shown
in Fig. 10 (a) and (b). The convergence of the SIFKI is presented in Fig. 11. As a comparison, the
solution of the uniform refinement models (15×15, 31×31, and 63×63 equally spaced structured
cell models) are also shown. Both results converge uniformly. In addition, convergence of the
uniform enrichment is slow because many DOFs are needed in accordance with higher wavelet
functions are adopted. In contrast, convergence is improved in the gradual enrichment approach.
Although uniform enrichment is adopted in successive numerical examples, the results would imply
further improvements in accuracy in fracture mechanics analysis employing WGM.

(a) (b)

Figure 10. Location of the tip enrichment functions at level-j+6 model [(a) Nodal density is constant, (b)
Nodal density is gradation]

Level j+1

Level j+2

15x15 uniform ref.

31x31 uniform ref.

63x63 uniform ref.

Level j+3

Level j+4
Level j+5

Level j+6

Degree of freedoms

E
rr

o
r 

(%
)

Uniform enrichment re=0.8 mm (n=1)

Gradational enrichment (n=1)

Uniform ref. (n=1)

Level j

Figure 11. Convergence ofKI for the edge crack problem (n =1)

4.1.4. Condition number of different resolution WG modelsThe condition number for different
resolution models are evaluated. As the scaling/wavelet functions used are non-orgonal, higher
bandwidths appear when higher resolution wavelet functions are used. Increases in condition
number invite inaccuracies in the numerical solution. In addition, although direct sparse solver [68]
is used in this study, convergence deterioration sometime occurs when iterative solver is adopted in
the solution process. It is then important qualitative evaluation of condition numbers based on the
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bandwidth of the different resolution models. Edge crack model used in section 4.1.3 is examined.
One tip enrichment (n =1), with radiusre=0.8 mm and uniform nodal density, is shown in Fig.
10 (a). Eigen value analysis is performed for the stiffness matrixK +Kα in eq. (40). The penalty
termKα is only used to suppress the three rigid rotation modes of the stiffness matrix. The condition
number is defined asκ(K +Kα) = |λmax/λmin|. λmax andλmin are the maximum and minimum
eigen-values. The penalty constant in eq. (34) is set toα=1.0e+4. The numerical results are listed
in Table. III. When higher wavelet functions are adopted, the condition number becomes larger. In
section 4.1.2 and 4.1.3, the convergence studies are performed based on radius of tip enrichments
and the resolution levels of the wavelet functions. In the numerical results, the convergence rate is
decreased as higher wavelet functions are used in spite of the improvement of the accuracy. The
results imply increase of condition number influence the impairment of the solution in the wavelet
approach. In addition, because the condition number increases when large penalty constant is used,
the constant should be defined appropriately.

Table III. Condition numbers for each refinement step (re =0.8 mm,n =1)

λ

λmin

κ α

Employing the proposed approach, the spatial resolution near the crack tip can be easily controlled
using the wavelet functions and enrichment functions. The local refinements reduce the calculation
time relative to applying the uniform-refinement model of the fixed-grid approaches. It is thus found
that WG analyses using X-FEM modeling are effective in solving crack problems.

4.2. Mixed-mode problem

4.2.1. Shear edge crack problemIn this section, analyses for mixed-mode problem are presented.
Path independency of the interaction integral in eq. (49) is discussed first. The shear edge crack
problem is chosen, as set out in Fig. 12 (a). The size of the rectangular plate and the edge crack
area/W=1/2,H/W=16/7 andW =7 mm. Shear stressτ =1.0 MPa is enforced at the top of the
plate; the bottom is clamped. Level-j scaling/wavelet functions and level-j+1 wavelet function are
adopted. The rectangular plate is divided into 14×32 equally spaced structured cell. Level-j scaling
functions that cross the crack segment are enriched using nodesJs. The levelj scaling/wavelet
functions andj + 1 wavelet function are enriched in the radiusre =1.0 mm for nodesCs andCw.
Four tip enrichments (n=4) are specified. The sub-cell refinement approach (ndiv =4) is adopted
to integrate the enrichment functionsCs andCw, accurately. The WGM is shown in Fig. 12 (b).
The numerical results for SIFsKI andKII are listed in Table IV (a) and (b), respectively. The error
is evaluated with the reference solution of [62]. Although path independency is slightly impaired
whenrd ==1.0, high accuracy SIFs are obtained in all cases.

4.2.2. Rectangular plate with inclined cracksWG analyses for a rectangular plate with inclined
cracks are presented. Schematic illustrations of the analysis models are presented in Fig. 13 (a)-(d).
A rectangular plate with an inclined crack (model A) is solved as shown in Fig. 13 (a). The width
of the rectangular plate is2W =10 mm and the height is2H =20 mm. The crack length is2a =6
mm. The crack angleθ is varied among 15, 30, 45, 60 and 75 degrees. Uniform stressσ is enforced
at the upper and lower edges of the plate. The WG model (level-j + 2 model) for an inclined angle
45 degrees is shown in Fig. 13 (b). The rectangular plate is divided into15× 30 equally spaced
structured cells and a level-j scaling function is set on the grids, and the model is assumed to be a
level-j model. To refine the solution, a level-j + 2 model is used. Level-j and level-j + 1 wavelet
functions are located withinre=1.0 mm of each crack tip. Enrichment functionsCs,Cw andJs

are used to model the crack. Furthermore, the problem of two cracks emanating from a hole in a
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H
W

τ

(a)

a

a/W=1/2

H/W=16/7

W=7

(b)

Figure 12. Shear edge crack problem [(a) rectangular plate with a edge crack, (b) WG model (level-j + 2
model,re=1.0)]

Table IV. Path independency for the interaction integral for different resolution models [(a) SIFKI , (b)
SIFKII ]

(a)

(b)

33.59 33.49 33.45 33.43 33.43

1.21 1.50 1.62 1.66 1.68

33.74 33.72 33.69 33.68 33.67

0.75 0.83 0.92 0.95 0.96

33.75 33.74 33.71 33.70 33.70

0.73 0.76 0.85 0.88 0.89

4.53 4.52 4.51 4.51 4.51

0.35 0.58 0.79 0.81 0.79

4.53 4.52 4.52 4.52 4.52

0.51 0.55 0.65 0.67 0.65

4.52 4.52 4.52 4.52 4.52

0.55 0.58 0.65 0.67 0.65

rectangular plate (model B) is solved. The analysis model is shown in Fig. 13 (c). The inclined angle
θ is 45 degrees. The model size and WG discretization are the same as those for model A except for
the hole geometry. The hole diameter is assumed to beD=2.5 mm. The numerical integration of the
stiffness matrix does not include a sub-cell whose center is judged to be within the hole. Because
the WGM is based on a fixed-grid approach, it is easy to treat an arbitrary shape. The radiusrd for
evaluating a function q(x) in eq. (49) is set to 1.5 mm for both models.

In the analyses of models A and B, the crack and hole edge intersect the cells. The sub-cell
refinement approach is needed to integrate stiffness matrix including the discontinuous function of
nodesJs and to represent hole geometry. Number of divisionndiv for sub-cell refinement approach
is discussed. Model A and model B (θ =45 degrees) in Fig. 13 (b) and (d) are chosen for the
convergence studies. Four tip enrichment functions (n =4) are adopted in both cases. Analyses for
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model-j, j + 1 andj + 2 are performed. The normalized SIFsFI andFII are obtained according to
FI=KI /

√
πa andFII=KII /

√
πa. Here,FNum

I andFNum
II are the numerical results forndiv =1, 2,

4, 8, and 16. When finer divisions are adopted, the SIFKI andKII converge because the stiffness
matrix including the enrichment functions and the hole edge representation is accurately integrated.

Table V. Convergence study for the sub-cell approach [(a) normalized SIFFI , (b) normalized SIFFII ]

(a)

(b)

ndiv  x ndiv FI, FII 1x1 2x2 4x4 8x8 16x16

FI
Num

FII
Num

FI
Num

FII
Num

FI
Num

FII
Num

Division of a sub-cell refinement approach

Level-j  model

Level-j+1 model

Level-j+2 model

ndiv  x ndiv FI, FII 1x1 2x2 4x4 8x8 16x16

FI
Num 0.706 0.671 0.649 0.649 0.648

FII
Num 0.607 0.551 0.547 0.542 0.541

FI
Num 0.684 0.655 0.653 0.652 0.652

FII
Num 0.602 0.555 0.544 0.543 0.541

FI
Num 0.645 0.653 0.653 0.653 0.652

FII
Num 0.557 0.543 0.543 0.541 0.543

Level-j  model

Level-j+1 model

Level-j+2 model

Division of a sub-cell refinement approach

The numerical results for model A and B are shown for the inclined angleθ = 15, 30, 45, 60
and 75 degrees. Divisions for the sub-cell approach (ndiv =8) is adopted. The results for model A
are presented in Table VI. In addition, numerical results for model B are shown in Table VII. The
results are compared with the reference solution for model A [63] and for model B [64]. In table
VI and VII, FRef

I , FRef
II are the reference solutions. They found to be in good agreement with in

both cases. The results show that the SIFsKI andKII are evaluated accurately and efficiently using
the interaction integral for the domain integral form. The spatial resolution of the level-j + 2 model
near the crack tip corresponds to60× 120 uniform refinements of the fixed-grid model. The length
of a structured cell (level-j cell) is lc=1/6 mm. The ratio of the cell length (lc) for the crack length
(2a) is assumed to be (lc/2a)=1/24. Thus, the SIFs can be calculated when the ratiolc/2a is about
1/24 when using in the proposed technique.

Table VI. Normalized SIFsFI andFII for model A

θ (deg.) FI
Ref

 FI
Num

 FII
Ref

 FII
Num

 

15 1.2183 1.2116 0.2725 0.2710 

30 0.9840 0.9793 0.4800 0.4793 

45 0.6611 0.6587 0.5674 0.5643 

60 0.3332 0.3318 0.5022 0.5005 

75 0.0896 0.0894 0.2939 0.2930 

4.3. Analysis of crack propagation in a 2D rectangular plate

Crack propagation analyses for a crack in a rectangular plate are performed. The analysis model
is shown in Fig. 14 (a). The dimensions of the plate are2W = 2H =10 mm. The initial crack
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D

Figure 13. Rectangular plate with inclined cracks [(a) rectangular plate with a inclined crack (model A), (b)
WG model for model A (level-j + 2 model,re=1.0), (c) two cracks emanating from a hole in a rectangular

plate (model B), (d) WG model for model B (level-j + 2 model,re=1.0)]

Table VII. Normalized SIFsFI andFII for model B

θ (deg.) FI
Ref

 FI
Num

 FII
Ref

 FII
Num

 

15 1.3030 1.2913 0.2630 0.2583 

30 1.0380 1.0308 0.4630 0.4616 

45 0.6540 0.6528 0.5410 0.5412 

60 0.2570 0.2608 0.4650 0.4669 

75 -0.0290 -0.0225 0.2630 0.2648 

length is assumed to be2a=2 mm. Young’s moduls isE=3300 MPa, and Poisson’s ratio isν=0.33.
Two kinds of analyses are performed. One is crack propagation analysis under uniform shear loads
(τ12 = τ21=1.0 MPa) as shown in Fig. 14 (b). The other is that under uniform tension loads (σ22=1.0
MPa) as shown in Fig. 14 (c). The inclined angle of the initial crack is assumed to beθ =40 degrees.
The WG model under a shear load is shown in Fig. 15 (a). The rectangular plate is divided into
63× 63 equally spaced structured cells. A level-j scaling function is set on the grids. The model
is assumed to be a level-j model. Level-j + 1 models are used to refine the solution of the crack
propagation analyses. Level-j wavelet functions are set on the level-j model withinre=0.25 mm
of the crack tip. The enlarged view of the shear load problem is presented in Fig. 15 (b). The
increment∆a of crack propagation is assumed to be 0.35 mm in all steps. The radiusrd for the
domain integral is assumed to be 0.3 mm. A sub-cell refinement approach (ndiv =16) is adopted to
accurately integrate the stiffness matrix including the enrichment functionsCs,Cw andJs.

Numerical results for the shear load problem are shown in Fig. 16 (a) and those for tension
problem are shown in Fig. 16 (b). The crack paths are compared with the experimental results [65].
The ratio of the cell length (lc) to the crack length (2a) is assumed to be (lc/2a) ≈1/25. The ratio
is the same as that in Section 4.2. The crack paths are smooth and in good agreement with the
reference solutions. It is thus found that crack propagation analyses using the WGM and X-FEM
approach are effective.
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Figure 14. Crack propagation analysis for a crack in a rectangular plate [(a) A crack subjected to shear loads,
(b) An inclined crack subjected to uniform tension]
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Figure 15. WG model [(a) WG model and location of enrichment functions, (b) Enlarged view]
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Figure 16. Numerical result with for a crack propagation in a 2D rectangular plate [(a) Shear loads problem,
(b) Tension loads problem]

4.4. Crack propagation analysis for a edge crack problem

The propagation of an edge crack problem is analyzed. The experiments and numerical calculation
were performed by Norikura et al. [66]. The numerical calculation is carried out employing the
body force method. The analysis model is shown in Fig. 17 (a). The dimensions of the rectangular
plate are2W=100 mm,2H=150 mm. The diameter of the hole isD=20 mm. Young’s modulus is
3300 MPa and Poisson’s ratio isν=0.33. Uniform stressσ=1.0 MPa is enforced on the left side of
the plate as the boundary condition. The initial crack size is assumed to bea=20 mm. The distance
between the edge crack and the center of the hole isL=15 mm. The rectangular plate is divided
into 243× 162 equally spaced structured cells and the boundary hole is represented employing the
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sub-cell approach. The sub-cell refinement approach (ndiv = 16) is adopted. The original model is
assumed to be a level-j model. Level-j scaling/wavelet functions are used as the basis functions. The
level-j wavelet functions are used withinre=1.2 mm of the crack tip. Crack propagation analyzed
for ∆a=1.5 and 3.0 mm. Fig. 17 (b) is a schematic illustration of the WG discretization. In addition,
the radius for domain integration is assumed to berd=1.35 mm in all steps.

The numerical results are shown in Fig. 18. For comparison, the numerical calculation results of
[66] are shown. The ratio of the cell length (lc) to the crack length (a) is assumed to be (lc/a) ≈1/65.
The ratio is small compared with the case presented in Section 4.2. The crack paths are smooth
and the analyses can be performed with high accuracy. In addition, although the crack paths are
independent of the increment∆a in the initial stage, the crack tip penetrates more quickly in the
small increment case (∆a=1.5 mm) when the crack tip approaches the hole edge.

2H

a L

2W

σ

σ

D

Hole edge

(a)

(b)

Figure 17. A edge crack propagation analysis [(a) Analysis model, (b) WG discretization model for
L=15mm]
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 d

ir
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Reference [66]  (∆a = 5.0)

WGM + XFEM ( a = 1.5)

WGM + XFEM ( a = 3.0)

∆

∆

Figure 18. Numerical results for a edge crack propagation analysis

4.5. Crack propagation analysis for two parallel cracks in a rectangular plate

Crack propagation analysis for two parallel cracks in a rectangular plate is performed. The
experiments and numerical simulation were performed by Higuchi et al. [67]. Schematic illustration
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of the analysis model is shown in Fig. 19 (a). The two cracks are located parallel to each other at
different horizontal and vertical positions. The dimensions of the rectangular plate are2W=200 mm
and2H=300 mm. Uniform stress ofσ=1.0 MPa is enforced on the upper and lower edges. Young’s
modulus isE=210 GPa and Poisson’s ratio isν=0.3. The details of the two cracks are shown in Fig.
19 (b). The left crack is referred to as crack 1 and the right crack is referred to as crack 2. The tips
of crack 1 are called tip A and tip B as shown in Fig. 19 (b). The crack length is2a=11 mm. The
vertical distance isS=9 mm and the horizontal distance isH=15 mm. The analysis model is divided
into 324× 216 equally spaced structured cells. The sub-cell refinement approach (ndiv = 16) is
adopted. The model is assumed to be a level-j model, and level-j scaling functions are set on the
grid points. In the analysis, level-j scaling/wavelet functions are used. The level-j functions are
used withinre=0.7 mm of the center of the crack tips. The increment∆a in each step is assumed
to be 1.1 mm. The WG crack modeling using X-FEM is shown in Fig. 19 (c). The radius for the
domain integral is assumed to berd=0.9 mm.

Crack paths and behaviors are shown in Figs. 20 (a)-(h). The horizontal distance between
two cracks is denoted as S’, and the vertical distance is denoted 2a’ in these figures. The crack
propagation behaviors are follows. The cracks extend independently from step (a) to step (b). The
cracks overlap in at step (c). The crack tips approach each other from step (d) to step (h). Finally,
the cracks connect. The SIFs of tip A and tip B of crack 1 are shown in Table. VIII. The SIFKB

I

of tip B takes a maximum value in step (d). At the same time, the SIFKB
II slightly increases. The

behaviors of the SIFs are considered to explain the deflection of the crack tips. The crack paths are
compared with the reference solution [67] and found to coincide well. The ratio of the cell length
(lc) to the crack length (2a) is assumed to be (lc/2a) ≈1/24. It is thus considered that the analyses
can be performed with high accuracy.

σ

σ

2H

2W

Crack

2a

S

H
2a

Crack 1

Crack 2

A B

(a)

(c)

(b)

Figure 19. Crack propagation for two parallel cracks [(a) Analysis model to be solved, (b) Enlarged view of
the two cracks, (c) WG model]

5. CONCLUSION

This paper presented fracture mechanics analyses using the WGM and X-FEM for 2D crack
problems. Linear B-spline scaling/wavelet basis functions were used as basis functions. Enrichment
functions were introduced to solve crack problems according to the concept of the X-FEM.
A Heaviside function, which is an enriched linear B-spline scaling function that represents
discontinuous displacements of the crack surfaces, was used. In addition, the asymptotic solution
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S’ 2a’

(a) 2a’ = 13.2 , S’ = 6.8 (b) 2a’ = 17.59 , S’ = 2.42

(c) 2a’ = 21.97 , S’ = -1.94 (d) 2a’ = 26.29 , S’ = -6.18

(e) 2a’ = 30.53 , S’ = -10.28 (f) 2a’ = 34.7 , S’ = -14.24

(g) 2a’ = 38.31 , S’ = -18.1 (h) 2a’ = 42.91 , S’ = -21.94

unit : (mm) Calculation result [67]

Figure 20. Crack paths of the two parallel cracks

Table VIII. SIFs for tip A and tip B (crack 1)

 KI
A KII

A KI
B KII

B 

(a) 4.87 0.01 4.87 -0.01 

(b) 5.89 0.03 5.79 0.10 

(c) 6.98 0.04 6.50 0.19 

(d) 8.12 0.06 6.84 0.19 

(e) 9.30 0.06 6.83 0.15 

(f) 10.50 0.05 6.55 0.08 

(g) 11.80 0.07 6.14 0.01 

(h) 13.19 0.04 5.70 -0.03 

near the crack tip was enriched by both a linear B-spline scaling function and wavelet function
to represent the severe stress concentration around the crack tip. Crack propagation analysis was
demonstrated by relocating the enrichment functions without remeshing and rebuilding the analysis
model. Numerical examples of SIFs evaluations and crack propagation analyses were presented to
validate the proposed technique. The WG approach based on the X-FEM was found to be effective
for crack problems and crack propagation analysis.
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