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Abstract

Motivated by the need to convert move-atomic assumption in LOOK-
COMPUTE-MOVE (LCM) robot algorithms to be implemented in
existing distributed systems, we define a new distributed fundamental
task, the Neighborhood Mutual Remainder (NMR). Consider a situation
where each process has a set of operations Op and executes each opera-
tion in Op infinitely often in distributed systems. Then, let Oe ⊂ Op be
a subset of operations, which a process cannot execute while its closed
neighborhood executes operations in Op \ Oe. The NMR is defined
for such a situation. A distributed algorithm that satisfies the NMR
requirement should satisfy the following two properties: (1) Liveness is

∗Preliminary brief announcement versions (one of five pages and the other of six
pages) of this detailed complete paper can be found in [1, 2].
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2 Neighborhood Mutual Remainder

satisfied if a process executes each operation in Op infinitely often, and
(2) safety is satisfied if, when each process executes operations in Oe,
no process in its closed neighborhood executes operations in Op \ Oe.
We formalize the concept of NMR and give a simple self-stabilizing
algorithm using the pigeon-hole principle to demonstrate the design
paradigm to achieve NMR. A self-stabilizing algorithm tolerates tran-
sient faults (e.g., message loss, memory corruption, etc.) by its ability
to converge from an arbitrary configuration to the legitimate one. In
addition, we present an application of NMR to an LCM robot sys-
tem for implementing a move-atomic property, where robots possess
an independent clock that is advanced at the same speed. It is the
first self-stabilizing implementation of the LCM synchronization for
environments where each robot can have limited visibility and lights.

1 Introduction

In today’s diverse distributed systems, there are many situations where exclusive
control over operations (tasks) is required. That is, we need to control the
schedule for executing certain specific operations so that no process can execute
such operations when its closed neighborhood execute other operations. For
example, while some discrete algorithms for the LOOK-COMPUTE-MOVE
(LCM) robot systems [3] assume that each robot can move from a position
to its destination instantaneously for simplicity. This means that when we
consider their implementation, each robot cannot move while its neighbors
observe the configuration. Therefore, the implementation must realize the
exclusive control of MOVE operations and LOOK operations. Although it is
very important to solve such a scheduling problem efficiently, it has not been
formally formulated until now. Thus, in this paper, we define this scheduling
problem as the Neighborhood Mutual Remainder (NMR) problem.

More formally, in a distributed system with a general, non-necessarily
complete communication graph, consider the situation such that each process
has some operations Op = {op1, op2, · · · , opq} and executes each operation in
Op infinitely often. Then, sometimes the distributed systems encounter mutually
exclusive executions between operations, that is, operations in Oe ⊂ Op cannot
be executed by a process concurrently with other operations in Op \Oe by its
closed neighborhood. We call such special operations in Oe, exclusive operations.
The NMR allows up to all processes in the closed neighborhood to execute
operations in Op\Oe simultaneously, but requires a guarantee that the execution
of the operations in Oe is mutually exclusive against the execution of the
operations in Op \Oe. That is, distributed algorithm that satisfies the NMR
requirement should satisfy the following two properties: (1) Liveness is satisfied
if a process executes each operation in Op infinitely often, and (2) safety is
satisfied if, when each process executes operations in Oe, no process in its
closed neighborhood executes operations in Op \Oe.
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In this work, we give a self-stabilizing algorithm to demonstrate the design
paradigm to achieve NMR. A self-stabilizing algorithm tolerates transient faults
(e.g., message loss, memory corruption, etc.) by its ability to converge from an
arbitrary configuration to the legitimate one.

To solve the NMR consistently, the processes should schedule the opera-
tions carefully. One may think we can apply mutual exclusion [4], local mutual
exclusion [5–8], or local group mutual exclusion [9–11] to solve the local synchro-
nization problem. Mutual exclusion (resp., local mutual exclusion) guarantees
that no two processes (resp., no two neighboring processes) enter a critical
section (CS) at the same time. Indeed, if processes execute operations in Op

only when they are in the CS, they can keep the consistency because no two
neighboring processes execute any operations at the same time. However, this
approach seems very expensive because the processes execute any operations
sequentially, although they are allowed to execute operations in Oe or Op \Oe

at the same time. Although both of these concepts (i.e., (local) mutual exclu-
sion) are similar to NMR, they differ from NMR in that these concepts provide
exclusive control over processes, whereas NMR provides exclusive control over
the execution of a set of operations. In particular, NMR offers a more efficient
solution by enabling fully synchronized execution of operations. This means
that all closed neighborhoods can simultaneously execute the same operation
in Oe or Op \ Oe. Local group mutual exclusion (LGME) guarantees that, if
two neighboring processes execute their CS simultaneously, both are in the
same group (i.e., using the same resource). This safety property is similar to
NMR when the number of groups is only two. However, while LGME only cares
about the CS, NMR requires that all processes will be out of the CS (i.e., all
processes execute operations in Oe in the remainder) for a while. Also, to real-
ize mutual exclusion (resp., local (group) mutual exclusion), processes should
achieve symmetry breaking because one process should be selected to enter the
CS among all processes (resp. the closed neighborhood for each process). How-
ever, in highly-symmetric distributed systems (e.g., the LCM robot systems),
it is difficult or even impossible to achieve deterministic symmetry breaking
and thus achieve mutual exclusion (resp., local (group) mutual exclusion).

1.1 Application Examples of NMR

As the first example, let consider a database system shared by multiple processes.
An administrator may read the database (i.e., execute a backup database) while
no process writes to the database. In this case, the read operation and the write
operation are mutually exclusive, if these operations are assumed to be atomic.
Then, by applying the NMR, an administrator can execute a read operation as
an exclusive operation (Oe), while no process executes a write operation.

The next example is a sensor network. A sensor network has to periodically
perform a data collection phase when it is used for environmental assessment
purposes. In this situation, the data collection phase should be performed
exclusively with other operations by closed neighborhood, such as observations
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and data exchange with neighboring sensors. That is, the operations that
comprise this phase correspond to exclusive operations.

The following example is an overlay network. In an overlay network, the
configuration of the underlying network is basically unchanged, but the overlay
network, which is a logical or virtual network built on top of it, may require
frequent changes depending on the situation. For example, consider a system
that builds a virtual grid network on an ad hoc network and performs routing
on it [12]. In such a system, it is desirable to perform the routing reconstruction
phase on the virtual grid network when the underlying system is not commu-
nicating. That is, the operations comprise the routing reconstruction on the
overlay network corresponds to exclusive operations.

As the last example, as already mentioned, we can consider a LCM robot
system, where each robot repeats executing cycles of LOOK, COMPUTE, and
MOVE phases. Some algorithms in the LCM robot system assume the move-
atomic property, that is, while robot r executes a MOVE phase, r’s neighbors
(i.e., robots in r’s sight) cannot execute a LOOK phase. In this case, the move-
atomic property can be achieved by NMR: Each robot executes a MOVE
phase as Oe only when no robot in its closed neighborhood executes LOOK
and COMPUTE phases. While a robot executes LOOK and COMPUTE
phases, none of its neighbors can execute a MOVE phase.

Actually, to implement LCM synchronization, we can use ordinary global
synchronizers [4, 13]. Based on a global synchronizer, each robot may be able
to MOVE once every ∆ + 1 clock pulses where ∆ is the maximum degree
of the network. Note that keeping the correct value of ∆ in the network,
whose topology frequently changes, is very costly. Hence, to implement LCM
synchronization by using ordinary global synchronizers is not efficient. On the
other hand, based on our proposed NMR, each robot ri is able to MOVE once
every max{|N [i]|}+ 1 ≤ ∆ + 2 clock pulses where |N [i]| is the degree of the
closed neighborhood of ri and it can be locally computed.

1.2 Our Contributions

We first formalize the concept of NMR, and give a design paradigm to achieve
NMR. To demonstrate the design paradigm, we consider synchronous dis-
tributed systems and give a simple self-stabilizing algorithm for NMR in static
networks (Section 2).

Afterwards, to demonstrate applicability of NMR, by using the afore-
mentioned design paradigm, we implement a self-stabilizing synchronization
algorithm for an LCM robot system, where each robot can have limited visibility
and lights (Section 3). As described above, in the LCM robot system, each robot
repeats executing cycles of LOOK, COMPUTE, and MOVE phases. First,
we realize the move-atomic property in a self-stabilizing manner on the assump-
tion that robots repeatedly receive clock pulses at the same time points, where
the move-atomic property guarantees that, while some robot executes LOOK
phase, no robot in its sight can execute a MOVE phase (Section 3.4). Finally,
we extend the self-stabilizing algorithm to the assumption that robots receive



Springer Nature 2021 LATEX template

Neighborhood Mutual Remainder 5

(individual) clock pulses at different time points, but the interval between two
pulses is identical for all robots (Section 3.5). This research presents the first
self-stabilizing implementation of the LCM synchronization with move-atomic
property, allowing the implementation in practice of any self-stabilizing or
stateless robot algorithm, where robots possess independent clocks that are
advanced in the same speed.

1.3 Technical Overview

To implement such NMR, first, we assume there is a global pulse, and each
process vi maintains a modulo `i counter as a local clock, where `i is some
integer, to count the global pulse. Let each vi execute operations in Op \Oe

when its local clock counter is 1, and execute operations in Oe when no counter
of processes in its closed neighborhood is 1. Let us consider four processes
positioned in a star form where v1 is in the middle, and v2, v3, and v4 can
communicate with v1, but not with each other. Then, if we assume that `1 is
less than or equal to 3 + 1 (i.e., its degree plus one), none of them may be able
to execute operations in Oe, since every counter of each of its neighbors and
itself may be 1 in distinct pulses. Thus, `1 should be greater than or equal to
3 + 2 (i.e., its degree plus two). However, if `2, `3 and `4 are also their degree
plus two (i.e., 3), then v1 cannot execute operations in Oe because every time
one of its neighbors may have a counter value 1. Thus, our algorithm uses the
biggest degree among vi’s closed neighborhood plus two as `i (in our case all
choose ` = 5). This choice ensures self-stabilization [14], due to the pigeon-hole
principle, when starting with arbitrary counter values. Further, note that, if a
leaf in the star, say v2, is connected to another remote process v5, then v5 may
choose only `5 = 4, as v2 has only two neighbors. Thus, v5 may enjoy more
frequent opportunities to execute operations in Oe than others. In this paper,
to relax the assumption of the existence of the global pulse and the perfect
timing between pulses in the above discussion, we also consider a logical pulse
of several consecutive real pulses.

1.4 Related Work

As one of the synchronization problems, for global mutual exclusion problem,
much research has been devoted to self-stabilizing algorithms, e.g., [15] and [16].
Self-stabilizing distributed algorithms for the local (group) mutual exclusion
problem are proposed in [6–8, 10]. Various generalized versions of mutual
exclusion have been studied extensively, e.g., l-mutual exclusion [17, 18], mutual
inclusion [19]1, l-mutual inclusion [19], critical section problem [20, 21].

Robots with globally observed lights were introduced in [22] and used to
synchronize the LCM schedules among the robots. In [22], the authors show
that asynchronous robots with lights can simulate any algorithm on semi-
synchronous2 robots with lights, and thus the asynchronous robots with lights

1The mutual inclusion problem guarantees that at least one process is in the CS.
2In the semi-synchronous model, one or more robots are activated in each global round.
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have the same power as the semi-synchronous robots with lights. However, unlike
our setting, their simulation algorithm is performed asynchronously on the
same LCM robot system as the system where the simulated semi-synchronous
algorithm works. On the other hand, in our setting, as an application of newly
introduced NMR, robots utilizing lights can implement some LCM schedules
such as asynchronous move-atomic ones in self-stabilizing manners. Although
in [22] unlimited visibility is assumed, in our setting, limited visibility is assumed
and only neighboring robots observe the light.

2 Neighborhood Mutual Remainder

In this section, we introduce a concept of NMR and give a design paradigm
to achieve NMR. To explain the design paradigm simply, we consider fully-
synchronous distributed systems whose topology is static and present a self-
stabilizing algorithm as an example. Our design paradigm uses local clocks
such that processes can keep different clock values but must increment the
clock values synchronously. In fully-synchronous distributed systems, we can
trivially implement the local clocks by using global pulses such that all processes
regularly receive the pulse at the same time. In asynchronous distributed
systems, we cannot use global pulses and hence we must design some mechanism
to implement the local clocks. For simplicity, we omit the additional discussions
concerning asynchronous distributed systems.

2.1 A System Model

A distributed system is represented by an undirected connected graph G =
(V,E), where V = {v0, . . . , vk−1} is a set of processes and E ⊆ V ×V is a set of
communication links between processes. Processes are anonymous and identical,
that is, they have no unique identifiers and execute the same deterministic
algorithm. Process vi is a neighbor of vj if (vi, vj) ∈ E holds. A neighborhood
of vi is denoted by N(i) = {vj | (vi, vj) ∈ E}, and the degree of vi is denoted
by δ(i) = |N(i)|. Let ∆ = max{δ(i) | vi ∈ V }. A closed neighborhood of vi is
denoted by N [i] = N(i) ∪ {vi}.

The local state of a process is defined by its set of local variables and whether
it can execute operations in Oe or Op \Oe. Let Qi be the local state of process
vi ∈ V . Then, a vector of local states (Q0, Q1, · · · , Qk−1) of all processes forms
a configuration of the distributed system. We consider the state-reading model
as a communication model. In this model, each process vi can directly read
states of all vj ∈ N [i] without delay and update its own state.

We assume that every process has an identical program for a round of NMR
scheduling. We assume that every process repeats to execute the program in
a parallel and synchronized manner. To this end, we assume global pulses.
Processes operate synchronously based on the global pulses, that is, all processes
regularly receive the pulse at the same time, and operate when they receive
the pulse. The duration of local computation (including updates of its state) is
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sufficiently small so that every process completes the local computation before
receiving the next pulse. We call the interval between two global pulses a round.

2.2 Concept of Neighborhood Mutual Remainder

In this subsection, we introduce a concept of NMR. In a distributed system,
processes have the same set of operations Op = {op1, op2, · · · , opq}. In Op,
there is a subset Oe ⊂ Op such that each process should execute them not
concurrently with operations in Op \ Oe by its closed neighborhood. Then,
we require that, for each process vi, all processes in the closed neighborhood
of vi may execute operations in Oe infinitely often and simultaneously for a
while, while having the opportunity to execute operations in Op \Oe, possibly
simultaneously with others, infinitely often too.

Definition 1 (Neighborhood mutual remainder (NMR)) Let Op be a set
of operations, and Oe ⊂ Op be a set of exclusive operations. The system achieves
neighborhood mutual remainder if the following two properties hold.

• Liveness : Every process infinitely often executes each of the operations in Op.
• Safety : For every process vi, when vi executes operations in Oe, no process

in N [i] executes operations in Op \Oe in the same round.

2.3 Definition of Self-Stabilization

The self-stabilization property [14] is defined as the ability to converge to the
correct system operation in finite time from an arbitrary initial configuration.
Let S = (Γ, F,→), where Γ is the finite set of all configurations, F is the
specification on a sequence of configurations (in this paper, F is defined in
Definition 1.), and → is a binary relation on Γ× Γ. The system S = (Γ, F,→)
can be viewed as a transition system defined by the topology of a given network
and algorithm. For any configuration γ ∈ Γ, let γ′ ∈ Γ be any configuration
that follows γ by a single step of execution on every process. Note that every
process executes synchronously based on global pulses. We denote this transition
relation by γ → γ′.

Definition 2 For a configuration γ0, a computation starting from γ0 is a maximal
(possibly infinite) sequence of configurations γ0, γ1, γ2, . . ., where γt → γt+1 for each
t ≥ 0.

Definition 3 A computation γ0, γ1, γ2, · · · is legal with respect to the problem
specification F on computations iff it satisfies F .

Definition 4 Configuration γ is legitimate for the problem specification F on com-
putations iff any computation that starts from γ is legal for F . Let ΛF be the set of
all legitimate configurations.
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Definition 5 A system S = (Γ, F,→) is self-stabilizing iff it satisfies the following
two conditions:

• Convergence: Starting from an arbitrary configuration, the system eventually
reaches a configuration in ΛF , and

• Closure: For any configuration γ ∈ ΛF , any configuration γ′ that follows γ is
also in ΛF .

Note that, by these properties, self-stabilizing algorithms do not need any
initialization, and the system starts convergence following the transient faults
in any subsequent fault free execution for a long enough period.

2.4 A Self-Stabilizing Algorithm for Neighborhood
Mutual Remainder

In this subsection, we give a design paradigm to achieve NMR. As an example,
we realize a self-stabilizing algorithm to achieve NMR in static networks.

First, we give the underlying idea of the self-stabilizing algorithm. Tem-
porarily, let us consider a simple setting where |N [i]| is identical for any process
vi. Every process vi maintains a local clock Clocki whose value is incremented
by 1 modulo (|N [i]|+ 1) in every round. The value of Clocki may differ from
the value of Clockj , for a neighbor vj of vi. We assume that vi can execute
operations in Op \Oe only when Clocki = 1. When the values of all the above
clocks are not equal to 1, all processes can execute operations in Oe. Using the
pigeon-hole principle in every |N [i]|+ 1 consecutive rounds, there must be a
configuration in which no clock value of the neighboring processes is 1 and at
the same time the value of Clocki is also not 1. Hence, the NMR must hold.

In general, since |N [i]| 6= |N [j]| may hold for some vi and vj ∈ N(i), we
can use MaxNi = max{|N [j]| | vj ∈ N [i]} instead of |N [i]|. Since every process
vj ∈ N [i] executes operations in Op \Oe at most once in MaxNi +1 consecutive
rounds, we can still use the pigeon-hole principle and hence the NMR must hold.

Algorithm 1 gives a self-stabilizing algorithm to achieve NMR. In addition
to Clocki , each process vi has two variables Ni and MaxNi . Process vi sets Ni

to |N [i]|, then each neighboring process in N [i] reads it (line 1). After that, vi
computes MaxNi from Nj for all vj ∈ N [i] (line 2). Process vi increments Clocki
modulo (MaxNi + 1) in line 3, and executes operations in Op \Oe if Clocki = 1
(lines 4-5). Process vi also exposes the value of Clocki to its neighbors. Thus, a
process can execute operations in Oe when all the neighborhood clocks are not
equal to 1 (lines 6-7).

Theorem 1 Algorithm 1 achieves NMR in a self-stabilizing manner.

Proof Every process vi correctly assigns |N [i]| to Ni at the round following the first
pulse, and hence, it correctly assigns max{|N [j]| | vj ∈ N [i]} to MaxNi at the next



Springer Nature 2021 LATEX template

Neighborhood Mutual Remainder 9

Algorithm 1 Self-Stabilizing NMR Algorithm for vi.

Variables for vi:

• Ni: the size of N [i].
• MaxNi : the maximum value of Nj in N [i].
• Clocki : a local counter of global pulses.

Algorithm for vi:
1: Ni := |N [i]|
2: MaxNi := max{Nj | vj ∈ N [i]}
3: Clocki := (Clocki + 1) mod (MaxNi + 1)
4: if Clocki = 1 then
5: Execute operations in Op \Oe and finish before the next round
6: else if ∀vj ∈ N [i][Clock j 6= 1] then
7: Execute operations in Oe

round. After that, variable MaxNi is never changed for any vi since we assume that
the topology does not change.

After the second pulse, vi executes operations in Op \ Oe once in MaxNi + 1
consecutive rounds.

For any vj ∈ N [i], since MaxNj ≥ |N [i]| holds, vj executes operations in Op \Oe

once in MaxNj + 1 consecutive rounds. During MaxNj + 1 ≥ |N [i]| + 1 consecutive
rounds, there is a configuration such that no process vj ∈ N [i] executes operations in
Op \Oe from the pigeon-hole principle. That is, each process can execute operations
in Oe at most once during MaxNj + 1 ≥ |N [i]|+ 1 consecutive rounds.

Because, in MaxNi +1 consecutive rounds, vi executes operations in Op \Oe once
and operations in Oe at least once, liveness property is satisfied.

Thus, the theorem holds. �

3 Self-Stabilizing LCM Implementations

We show the effectiveness of the NMR by applying it to an ordinary distributed
system composed of mobile terminals to implement traditional LCM robot
models [3]. In the following subsections, we describe an underlying mobile
terminal model, where the NMR is executed (Section 3.1) and a simulated
robot model, where algorithms for the LCM robot model can be executed
(Section 3.2). After discussing the relationship between these two models for the
LCM implementations (Section 3.3), we propose two self-stabilizing algorithms
for the NMR on the terminals to implement the LCM robot systems with
move-atomic properties (Sections 3.4–3.5).

3.1 Underlying Mobile Terminal Model

The mobile terminal model is the model of hardware for the robots. In the
system, k mobile terminals exist in a plane. No terminal knows the value of
k. They do not have unique IDs and they execute the same deterministic
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algorithm. No terminal has direct communication means, except lights which
can emit a color to other terminals.

Additionally, the terminals have an observation device to obtain other
terminals’ positions and colors of lights within a fixed distance φ from its current
position where φ can be infinite. Then, a communication graph (visibility graph)
is defined as G = (V,E) where V is a set of terminals and E is a set of terminal
pairs that can observe each other. Note that the communication graph may
change when terminals move. We assume that the communication graph is
connected. We say terminal ri is a neighbor of rj if (ri, rj) ∈ E holds, i.e., the
distance from ri to rj is less than or equal to φ. A neighborhood of terminal
ri is denoted by N(i) = {rj | (ri, rj) ∈ E}, and a closed neighborhood of ri is
denoted by N [i] = N(i) ∪ {ri}.

Every terminal operates based on pulses, which are generated in a partially
synchronous manner. When a terminal receives a pulse, it instantaneously takes
a snapshot by using its observation device and obtains positions and colors of
neighboring terminals in N(i). Then, it executes an algorithm based on the
snapshot before the next pulse. Additionally, in the algorithm, whenever a
terminal needs to obtain positions and colors of terminals in N(i), the terminal
instantaneously takes a snapshot by using its observation device. We consider
two different pulses depending on the partial-synchronization assumptions.

• Global pulses are external pulses. All terminals receive these pulses at the
same time points.

• Local pulses are generated locally. All terminals receive these pulses at
different time points.

In both cases, we assume that the interval between two successive pulses is
identical for all terminals. We regard the interval between two successive pulses
as one round.

In a round, a terminal can travel the distance of at most y, where y can be
infinite, by a move operation.

3.2 Simulated Robot Model

In this subsection, we describe the simulated LCM robot models that we will
implement on the underlying mobile terminal model. The simulated robot model
is a framework to simulate the traditional LCM (LOOK-COMPUTE-MOVE)
robot model.

In the traditional LCM robot model, each robot repeats three-phase cycles:
LOOK, COMPUTE, and MOVE.

• During the LOOK phase, the robot takes a snapshot to obtain other robots’
positions and colors of lights within a fixed distance φ′ from its current
position where φ′ can be infinite.

• During the COMPUTE phase, the robot computes its next state, color and
movement according to the observation in the LOOK phase. The robot may
change its state and color at the end of the COMPUTE phase.
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• If the robot decides to move in the immediately preceding COMPUTE
phase, it moves toward the target position during the MOVE phase. The
robot may stop moving before arriving at the target position, however, if
the distance from the current position to the target position is more than
σ′ > 0, where σ′ is a constant, the robot travels the distance of at least σ′.
If the distance from the current position to the target position is at most σ′,
then the robot always reaches the target position during this phase.

In the following, we simply describe that a robot executes LOOK (resp. COM-
PUTE, MOVE) instead of executing the LOOK (resp. COMPUTE, MOVE)
phase.

In the literature [3], some synchronization models (scheduler) are considered
in the LCM model. In this paper, we focus on the move-atomic model. The
move-atomic model guarantees that, while a robot executes MOVE, none of
its neighbors can execute LOOK under an asynchronous scheduler. That is,
move-atomic is a sort of constraint for asynchronous scheduler models. We
know that this constraint is helpful for designing algorithms on LCM model
under asynchronous scheduler models.

3.3 Self-stabilizing Implementations of Move-atomic
Model

We aim to implement the move-atomic model on the underlying terminal model
in a self-stabilizing manner. That is, each robot in the LCM robot system is
simulated by an underlying terminal. We define robot(ri) as the robot simulated
by terminal ri.

Definition 6 The system S = (Γ, F,→) implements a self-stabilizing move-atomic
model if F is the following specifications:

• Liveness : Every robots executes each of the steps, LOOK, COMPUTE and
MOVE infinitely often.

• Safety : For every robot, when it executes MOVE, the distance from other
robots, which execute LOOK in the same round, is more than φ′.

To this end, we assign some rounds to execute LOOK and COMPUTE
or to execute MOVE, and trigger the phases by terminals. We assume the
terminal ri and its robot robot(ri) satisfy the following conditions:

• σ′ ≤ min{y, φ− φ′}, and
• φ′ < φ.

In the following section, we explain the details of the structure of the robot
system and the reasons of these assumptions.

We assume that each phase does not last beyond the next pulse. This implies
that one round (i.e., the interval from a pulse to the next pulse) is sufficiently
long so that the robots travel the distance of at least σ′, i.e., σ′ ≤ y.



Springer Nature 2021 LATEX template

12 Neighborhood Mutual Remainder

Simulated Robot Model ( )

Mobile Terminal Model ( ) Pulse

LOOK
phase

COMPUTE
phase

MOVE
phase

NMR
1

12(a) 2(b)
2(c)

2(d)
result of
LOOK

execute
LOOK

execute
MOVE

LOOK or
MOVE

Fig. 1 Structure of the robot system. Arrows represent the data flow. “Pulse” represents an
external (or local) synchronization mechanism. A mobile terminal ri has a software “NMR”
to decide which phase can be executed, while its simulated robot robot(ri) has its software
“LOOK phase”, “COMPUTE phase” and “MOVE phase” according to the algorithm for
the robot.

Figure 1 shows the structure of a robot system to implement the move-atomic
model.

1. When terminal ri receives a pulse, by the NMR algorithm, ri immediately
tells robot(ri) which phase(s) can be executed in the round3.

2. robot(ri) immediately executes the phase according to the instructions from
ri.

(a) When robot(ri) wants to execute LOOK, it asks ri to take a snapshot.
(b) When ri is asked to take a snapshot by robot(ri), it obtains a snapshot

containing the positions and colors of other robots (terminals) within the
distance φ′ ≤ φ, and sends the snapshot to robot(ri).

(c) In the same round when robot(ri) receives the snapshot, robot(ri) executes
COMPUTE.

(d) When robot(ri) wants to execute MOVE, it asks ri to travel toward the
point computed by robot(ri), then ri moves. Then, robot(ri) can travel
the distance y′, where σ′ < y′ ≤ min{y, φ− φ′}, in the round.

3. After that, ri changes its state (i.e., its light colors and the values of its
variables) by the NMR algorithm.

The above interactions between ri and robot(ri) and the changing of the state
of ri are completed before the next pulse. Note that, for the NMR algorithm,
while ri observes its environment and changes its state at each round, these
operations are independent of the LCM operations of robot(ri).

In the following sections, we present self-stabilizing algorithms for the
underlying terminals, in order to realize the move-atomic model by NMR. First,
we need to regard the dynamism of the neighbors of each terminal to maintain
their NMR properties. Consider the case that some terminal rj , which is not
viewed by ri, and rj moves toward ri and penetrates into the LOOK range
of the robot(ri). Note that, robot(ri) (resp. robot(rj)) can execute LOOK
(resp. MOVE) because ri and rj are not neighbors with each other before the
execution. In this situation, if rj moved into the r′is LOOK range while robot(ri)
was executing LOOK, then robot(rj) can be observed by robot(ri). This breaks

3Note that each robot can execute different phases with other robots.
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Fig. 2 The relationship between φ, φ′ and y′.

a property of NMR. To prevent such situation, we assume 2y′ < φ = φ′ + y′

holds in our algorithms (See Figure 2). The NMR algorithm of a terminal ri is
executed with all terminals within φ distance from ri, i.e., it is executed on the
communication graph by terminals (defined in Section 3.1). By this assumption,
each simulated robot moves up to y′ < φ/2 in a single round and receives a
snapshot within the distance up to φ′ = φ− y′ when it executes LOOK. Thus,
even if rj travels towards ri and becomes in N [i], rj does not penetrate into
the LOOK range (φ′) of robot(ri), while robot(ri) executes LOOK.

3.4 Self-Stabilizing Move-Atomic Algorithm with Global
Pulses

In this subsection, we consider the implementation of the self-stabilizing move-
atomic model, where we assume there is an external clock for global pulses. Note
that, our algorithm is self-stabilizing with respect to the change of terminal
state.

Firstly, we consider static networks, where the set of neighbors for each
terminal does not change. The main idea of the implementation is to apply the
NMR algorithm in Section 2.4 to the terminals that simulate robots. Terminal
ri can make robot(ri) execute LOOK and COMPUTE as Op \Oe, and it can
make robot(ri) execute MOVE as Oe. By this behavior, we can achieve the
move-atomic property: while a robot executes MOVE, none of its neighbors
can execute LOOK.

A formal description of the algorithm is in Algorithm 2. Note that, the
number of terminals is k. Each terminal ri has the following two lights:

• Nlight(i) ∈ {1, . . . , k}: the color represents |N [i]|.
• Light(i) ∈ {0, 1}: the color represents whether the local clock counter of

global pulses is 1 or not. If Light(i) = 1, the clock value is 1.

Additionally, ri maintains the following variables:

• MaxN i ∈ {1, . . . , k}: the maximum value of Nlight among the closed
neighborhood of ri.

• LookComputei ∈ {true, false}: a Boolean value which represents whether the
next operation is LOOK or not.
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Algorithm 2 Self-Stabilizing Move-Atomic Algorithm with Global Pulses for
ri.

Lights for ri:

• Light(i) ∈ {0, 1}: the color represents whether the value of Clock i is 1 or not.
• Nlight(i) ∈ {1, . . . , k}: the color represents |N [i]|.

Variables for ri:

• LookComputei ∈ {true, false}: the value represents whether the next
operation is LOOK or not.

• MaxN i ∈ {1, . . . , k}: the maximum value of Nlight in N [i].
• Clock i ∈ {0, . . . , k}: a local counter of global pulses.

Algorithm for ri:
1: Upon a global pulse
2: if Light(i) = 1 ∧ LookComputei = true then{

// Execute operations in Op \Oe

3: make robot(ri) execute LOOK
4: make robot(ri) execute COMPUTE
5: LookComputei := false
6: } else if ∀rj ∈ N [i][Light(j) = 0] ∧ LookComputei = false then{

// Execute operations in Oe

7: make robot(ri) execute MOVE
8: LookComputei := true
9: }
10: Nlight(i):=|N [i]|
11: MaxN i := max{Nlight(j) | rj ∈ N [i]}
12: Clock i := (Clock i + 1) mod (MaxN i + 1)
13: if Clock i = 1 then Light(i) := 1
14: else Light(i) := 0

• Clock i ∈ {0, . . . , k}: a local counter of global pulses, not necessarily identical
among terminals.

When ri detects a global pulse, first, ri tries to make robot(ri) execute
LOOK and COMPUTE or MOVE. When Light(i) is 1, ri can make robot(ri)
execute LOOK and COMPUTE as Op \ Oe (lines 2-5). Only immediately
after all values of Light of ri’s closed neighborhood becomes not 1, meaning no
neighbor is planning to make its robot execute LOOK and COMPUTE, ri
can make robot(ri) execute MOVE as Oe, i.e., safety is satisfied (lines 6-9).

After that, ri obtains visible neighbors’ Nlight values and updates MaxN i

(lines 10-11)4. The local counter of global pulses Clock i is bounded by MaxN i,
and maintained by each terminal ri, that is, they are not necessarily the same

4 Because the maximal number of neighboring terminals is typically much less than the total
number of terminals k, the number of colors is typically much smaller than k.
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Fig. 3 An execution example of Algorithm 2.
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Fig. 4 Time diagram for the execution of Fig. 3.

(line 12). By the value of its counter, each terminal decides its color of Light(i)
(lines 13-14).

Because the Clock i value is 0, . . . ,MaxN i, even if the neighbors and itself
have different light values, then there is a time when no light value is 1 among
the neighbors and itself. The time means no neighbor is planning to make its
robot execute LOOK in the next round. Just after the next pulse (i.e., the
beginning of the next round), no one has a clock value of 1. Thus, if it has
not yet made its robot execute MOVE, it can make the robot execute MOVE
from the original LCM algorithm, when all are not 1.

Figures 3 and 4 describe the same execution in two different ways. The
numbers beside nodes in Figure 3 and the numbers in Figure 4 are clock values
at the beginning of the round. Figure 3 is an execution example of Algorithm 2,
which allows a terminal to make its robot execute MOVE if none of the
neighbors have a light value 1 and the robot wants to execute MOVE. Red
filled (resp. green dotted) nodes represent that the terminals can make their
robots execute MOVE (resp. LOOK and COMPUTE). Figure 4 shows the
time diagram in the execution of Figure 3. Any time slot in Figure 4 with a
red filled (resp. green dotted) box allows executing MOVE (resp. LOOK and
COMPUTE) by the algorithm.

Lemma 1 By Algorithm 2, eventually, whenever a robot executes MOVE, none of
its neighbors can execute LOOK and vice versa.
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Proof Because the initial configuration is arbitrary, every robot starts their execu-
tion of the algorithm from arbitrary lines. However, upon the next pulse, every robot
executes from line 1. Then, consider a terminal ri and its neighbor rj ∈ N(i). By line
6, when each terminal ri makes robot(ri) execute MOVE, ∀rj ∈ N [i][Light(j) = 0]
must hold. By line 2, when ri makes robot(ri) execute LOOK (and COMPUTE),
Light(i) = 1 must hold. Therefore, when ri makes robot(ri) execute MOVE, no ter-
minal rj ∈ N [i] can make robot(rj) execute LOOK (and COMPUTE). Additionally,
when ri makes robot(ri) execute LOOK, no terminal rj ∈ N [i] can make robot(rj)
execute MOVE.

Thus, the lemma holds. �

Lemma 2 By Algorithm 2, each robot executes LOOK, COMPUTE, and MOVE
infinitely often.

Proof Consider the execution after the second round. Because we assume that the
topology is not changed, the value of MaxN i for each terminal is not changed. Thus,
robot(ri) executes MOVE once in MaxN i + 1 consecutive rounds by the pigeon-hole
principle, and then executes LOOK and COMPUTE when Clock i is 1. Thus, the
lemma holds. �

By Lemmas 1 and 2, we derive Theorem 2.

Theorem 2 Algorithm 2 implements a self-stabilizing move-atomic model under
global pulses, if the topology is static. �

Algorithm 2 guarantees the move-atomic property based on NMR, if there
is no network topology change. However, in the mobile terminal model, it
cannot be guaranteed. If adversarial topology changes occur, there may be
some starvation terminals ri, that is, robot(ri) cannot execute the LCM cycles.
Because the clock value is incremented by 1 modulo MaxN i + 1 ≤ k + 1 in
each round, the clock values are eventually reset to 1, that is, robot(ri) can
eventually execute LOOK and COMPUTE. Then, when MaxN i 6= k, if ri
is always neighboring to other terminals with light value 1, ri cannot make
robot(ri) execute MOVE. Because their clock values are incremented by 1
modulo MaxN + 1 in each round and their lights become 1 only when their
clock values are 1, such a situation means that other terminals must take turns
to come into the sight of ri when their clock values are 0, and they change their
clock values and light values to 1 in N(i). Thus, to prevent such starvation
states to MOVE, it is necessary to realize a time when the lights of all terminals
in N(i) become 0, even in the above situation. To solve the problem, in the
case that topology changes occur frequently, the clock value is incremented by
1 modulo k + 1. Then, while the execution of LCM cycles becomes very slow,
no starvation occurs by the pigeon-hole principle.
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Fig. 5 An execution example of Algorithm 3.

3.5 Self-Stabilizing Move-Atomic Algorithm with Local
Pulses

Now we consider the case that there is no global pulse in static networks. That
is, each terminal executes the algorithm based only on local pulses.

We assume that the interval of local pulses is the same for each terminal.
Let Lclock i be a local pulse counter for a terminal ri. However, they are not
ticking together. When pulses are not synchronized, they can be slightly less
than one round apart. Thus, we sextuplicate the time reserved for LOOK and
COMPUTE, and LOOK and COMPUTE are executed only in the middle
round of these six. To this end, in Algorithm 3, we sextuplicate the value of
clock Clock i = (bLclock i/6c).(Lclock i mod 6). If all the lights of neighbors rj
are 0, ri makes robot(ri) execute MOVE. When Clock i is 1.1, 1.2 and 1.3, the
light value of rj is set to 1. Then, if Clock i is 1.3, ri makes robot(ri) execute
LOOK and COMPUTE.

Each terminal ri has following two lights:

• Nlight(i) ∈ {1, . . . , k}: the color represents |N [i]|.
• Light(i) ∈ {0, 1}: the color represents whether the local clock value Clock i is

1.1, 1.2, 1.3 or not. If Light(i) = 1, the clock value is 1.1, 1.2 or 1.3.

Additionally, ri maintains the following variables:

• MaxN i ∈ {1, . . . , k}: the maximum value of Nlight among the closed
neighborhood of ri.

• LookComputei ∈ {true, false}: a Boolean, which represents whether the next
operation is LOOK (and COMPUTE) or not.

• Lclock i ∈ {0, . . . , k}: a local counter of local pulses, not necessarily identical
among terminals.

• Clock i: a local clock by (bLclock i/6c).(Lclock i mod 6).

Figures 5 and 6 describe the same execution in two different ways. Figure
6 demonstrates the case that the timing of the local pulses drifted. Figure
5 shows the configurations in timing represented by the vertical dot-lines in
Figure 6 (of course, the choice of the timing is one of many). When Clock i is
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Algorithm 3 Self-Stabilizing Move-Atomic Algorithm with Local Pulses for ri.

Lights for ri:

• Light(i) ∈ {0, 1}: the color represents whether the value of Clock i is
1.1, 1.2, 1.3 or not.

• Nlight(i) ∈ {1, . . . , k}: the color represents |N [i]|.

Variables for ri:

• Clock i: a local clock.
• LookComputei ∈ {true, false}: the value represents whether the next

operation is LOOK or not.
• MaxN i ∈ {1, . . . , k}: the maximum value of Nlight in N [i].
• Lclock i ∈ {0, . . . , k}: a local counter of local pulses.

Algorithm for ri:
1: if Clock i = 1.3 ∧ LookComputei = true then{
2: make robot(ri) execute LOOK
3: make robot(ri) execute COMPUTE
4: LookComputei:= false
5: }else if ∀rj ∈ N [i][Light(j) = 0] ∧ LookComputei = false then{
6: make robot(ri) execute MOVE
7: LookComputei:= true
8: }
9: Nlight(i):=|N [i]|
10: MaxN i := max{Nlight(j) | rj ∈ N [i]}
11: Lclock i:= (Lclock i + 1) mod 6(MaxN i + 1)
12: Clock i := (bLclock i/6c).(Lclock i mod 6)
13: if Clock i ∈ {1.1, 1.2, 1.3} then Light(i) := 1
14: else Light(i) := 0
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Fig. 6 Time Diagram for the execution of Fig. 5.

1.3, ri makes robot(ri) execute LOOK and COMPUTE. If ri did not observe
Light = 1, ri makes robot(ri) execute MOVE.

Lemma 3 By Algorithm 3, eventually, whenever a robot executes MOVE, none of
its neighbors can execute LOOK and vice versa.
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Fig. 7 Time Diagram for proof of Lemma 4.

Proof Because the initial configuration is arbitrary, every robot starts their execution
of the algorithm from arbitrary lines. However, upon the next local pulse (i.e., the
first local pulse), every robot executes from line 1. Thus, every robot ri sets their
values Clock i and Light(i) in the round.

Then, consider a terminal ri and its neighbor rj ∈ N(i) after the second local
pulse. By line 5, when each terminal ri makes robot(ri) execute MOVE, ∀rj ∈
N [i][Light(j) = 0] must hold. By line 1, Clockj = 1.3 must hold when rj makes
robot(rj) execute LOOK (and COMPUTE). In addition, Light(j) = 1 holds by line
13 because rj executed line 9–14 at least once and appropriately set its clock and
light values. Therefore, no terminal rj ∈ N [i] makes robot(rj) execute LOOK (and
COMPUTE) when ri makes robot(ri) execute MOVE. Additionally, no terminal
ri ∈ N [j] can make robot(ri) execute MOVE when rj makes robot(rj) execute LOOK
(and COMPUTE).

Thus, the lemma holds. �

Lemma 4 By Algorithm 3, each robot executes LOOK, COMPUTE, and MOVE
infinitely often.

Proof Consider the execution of a terminal ri after the second local pulse. Because
we assume that the topology is not changed, the value of MaxN i is not changed.
Thus, if robot(ri) executes MOVE, then robot(ri) executes LOOK and COMPUTE
once in 6MaxN i + 6 consecutive rounds, i.e., when Clock i is 1.3.

In the following, we consider whether ri can make robot(ri) execute MOVE
infinitely often. When robot(ri) executes MOVE, ∀rj ∈ N [i][Light(j) = 0] must
hold. Then, ∀rj ∈ N [i][Clockj 6∈ {1.1, 1.2, 1.3}] must hold. Because Clock i =
(bLclock i/6c).(Lclock i mod 6) and clock interval is the same for all robots, we
can take notice the group of time intervals y = bLclockj/6c for the time interval
x = bLclock i/6c in which each y overlaps at least half of x (See Fig. 7). Note that
if y overlaps just half of x, it overlaps the latter half of x. Then, by the pigeon-hole
principle, there is a time interval t such that x 6= 1 and y 6= 1 for all rj ∈ N [i] in
6(MaxN i + 1) consecutive rounds. In t, we consider whether ri can make robot(ri)
execute MOVE because the interval x overlaps with the interval y − 1 or y + 1. If
x does not overlap with the interval such that bLclockj/6c = 1 holds, then ri makes
robot(ri) execute MOVE. Thus, we have to consider the case that x overlaps with
such an interval.

Let rk be an arbitrary robot in N [i]. Let z be bLclockk/6c at t, which is not
1 from the assumption. Then, the interval z overlaps at least half of x at t by the
definition of t. If z+1 = 1, since the interval 1 overlaps with x, then Light(k) becomes
1 during the last half of x (i.e., x.4 or x.5). If z− 1 = 1, since the interval 1 overlaps



Springer Nature 2021 LATEX template

20 Neighborhood Mutual Remainder

with x, then Light(k) becomes 0 in z.4, i.e., during x.0 or x.1. That is, at x.2 or x.3,
ri does not see the light of rk is 1, then ri makes robot(ri) execute MOVE.

Thus, the lemma holds. �

By Lemmas 3 and 4, we derive Theorem 3.

Theorem 3 Algorithm 3 implements a self-stabilizing move-atomic model under
global pulses if the topology is static. �

4 Conclusions

In this paper, we defined a new synchronization problem as the neighborhood
mutual remainder (NMR) and proposed a self-stabilizing design paradigm to
achieve NMR. NMR provides exclusive control over the execution of operations
of the process and its neighbors in cases where there are some exclusive
operations that must not be executed at the same time as other operations
being executed by its neighbors. While (original) mutual exclusion provides
exclusive control over execution processes, NMR provides exclusive control over
operations.

In addition, in order to achieve move-atomic in LCM robot systems, each
robot must not perform MOVE phase at the same time as its neighboring robot
performs LOOK and COMPUTE phases. Since such a situation fits perfectly
with NMR, we presented a practical implementation of a self-stabilizing LCM
using NMR. Our results are described for the case where a round is identical
across all local clocks.

As mentioned in section 1.1, NMR has various other applications that we
hope to develop in the future.

References

[1] Dolev, S., Kamei, S., Katayama, Y., Ooshita, F., Wada, K.: Brief announce-
ment: Self-stabilizing lcm schedulers for autonomous mobile robots using
neighborhood mutual remainder. In: SSS, pp. 127–132 (2019)

[2] Dolev, S., Kamei, S., Katayama, Y., Ooshita, F., Wada, K.: Brief
announcement: Neighborhood mutual remainder and its self-stabilizing
implementation of look-compute-move robots. In: DISC, pp. 43–1433
(2019)

[3] Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivi-
ous Mobile Robots. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool, United States (2012)

[4] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, United States
(1996)



Springer Nature 2021 LATEX template

Neighborhood Mutual Remainder 21

[5] Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes
in a tree that stabilizes using read/write atomicity. In: Euro-Par, pp.
545–553 (1998)

[6] Kakugawa, H., Yamashita, M.: Self-stabilizing local mutual exclusion
on networks in which process identifiers are not distinct. In: SRDS, pp.
202–211 (2002)

[7] Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-
stabilization. In: Proceedings of the Twenty-Third Annual ACM Sympo-
sium on Principles of Distributed Computing (2004)

[8] Emek, Y., Keren, E.: A thin self-stabilizing asynchronous unison algorithm
with applications to fault tolerant biological networks. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing (2021)

[9] Hadzilacos, V.: A note on group mutual exclusion. In: PODC ’01 (2001)

[10] Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-
stabilization. In: PODC, pp. 150–159 (2004)

[11] Altisen, K., Devismes, S., Durand, A.: Concurrency in snap-stabilizing
local resource allocation. Journal of Parallel and Distributed Computing
(2016)

[12] Kim, Y., Shibata, M., Sudo, Y., Nakamura, J., Katayama, Y., Masuzawa,
T.: Improved-zigzag: An improved local-information-based self-optimizing
routing algorithm in virtual grid networks. In: Proceedings of the 21st Inter-
national Symposium on Stabilization, Safety, and Security of Distributed
Systems (2019)

[13] Dolev, S.: Self-Stabilization. MIT Press, United States (2000)

[14] Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control.
Communications of the ACM 17(11), 643–644 (1974)

[15] Israeli, A., Jalfon, M.: Token management schemes and random walks
yield self stabilizing mutual exclusion. In: PODC, pp. 119–131 (1990)

[16] Kakugawa, H., Yamashita, M.: Uniform and self-stabilizing fair mutual
exclusion on unidirectional rings under unfair distributed daemon. Journal
of Parallel and Distributed Computing 62(5), 885–898 (2002)

[17] Abraham, U., Dolev, S., Herman, T., Koll, I.: Self-stabilizing l-exclusion.
Theoretical Computer Science 266(1–2), 653–692 (2001)

[18] Flatebo, M., Datta, A.K., Schoone, A.A.: Self-stabilizing multi-token rings.
Distributed Computing 8(3), 133–142 (1995)



Springer Nature 2021 LATEX template

22 Neighborhood Mutual Remainder

[19] Kakugawa, H.: Self-stabilizing distributed algorithm for local mutual
inclusion. Information Processing Letters 115(6), 562–569 (2015)

[20] Kamei, S., Kakugawa, H.: Self-stabilizing algorithm for dynamically
maintaining two disjoint dominating sets. In: PDAA, pp. 278–284 (2018)

[21] Kamei, S., Kakugawa, H.: A self-stabilizing distributed algorithm for the
local (1, | Ni |)-critical section problem. Concurrency and Computation:
Practice and Experience, 5628 (2019)

[22] Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.:
Autonomous mobile robots with lights. Theoretical Computer Science 609,
171–184 (2016)


