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The Computational Complexity of Classical Knot Recognition

Kazuhiro Ichihara Yuya Nishimura Seiichi Tani

Abstract

The classical knot recognition problem is the problem of determining whether the virtual knot
represented by a given diagram is classical. We prove that this problem is in NP, and we give an
exponential time algorithm for the problem.

1 Introduction

A disjoint union of closed loops embedded in the 3-sphere is called a link. In particular, a one-
component link is called a knot. A knot K is said to be trivial if there is a disk D ⊂ S3 which
satisfies ∂D = K. In this paper, we assume that all links are locally flat: for any point x in a link
L, there is an open neighborhood Ox ⊂ S3 such that (Ox,Ox ∩ L) is homeomorphic to (R3,R).

Kauffman defined a virtual link by extending the notion of a link ([17]). We call a conventional
link a classical link to distinguish it from a virtual link. A virtual link is defined by a virtual
link diagram, which contains real and virtual crossings, up to certain moves. Note that a classical
link admits a virtual link diagram containing virtual crossings. Given a virtual link diagram, a
problem of determining whether the virtual link represented by the diagram is classical is called
classical link recognition. In particular, classical knot recognition is the problem restricting inputs
of classical link recognition to virtual knot diagram.

The computational complexity of problems in classical link theory has been studied by many
researchers. In particular, Hass, Lagarias and Pippenger proved that some problems in classical
link theory such as unknot recognition is in NP ([12]), where unknot recognition is a problem
of determining whether a classical knot represented by a given classical knot diagram is trivial.
Furthermore, Lackenby showed that unknot recognition is in co-NP in [20], and Burton and Ozlen
gave a fast algorithm for unknot recognition in [8].

On the other hand, little is known about the computational complexity of problems in virtual
link theory. We show that classical knot recognition is in NP.

Theorem 1.1. Classical knot recognition is in NP.

Any virtual knot K is represented as a knot K̂ in a thickened orientable closed surface S × I.
Kuperberg showed that K is classical if and only if the genus of S is reduced to zero by repeating
cutting the exterior E = cl(S × I − N(K̂)) along a vertical annulus in E ([19]). In the proof
of Theorem 1.1, normal vertical annuli in the exterior E are used as a witness of classical knot
recognition. The key of the proof of Theorem 1.1 is to reduce the running time of cutting a trian-
gulation T of the exterior E along a normal vertical annulus A in E to polynomial time. It takes
exponential time of the number of tetrahedra in T to cut T along A because the number of normal
disks in A may grow exponentially. Therefore, we use the crushing procedure along A instead of
cutting T along A. Jaco and Rubinstein defined the crushing procedure on a triangulation along a
normal surface and analyzed its effects on the underlying 3-manifold in the case where the normal
surface is a disk or a 2-sphere in an orientable compact 3-manifold. In Section 4, we generalize this
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result to the setting of a normal vertical annulus in the exterior of a link in a thickened orientable
closed surface.

It is known that if a problem is in NP, then there is an exponential time algorithm for the
problem. In this paper, we also give a specific exponential time algorithm for classical knot

recognition, and we prove that the time complexity of the algorithm is ϕO(c4), where c is the

number of real crossings of a given diagram and ϕ = 1+
√
5

2
. However, it is expected that this

bound is not sharp. Therefore, in order to estimate a better bound, we conduct a computer
experiment to measure the running time of our algorithm. As a result, we see that the average of
the running times is 22.250c−0.887. From this result, it is expected that the time complexity of our
algorithm is bounded by 2O(c).

This paper is organized as follows. In Section 2, we review the definition of a virtual link. We
also define the canonical exterior of a virtual link diagram, which allows us to study virtual links
using 3-manifold theory. Then in Section 3, we give a method of constructing a triangulation of
the canonical exterior when a virtual link diagram is given. We give a brief overview of normal
surface theory in Section 4. In Section 5, we prove Theorem 1.1, and in Section 6, we give an expo-
nential time algorithm for classical knot recognition. Furthermore, we conducted a computational
experiment to estimate a better bound of the running time of the algorithm. The experimental
results are shown in Section 7. In Section 8, we summarize the paper and state future work.

2 Virtual links

2.1 The definition of virtual links

A virtual link diagram is a 4-regular plane graph with over/under or virtual information at each
vertex. A real crossing is expressed by cutting the string passing under as depicted in Figure 1(a),
and a virtual crossing is expressed by drawing a small circle as depicted in Figure 1(b). Let VD be
the entire set of virtual link diagrams. The virtual Reidemeister equivalence ≃R is an equivalence
relation on VD generated by virtual Reidemeister moves depicted in Figure 2. A virtual link is
an equivalence class obtained as the quotient of VD by the virtual Reidemeister equivalence. A
virtual link L is classical if and only if there is a diagram of L which has no virtual crossings.

(a) Real crossing (b) Virtual crossing

Figure 1: Crossings in a virtual link diagram

Next, we encode a virtual link diagram to handle it on a computer. There are several ways to
encode virtual links. Here we use oriented Gauss code, though we only consider unoriented virtual
links in this paper.

Definition 2.1. Let L be a virtual link and D be a virtual link diagram of L. The character string
obtained by the following operations is called an oriented Gauss code of D.

1. Assign natural numbers to all real crossings.

2. For each component, choose an orientation and a starting point .
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Figure 2: Virtual Reidemeister moves

3. Choose a component of D, then travel along the component from the starting point in the
chosen orientation.

4. Each time you come through a real crossing, write the following three symbols:

• “+” if you go over the crossing, otherwise “−”,

• “>” if you see the arc you intersect going from left to right, otherwise “<”,

• the index number of the crossing.

5. Write “;” as a components separator.

i i

+ > i + < i

Figure 3: The cording method of each crossing

Let D and D′ be virtual link diagrams. D and D′ can have the same oriented Gauss code even
if D and D′ are different virtual link diagrams. However, D and D′ represent the same virtual
link if D and D′ have the same oriented Gauss code ([17]). Therefore, we can encode virtual links
with oriented Gauss codes.

When a virtual link is encoded with an oriented Gauss code, we meet each real crossing twice.
Thus, an oriented Gauss code of an m-component virtual link diagram D with c real crossings
has 2c sequences of symbols and integers written according to the fourth step of Definition 2.1
and m− 1 semicolons written according to the fifth step of Definition 2.1, i.e., an oriented Gauss
code of D consists of O(c)+O(m) symbols and integers. Therefore, the computational complexity
of classical link recognition is measured by a function of the number of real crossings of a given
diagram D and the number of components of the virtual link represented by D. In particular, the
computational complexity of classical knot recognition is measured by a function of the number
of real crossings of a given diagram.

Here, we give a formal definition of classical link recognition.

Problem 2.1 (Classical link recognition). Let L be a virtual link, and let D be a virtual link
diagram of L.

Input An oriented Gauss code of D
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Output

{
yes if L is classical
no otherwise

Let L be a virtual link and D be a virtual link diagram of L. If D is disconnected, then L is
classical if and only if each link represented by a component of D is classical. In addition, if D has
no real crossings, then the link represented by D is a trivial link, i.e. a classical link. For these
reasons, we assume that an input of classical link recognition is a connected virtual link diagram
which has at least one real crossing.

Kauffman and Manturov showed that this problem can be solved by using a problem of deter-
mining whether given two Haken manifolds are homeomorphic.

Theorem 2.1 (Kauffman and Manturov [18]). Classical link recognition is computable.

2.2 Virtual links in thickened surfaces

Because the definition of a virtual link is based on a diagram, it is easy to calculate polynomial
invariants of virtual links. By contrast, with this definition, it is not straightforward to discuss
using 3-manifold theory like classical link theory.

The study of virtual links using 3-manifold theory was based on [16, 9]. The method is as
follows. Let D be a virtual link diagram. First, we place each real crossing on a surface as shown
in the left of Figure 4 and place each virtual crossing on a surface as shown in the right of Figure
4. By gluing adjacent surfaces depicted in Figure 5, we obtain an orientable surface N(D̃) and a
diagram D̃ which has no virtual crossings on N(D̃). The pair (N(D̃), D̃) is called an abstract link
diagram of D. Note that N(D̃) may be disconnected even though D is connected.

Figure 4: Each crossing of an abstract link diagram

D (N(D̃), D̃)

Figure 5: Abstract link diagram

Next, we obtain an orientable closed surface S by attaching disks to each component of ∂N(D̃).
The pair (S, D̃) is called the canonical surface realization of D (Figure 6), and S is called the
supporting surface of D. Note that the canonical surface realization of D is unique for a virtual
link diagram up to self-homeomorphism of the surface. Also note that S may be disconnected
even though D is connected. See [9] for details.

4



(N(D̃), D̃) (S, D̃)

Figure 6: Canonical surface realization

We can obtain a link D̂ in S×I from (S, D̃), where (S, D̃) is the canonical surface realization of
a virtual link diagram D. The pair (S × I, D̂) is called a canonical space realization. Additionally,
we can obtain the exterior by removing an open regular neighborhood of D̂ from S × I. This
exterior is called the canonical exterior of D.

The number of components of S is called the splitting number of D, and we denote this by
s(D). Similarly, the sum of genera of components of S is called the supporting genus of D, and we
denote this by sg(D). These are also defined for virtual link L.

• s(L) = max{s(D)|D is a diagram of L}
• sg(L) = min{sg(D)|D is a diagram of L}

s(L) is called the splitting number of L, and sg(L) is called the supporting genus of L. Lemma 2.1
follows from the definition of the supporting genus of a virtual link.

Lemma 2.1. A virtual link L is classical if and only if sg(L) = 0.

For any virtual link L, there is a diagram which has the splitting number of L and the supporting
genus of L, simultaneously.

Theorem 2.2 (Kuperberg [19]). For any virtual link L, there is a diagram D that satisfies s(D) =
s(L) and sg(D) = sg(L).

Such a diagram D is called a minimal diagram of L. Suppose that D is a minimal diagram
of a virtual link L. A minimal surface realization of L is the canonical surface realization of D.
Similarly, we also define the minimal space realization and the minimal exterior. It is known that
the minimal space realization of L and the minimal exterior of L is unique.

Theorem 2.3 (Kuperberg [19]). For any virtual link L, the minimal space realization of L and
the minimal exterior of L are uniquely determined.

Furthermore, from the proof process of Theorem 2.3, we see a construction method of the
minimal exterior of L from the canonical exterior of a virtual link diagram D. Let D̂ be a link
in a thickened closed orientable surface S × I and M = cl(S × I − N(D̂)) be the exterior of D̂.
Suppose that A is a properly embedded annulus in M . A is said to be vertical if ∂A = a0 ∪ a1 and
A ∩ S × {i} = ai(i = 0, 1), and A is said to be essential if A is incompressible, ∂-incompressible,
and not ∂-parallel. We define the following two operations for M .

Operation 2.1. Suppose that D̂ = D̂′ ∪ D̂′′ (possibly D̂′′ = ∅) and F is an embedded 2-sphere or
a properly embedded disk in M such that there is a submanifold M ′ = cl(B3 −N(D̂′)) ⊂ M and
F ⊂ ∂M ′ −∂N(D̂). First, cut M open along F . Then M ′ and M ′′ denote cl(B3 −N(D̂′)) and the
remaining component, respectively. Next, add a component cl(S2 × I −B) to M ′ ∪M ′′, where B
is a 3-ball in S2× I, and glue the copy of F ⊂ ∂M ′ and ∂B ⊂ ∂(S2× I−B). Next, shrink the copy
of F in M ′′ to a point. Finally, remove the components which contain no components of ∂N(D̂).
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Operation 2.2 (Destabilization). Suppose that A is a vertical essential annulus in M . Cut M
open along A, and fill each copy of A with a 2-handle D2 × I as shown in Figure 7. Then, remove
the components which contain no components of ∂N(D̂).

We call Operation 2.2 destabilization.

Figure 7: Destabilization

Theorem 2.4 (Kuperberg [19]). Let D be a virtual link diagram of a virtual link L, and let
M be the canonical exterior of D. The minimal exterior of L can be obtained by repeatedly
performing Operation 2.1 and destabilization to M . Furthermore, the minimal exterior obtained
by performing Operation 2.1 and destabilization in any order is unique.

We denote the sum of genera of connected components of a surface F by g(F ). By Theorem
2.4, we have the following algorithm for classical link recognition.

Algorithm 2.1. Let L be a virtual link and D be a diagram of L.

1. Construct the canonical exterior M of D.

2. Construct the minimal exterior Mmin of L by repeatedly performing Operation 2.1 and
destabilization to M .

3. Output “yes” if g(S×{0}) = g(S×{1}) = 0, otherwise output “no”, where S×{i} (i = 0, 1)
are the two copies of the supporting surface of a minimal diagram of L in the boundary of
Mmin.

In order to prove Theorem 1.1, we use the operation defined bellow, splitting, instead of Oper-
ation 2.1. Let D̂ be a link in a thickened closed orientable surface S×I and M = cl(S×I−N(D̂))
be the exterior of D̂. A properly embedded 2-sphere F in M is said to be inessential if there is
a 3-ball B in M such that F = ∂B, and a properly embedded disk F ′ is said to be inessential
if there is a disk S in ∂M such that ∂F ′ = ∂S and there is a 3-ball B in M whose boundary is
F ′∪S. A properly embedded 2-sphere and a properly embedded disk in M are said to be essential
if they are not inessential.

Definition 2.2 (splitting). Suppose that F is an essential 2-sphere in M or an essential disk in M
whose boundary is in S ×{0} ∪S ×{1}. Then, splitting is the operation cutting M open along F ,
shrinking each copy of F to a point, and removing the components which contain no components
of ∂N(D) as shown in Figure 8.

There are the following two differences between Operation 2.1 and splitting.
The first difference is that the surface used for cutting is changed to an essential 2-sphere or

an essential disk whose boundary is in S × {0} ∪ S × {1}. This difference affects the operation
if and only if there is a 2-sphere component S ′ in the supporting surface S. Let M ′ denote the
component of M which contains S ′ × {0} and S ′ × {1} and D̂′ denote the link in S ′ × I. Since a
2-sphere F ⊂ M ′ used for splitting is an essential 2-sphere, F may separate S ′ ×{0} and S ′ ×{1}.
In this case, we obtain two components M ′

1 = B3 − N(D̂′
1) and M ′

2 = B3 − N(D̂′
2) by shrinking

the copies of F , where D̂′ = D̂′
1 ∪ D̂2. M ′

1 and M ′
2 are not 3-manifolds obtained by removing an

open regular neighborhood of a link from a thickened surface. However, the boundaries, denoted
by S ′′ × {0} and S ′′ × {1}, obtained from S ′ × {0} and S ′ × {1} keep 2-spheres by this operation.
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S × {0}

S × {1}
S × {0}

S × {1}

S × {0}

S × {1}

Figure 8: Splitting (F is a disk)

Therefore, even though this operation is performed, classical link recognition can be solved by
determining whether g(S ′′ × {0}) = g(S ′′ × {1}) = 0.

The second difference is that both of copies of F are shrunk to points. By this change, we
obtain S3 − N(D̂′) if F is a 2-sphere and we obtain B3 − N(D̂′) if F is a disk. From the same
discussion of the first change, we can solve classical link recognition.

Next, we change Algorithm 2.1 as follows.

Algorithm 2.2. Let L be a virtual link and let D be a virtual link diagram of L.

1. Construct the canonical exterior M0 of D. S0 × {i} (i = 0, 1) denote the two copies of the
supporting surface of D in the boundary of M0.

2. Output “yes” if g(Sk × {0}) = g(Sk × {1}) = 0, otherwise do the following.

3. Run one of the following steps.

(a) Do splitting if there is an essential 2-sphere in Mk.

(b) Do destabilization if there are no essential 2-spheres and there is an essential vertical
annulus in Mk.

(c) Output “no” if there are no essential 2-spheres and essential vertical annuli.

4. We define Mk+1 as the 3-manifold obtained from Mk and Sk+1 × {i} as the boundary of
Mk+1 obtained from Sk × {i}.

5. Return step 2.

2.3 Algorithm for classical knot recognition

Classical knot recognition is the problem restricting inputs of classical link recognition to virtual
knot diagrams. Since a virtual knot is a one component virtual link, classical knot recognition
can be solved by Algorithm 2.2. However, it is difficult to bound the computational complexity
of Algorithm 2.2. In this subsection, we give an algorithm for classical knot recognition which is
easy to bound its computational complexity by adding one step to Algorithm 2.2.

Suppose that D is a diagram of a virtual knot K and M = cl(S × I −N(D̂)) is a 3-manifold
obtained from the canonical exterior of D by zero or more destabilizations. Let A be a properly
embedded annulus in M . We say that A is a classicalization annulus if ∂A ⊂ S ×{k} (k = 0 or 1)
and A separates ∂N(D̂) and S × {1− k}. The existence of a classicalization annulus implies that
K is a classical knot.

Lemma 2.2. Let K be a virtual knot and D be a virtual knot diagram of K. Let M be a 3-
manifold obtained from the canonical exterior of D by zero or more destabilizations. Suppose that
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M ≃ cl(S × I−N(D̂)), where S is a closed orientable surface. If there is a classicalization annulus
A, then K is classical.

Proof. Suppose that A is a classicalization annulus in M . Without loss of generality, we may
assume that ∂A ⊂ S × {0}. Since any properly embedded annulus in S × I whose boundary
components are in S × {0} is ∂-parallel, there is an annulus A′ in S × {0} ⊂ ∂M such that
∂A = ∂A′ and A∪A′ ⊂ ∂M ′, where M ′ is a submanifold of M which is cl(D2×S1−N(D̂)). Since
cl(M − M ′) ≃ S × I, there is an embedded annulus B in cl(M − M ′) such that ∂B = β1 ∪ β2,
β1 = A ∩B is essential in A, and β2 = B ∩ S × {1}. Let B′ denote the annulus N(B) ∩ S × {1}.

We consider the submanifold M ′′ = N(B) ∪ M ′ of M . Let V1 and V2 denote the annulus
components of cl(∂M ′′−∂M∩∂M ′′). Let N be the 3-manifold obtained fromM by destabilizations
using V1 and V2 and N ′ be the component of N containing ∂N(D̂). N ′ is obtained from M ′′ by
gluing two 2-handles D2 × I to V1 and V2, and hence N ′ ≃ cl(S2 × I − N(D̂)). Therefore, K is
classical since we have g(K) = 0.

From Lemma 2.2, a virtual knot K represented by a virtual knot diagram D is classical if and
only if (i) the genus of the supporting surface in the canonical exterior of D is reduced to zero by
repeating splitting and destabilization or (ii) there is a classicalization annulus in the canonical
exterior of K. Thus, we have Algorithm 2.3.

Algorithm 2.3. Let K be a virtual knot and let D be a virtual knot diagram of K.

1. Construct the canonical exterior M0 of D. S0 × {i} (i = 0, 1) denote the two copies of the
supporting surface of D in the boundary of M0.

2. Output “yes” if g(Sk × {0}) = g(Sk × {1}) = 0, otherwise do the following.

3. Run one of the following steps.

(a) Do splitting if there is an essential 2-sphere.

(b) Do destabilization if there are no essential 2-spheres and there is an essential vertical
annulus in Mk.

(c) Output “yes” if there are no essential 2-spheres and essential vertical annuli and there
is a classicalization annulus in Mk.

(d) Output “no” if there are no essential 2-spheres, essential vertical annuli, and classical-
ization annuli in Mk.

4. We define Mk+1 as the 3-manifold obtained from Mk and Sk+1 × {i} as the boundary of
Mk+1 obtained from Sk × {i}.

5. Return step 2.

Theorem 2.4 and Lemma 2.2 imply that the output of Algorithm 2.3 is correct. We show that
classical knot recognition is in NP by constructing a non-deterministic Turing machine based on
Algorithm 2.3 in Section 5. Furthermore, it is shown that Algorithm 2.3 runs in exponential time
in Section 6.

From the next section, we prepare notations and lemmas for analyzing the time complexity of
Algorithm 2.3.

3 Triangulations of the canonical exteriors of virtual
links

As mentioned above, a virtual link is represented as a link in a thickened orientable closed surface.
In this section, we give an algorithm to construct a triangulation of the canonical exterior of a
virtual link diagram when the diagram is given.
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Let ∆i (i = 1, . . . , n) be tetrahedra and Ti1 , . . . , Ti4 be faces of ∆i. ϕij ,kl denotes a gluing
map from Tij to Tkl . We denote the pair of the set of the tetrahedra and the set of the gluing
maps ({∆i}, {ϕij ,kl}) by T . T is called a generalized triangulation of a 3-manifold M if M is
homeomorphic to the space obtained as the set {∆i} of the quotient by the gluing maps ϕij ,kl . We
also define a generalized triangulation for 2-manifold. In this paper, we simply call a generalized
triangulation a triangulation, and abusing the notation, we denote the quotient space by T .

In this section, D denotes a virtual link diagram, and c denotes the number of real crossings
of D. We denote by |T | the number of n-simplices of a triangulation T of an n-manifold.

Let (S, D̃) be the canonical surface realization of D. A triangulation of S that includes D̃ in its
1-skeleton is called a good triangulation of (S, D̃). Similarly, a triangulation of S × I that includes
D̂ in its 1-skeleton is called a good triangulation of (S × I, D̂), where (S × I, D̂) is the canonical
space realization of D.

Lemma 3.1. Let (S, D̃) be the canonical surface realization of D. We can construct a good
triangulation T of (S, D̃) in time O(c). Moreover, |T | ∈ O(c).

Proof. Place a triangulated rectangle at each real crossing as shown in Figure 9. We obtain a good
triangulation by gluing rectangles on adjacent real crossings.

Figure 9: Construction of a good triangulation of the canonical surface realization

Similarly, we can obtain a good triangulation of (S × I, D̂) by placing and gluing triangulated
cubes (Figure 10).

Lemma 3.2. Let (S × I, D̂) be the canonical surface realization of D. We can construct a good
triangulation T of (S × I, D̂) in time O(c). Moreover, |T | ∈ O(c).

Figure 10: Construction of a good triangulation of the canonical space realization

Corollary 3.1. We can construct a triangulation TE of the canonical exterior of D in time O(c).
Moreover, |TE | ∈ O(c).

9



Proof. We can construct the good triangulation T of the canonical space realization of D in time
O(c). We obtain TE by doing the barycentric subdivision of T twice and then removing the
tetrahedra adjacent to D̂.

From Lemma 3.1, the following lemma holds.

Corollary 3.2. The supporting genus sg(D) of a virtual link diagram D is O(c).

Proof. Let S be the supporting surface of D, and let TS be the triangulation of S obtained by
Lemma 3.1. We denote the number of faces, edges and vertices of TS by f, e and v, respectively.
By the relationship of the genus of S and the Euler characteristic of TS we have

2− 2g(S) = χ(TS) ⇐⇒ g(S) = 1− χ(TS)

2

= 1− f − e+ v

2
.

Since e ≤ 3|TS | and f, v > 0, we see that

g(S) = 1− f − e+ v

2

≤ 1 +
e

2

≤ 1 +
3|TS |
2

.

We have g(S) ∈ O(c) because |TS | ∈ O(c). Therefore, sg(D) ∈ O(c).

4 Normal surface theory

In the first half of this section, we give a brief overview of normal surface theory and show that one
of normal surfaces which is a witness of classical knot recognition can be found as a vertex surface.
The Turing machine given in the proof of Theorem 1.1 makes use of the crushing procedure to
reduce its running time. Jaco and Rubinstein defined the crushing procedure on a triangulation
T along a normal surface F and analyzed its effect in the case where F is a disk or a 2-sphere
in an orientable compact 3-manifold ([14]). In addition, Burton generalized this result to the
setting of non-orientable 3-manifolds ([6]). In the last half of this section, we analyze the effect
of the crushing procedure along a vertical normal annulus in the exterior of a link in a thickened
orientable closed surface.

4.1 The definition of a normal surface

Suppose that T is a triangulation of a compact 3-manifold M and ∆ is a tetrahedron in T . A
properly embedded arc in a face of ∆ is called a normal arc if the arc connects the interior of
distinct edges of the face.

Definition 4.1 (Normal disk). A normal disk in ∆ is a properly embedded disk D in ∆ if D
satisfies the following conditions:

• D is a triangle or a quadrilateral,

• D has no intersection with the vertices of ∆,

• each edge of D is a normal arc.

There are seven types of normal disks in ∆ as shown in Figure 11.
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Figure 11: The seven types of normal disks

Definition 4.2 (Normal surface). A normal surface inM with respect to T is a properly embedded
surface meeting each tetrahedron of T in a collection of disjoint normal disks.

In particular, the boundary of a small regular neighborhood of a vertex of T is a normal surface.
This normal surface is called a vertex link. Then the next lemma immediately follows.

Lemma 4.1. A normal surface S is a disjoint union of vertex links if and only if any normal disk
in S is a triangle.

Let M be a 3-manifold with an n-tetrahedra triangulation T . A normal surface F in M with
respect to T can be described by a vector, a tuple of 7n integers, that counts the number of
normal disks of each type in each tetrahedron. This vector uniquely identifies a normal surface
with respect to T up to normal isotopy: an isotopy which is invariant on each simplex of T .

More generally, an integer vector x ∈ R7n represents a normal surface F with respect to T if
and only if:

1. x ≥ 0,

2. x satisfies the matching equations Ax = 0 of T , where A is the matching matrix of T defined
below,

3. x satisfies the quadrilateral condition for each tetrahedron of T .

The matching equations is the condition for gluing normal disks together across adjacent tetrahe-
dra. Let ∆ be a tetrahedron of T and T be a face of ∆. Two normal arcs α1 and α2 in T is said
to be the same type if α1 and α2 connect the same edges of T . For each type of a normal arc α
in T , there are two types of normal disks D1 and D2 in ∆ such that D1 ∩ T and D2 ∩ T are the
same type of α. Thus, if x = (x1, . . . , x7n) is the vector representation of a normal surface F with
respect to T , then we have xis + xit = xju + xjw for each type of normal arcs in interior faces of
T in order to the normal disks in adjacent tetrahedra are glued. Since there are three types of
normal arcs in a triangle and at most 3n interior faces in T , we have at most 6n equations. The
matching matrix A is defined by the coefficient matrix of these equations.

Two different type quadrilateral normal disks cannot be embedded in the same tetrahedron
without intersections. Therefore, the quadrilateral normal disks in the collection of normal disks
F ∩ ∆ must have the same type, where ∆ is a tetrahedron of T . This condition is called the
quadrilateral condition for ∆.

Let Ax = 0 be the matching equations of a triangulation T . The projective solution space of
the matching equations Ax = 0 is the set P = {x ∈ R7n|Ax = 0,

∑
xi = 1}.

Definition 4.3 (Vertex solution). A vector x ∈ P is called a vertex solution if there are no vectors
y, z ∈ P such that the projection of y + z is x.

Definition 4.4 (Vertex surface). Suppose that F is a connected two-sided normal surface with
respect to a triangulation T and x is the vector representation of F . F is called a vertex surface
if the projection of x onto the hyperplane

∑
xi = 1 is a vertex solution of P, where P is the

projective solution space of the matching equations of T .

11



Note that if there is a one-sided connected normal surface F that the projection of the vector
representation x of F is a vertex solution, then the normal surface represented by 2x is a vertex
surface.

The following theorem is used to analyze the computational complexity of an algorithm using
vertex surfaces.

Theorem 4.1 (Hass, Lagarias and Pippenger [12]). Suppose that F is a vertex surface with respect
to an n-tetrahedra triangulation of a 3-manifold and x ∈ R7n is the vector representation of F .
Then, xi ≤ 27n−1 for each i ∈ {1, . . . , 7n}.

4.2 Vertex surfaces in the exterior of a link in a thickened closed
orientable surface

First, we consider vertex 2-spheres in the exterior of a link in a thickened closed orientable surface.
Jaco and Tollefson showed that there is an essential vertex 2-sphere in a reducible closed 3-manifold
M with respect to a triangulation of M ([15, Theorem 5.2]). The exterior of a link in a thickened
closed orientable surface has a boundary, however, the following theorem can be proved as the
same argument of [15, Theorem 5.2].

Theorem 4.2. Let D̂ be a link in a thickened closed orientable surface S × I. Let M be the
exterior of D̂ with a triangulation T . Suppose that g(S) ̸= 0. Then, if M is reducible, then there
is an essential vertex 2-sphere with respect to T .

Let M be the exterior of a link D̂ in a thickened closed orientable surface S × I, and suppose
that g(S) ̸= 0. By Theorem 4.2, whenever M is reducible, we can split M by using a vertex
2-sphere.

Next, we consider vertex annuli in the exterior M of a link in a thickened closed orientable
surface S × I with respect to a triangulation T of M . Even though there is a vertical essential
annulus in M , there is not necessarily a vertex annulus which is vertical and essential. However,
if M contains a vertical essential annulus, then there is a vertex annulus which is vertical and
essential or a vertex annulus which is a classicalization annulus with respect to T as shown in
Theorem 4.5.

The weight of a normal surface F with respect to a triangulation T , denoted by wt(F ), is the
number of intersections F ∩T (1), where T (1) is the 1-skeleton of T . We say that a normal surface
F is least weight if wt(F ) takes the minimal value among all normal surfaces which are isotopic to
F .

Suppose that F1 and F2 are normal surfaces with respect to a triangulation T such that there
are no tetrahedra containing different types quadrilateral disks in F1 ∪ F2. Then the sum of F1

and F2, denoted by F1 + F2, is the normal surface F represented by the vector xF = xF1 + xF2 ,
where xF1 and xF2 is the vector representation of F1 and F2, respectively. For any integer n > 0,
let the integer multiple of F , denoted by nF , be the normal surface represented by the vector nxF ,
where xF is the vector representation of F . Under the assumption that normal surfaces F1 and F2

intersect transversely, the sum F = F1 + F2 is said to be in reduced form if F cannot be written
as F = F ′

1 + F ′
2, where F ′

i is a normal surface which is isotopic to Fi for each i = 1, 2 and F ′
1 ∩ F ′

2

has fewer components than F1 ∩F2. A patch of F1 +F2 is a subsurface of F1 ∪F2 whose boundary
consists of F1 ∩ F2. In particular, a patch of F1 + F2 which is a disk is called a disk patch.

Jaco and Tollefson [15] showed Theorem 4.3 and Theorem 4.4 by extending the results of Jaco
and Oertel [13].

Theorem 4.3 (Jaco and Tollefson [15, Lemma 6.6]). Let M be an irreducible, ∂-irreducible 3-
manifold and T be a triangulation of M . Suppose that F is a least weight, incompressible,
∂-incompressible, two-sided normal surface in M with respect to T and F is a not disk. If there
are an integer n > 0 and normal surfaces F1 and F2 such that nF = F1 + F2 is in reduced form
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and each intersection curve of F1 ∩ F2 is two-sided in F1 and F2, then each patch of F1 + F2 is
incompressible and ∂-incompressible and there are no disk patch.

Let M be an irreducible, ∂-irreducible 3-manifold with a triangulation T and F be a normal
surface which is neither a 2-sphere nor a disk in M with respect to T . Suppose that F is least
weight, incompressible, ∂-incompressible and two-sided, nF = F1+F2, and each intersection curve
in F1 ∩ F2 is two-sided. If F1 + F2 is not in reduced form, then let F ′

1 and F ′
2 be normal surfaces

such that nF = F ′
1+F ′

2 is in reduced form and each F ′
i is isotopic to Fi. If F

′
i is a normal 2-sphere,

then there is a disk patch in F ′
i , and this contradicts Theorem 4.3. Therefore, each F ′

i is not a
2-sphere, and so Fi is not a 2-sphere. Similarly, each Fi is not a disk.

Theorem 4.4 (Jaco and Tollefson [15, Theorem 6.5]). Let M be an irreducible, ∂-irreducible
3-manifold and T be a triangulation of M . Suppose that F is a least weight normal surface
in M with respect to T , there are an integer n > 0 and normal surfaces F1 and F2 such that
nF = F1 + F2, and F is neither a disk nor a 2-sphere, where F1 and F2 are normal surfaces in
T . If F is two-sided, incompressible, and ∂-incompressible, then each Fi is incompressible and
∂-incompressible and not a disk.

Theorem 4.5. Let M be the exterior of a link in a thickened closed orientable surface S × I.
Suppose that g(S) ̸= 0 and M is irreducible and ∂-irreducible. Let T be a triangulation of M . If
there is a vertical essential annulus in M , then there is either a vertex annulus which is vertical
and essential or a vertex annulus which is a classicalization annulus with respect to T .

Proof. Suppose that A is a vertical essential annulus in M . Since M is irreducible and ∂-irreducible
and A is incompressible in M , if A is not a normal surface with respect to T , then there is a normal
surface which is isotopic to A, which we again denote by A (See [21] for details). Let us assume
that A is least weight in its isotopy class.

If A is not a vertex surface, then there are an integer n > 0 and vertex surfaces F1, . . . , Fk such
that nA = F1+F2+ · · ·+Fk. As we have already observed, each Fi is neither a disk nor a 2-sphere,
and hence χ(Fi) ≤ 0 for each Fi, where χ(Fi) is the Euler characteristic of Fi. On the other hand,
by computing the Euler characteristic of nA and F1 + · · ·+Fk, we have χ(nA) =

∑k
i=1 χ(Fi) = 0.

Thus, χ(Fi) = 0 for each i = 1, . . . , k, and hence each Fi is a torus or an annulus. Since A is
not closed, there is at least one vertex surface Fj which is not closed, i.e., Fj is an annulus. By
Theorem 4.4, Fj is incompressible and ∂-incompressible. Because A does not intersect ∂TN(D̂),
Fj ∩ ∂TN(D̂) = ∅, and so ∂Fj ⊂ S × {0} ∪ S × {1}. Therefore, Fj is a vertex annulus which is
either vertical and essential or a vertex annulus which is a classicalization annulus with respect to
T .

4.3 The crushing procedure

Let M be a compact 3-manifold with an n-tetrahedra triangulation T and F be a vertex surface
in M with respect to T . Since F may contains 27n−1 normal disks, the operation cutting T
along F takes exponential time, and so splitting and destabilization take exponential time and
add exponential cells if we run these operations simply. In Section 5, we show that there are
algorithms to run splitting and destabilization in polynomial time. In order to reduce the running
time of splitting and destabilization, we use the crushing procedure along F instead of cutting T
along F . The crushing procedure is defined by Jaco and Rubinstein ([14]), runs in polynomial
time of n, and does not increase the number of tetrahedra.

Definition 4.5 (Jaco and Rubinstein, [14]). Suppose that T is a triangulation of a compact 3-
manifold M and F is a connected normal surface in M with respect to T . The following operation
is called the crushing procedure along F .
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1. Cut M open along F . M ′ denotes the resulting 3-manifold, and we obtain the new cell-
decomposition C′ of M ′ from T . If F is two-sided in M , we obtain two copies of F in ∂M ′,
otherwise, F is one-sided, we obtain the double cover of F in ∂M ′.

2. Shrink each copy of F or the double cover of F to a point. Let N denote the resulting
topological space and C denote the cell decomposition obtained from C′. Note that N may
be not a 3-manifold. Now, each cell of C is one of the following cells:

• 3-sided foot ball:
a cell obtained from a region between two parallel triangular normal disks or a vertex
of the tetrahedron and a triangular normal disk;

• 4-sided foot ball:
a cell obtained from a region between two parallel quadrilateral normal disks;

• triangular purse:
a cell obtained from a region between a triangular normal disk and a quadrilateral normal
disk;

• tetrahedron:
a cell obtained from a tetrahedron which has no quadrilateral normal surfaces.

3. Flatten each football to an edge and each triangular purse to a face as shown in Figure 13.

4. Remove edges and faces that do not belong to any tetrahedron and break apart tetrahedra
which are connected only by vertices or edges.

3-sided football 4-sided football triangular purse

Figure 12: Cells in the cell-decomposition

Figure 13: Flattening footballs and triangular purse

Furthermore, we call the operations up to the second step of Definition 4.5 the non-destructive
crushing procedure.

The crushing procedure may change the underlying 3-manifold of a triangulation. Furthermore,
the underlying space after the crushing procedure may not be a 3-manifold. Jaco and Rubinstein
described the effect of the crushing procedure only when the underlying 3-manifold is orientable.
Then, Burton described the effect in general case by using a sequential combination of the atomic
moves.
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Definition 4.6 (Burton [6]). Let T be a triangulation of a compact 3-manifold M and S be a
normal surface in M with respect to T . Let C denote the cell-decomposition obtained by the
non-destructive crushing procedure using S. We call the following three moves on C the atomic
moves:

• flatting a triangular pillow to a triangle as shown in Figure 14(a),

• flatting a bigonal pillow to a bigon as shown in Figure 14(b),

• flatting a bigon to an edge as shown in Figure 14(c).

After each atomic move, we remove any 2-faces, edges, or vertices which does not belong to a
3-cell, and we break apart 3-cells which are connected only by vertices or edges.

(a) Flatting a triangular pillow to
a triangle

(b) Flatting a bigonal pillow to a
bigon

(c) Flatting a bigon to an edge

Figure 14: The atomic moves

Lemma 4.2 (Burton [6]). Let T be a triangulation of a compact 3-manifold M and S be a
normal surface in M with respect to T . Let C0 denote the cell-decomposition obtained from
T by the non-destructive crushing procedure using S and T ′ denote the triangulation obtained
from T by the crushing procedure using S. Then, there is a sequence of cell-decompositions
C0 → C1 → · · · → Cn = T ′, and Ci+1 is obtained from Ci by one of the atomic moves.

Burton proved the following theorem from Lemma 4.2.

Theorem 4.6 (Burton [6]). Suppose that T is a triangulation of a compact 3-manifold M and S
is a normal 2-sphere or a normal disk in M with respect to T . We denote the triangulation which
is obtained by the crushing procedure using S by T ′. Let C0 be the cell-decomposition obtained
by the non-destructive crushing procedure and C0 → C1 → · · · → Cn = T ′ denote a sequence of the
cell-decompositions, where Ci+1 is obtained from Ci by an atomic move. Suppose that C0 contains
no two-sided projective planes. We denote the underlying 3-manifolds of Ci by Mi. Then, Mi+1 is
obtained from Mi by one of the following operations:

• cutting open along a properly embedded disk S in Mi,

• cutting open along an embedded 2-sphere S ⊂ Mi and filling the resulting boundary spheres
with 3-balls,

• removing a 3-ball, a 3-sphere, a lens space L(3, 1), a projective space RP 3, S2 × S1 or a
twisted S1 bundle S2×̃S1 component,

• filling a boundary sphere in ∂Mi with a 3-ball.

Next, we consider that how the crushing procedure affects the number of tetrahedra. The
crushing procedure removes tetrahedra containing at least one quadrilateral normal disk and leaves
tetrahedra without any quadrilateral normal disks. Therefore, the crushing procedure does not
increase the number of tetrahedra.
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The crushing procedure includes the operation to cut open a triangulation along a normal sur-
face. Thus, it takes exponential time to execute simply if the normal surface contains exponential
normal disks. However, it is known that there is an algorithm runs the crushing procedure in
linear time.

Theorem 4.7 (Burton [8]). Let T be an n-tetrahedra triangulation of a 3-manifold M and F be
a normal surface in M with respect to T . We can run the crushing procedure using F in time
O(n), where n is the number of tetrahedra in T .

4.4 The effect of the crushing procedure using an annulus

In Section 5, we give an algorithm to destabilize a triangulation of a 3-manifold. In the algorithm,
we run the crushing procedure using a normal annulus. In order to analyze the effect of the
crushing procedure, we fix and use the following notation in the rest of this subsection. Let T be
a triangulation of the exterior M of a link in a thickened closed orientable surface S × I and A
be a normal annulus in M with respect to T . Let C denote the cell-decomposition obtained from
T by the non-destructive crushing procedure using A and T ′ denote the triangulation obtained
from T by the crushing procedure using A. Note that the underlying space M ′ of T ′ may not be
a 3-manifold, i.e., a point in M ′ may not have an open neighborhood which is homeomorphic to
R3 or {(x1, x2, x3) ∈ R3|x3 ≥ 0}. Such a point is called a singular point, and a topological space
X which has singular points is called a singular 3-manifold if the topological space obtained by
removing singular points from X is a 3-manifold. We define the boundary of a singular 3-manifold
X by the union of the set of singular points and the set of points which have open neighborhoods
which are homeomorphic to {(x1, x2, x3) ∈ R3|x3 ≥ 0}, and denote it by ∂X.

From Lemma 4.2, there is a sequence of the atomic moves a0 → · · · → an−1 and the cell-
decompositions Ci, where C0 = C, Ci is the cell-decomposition obtained from Ci−1 by the atomic
move ai−1, and Cn = T ′. There are two triangulations of S in the boundary of T . We denote these
triangulations by S0 and S1. Let Sk

0 ⊂ C0 denote the union of 2-cells obtained from the triangles
in Sk, and for any i other than 0, let Sk

i ⊂ Ci denote the union of 2-cells obtained from the 2-cells
in Sk

i−1, where k = 0, 1. Note that Sk
i is the subset of ∂Ci whose points were in Sk before the

crushing procedure. Hereinafter, if we write Sk
i , then it means S0

i or S1
i for any integer i.

Lemma 4.3. Let M be the exterior of a link in a thickened closed orientable surface S × I with a
triangulation T . Suppose that there is a normal vertical annulus A in M with respect to T . We
denote the cell-decomposition obtained from T by the non-destructive crushing procedure using
A by C0 and the triangulation obtained from T by the crushing procedure using A by T ′. For any
i (1 ≤ i ≤ n), let Mi be the underlying singular 3-manifold of Ci. Then, Mi+1 is homeomorphic
to Mi or Mi+1 is obtained from Mi by one of the following operations:

(a) removing a 3-ball or a 3-sphere component,

(b) filling a boundary sphere in ∂Mi with a 3-ball,

(c) cutting open Mi along a properly embedded disk in Mi,

(d) cutting open Mi along an embedded 2-sphere in Mi and filling the resulting boundaries with
3-balls,

(e) cutting open Mi along a bigon B which satisfies the following conditions:

• ∂B ∩ S0
i ̸= ∅,

• ∂B ∩ S1
i ̸= ∅,

• v1 and v2 are identified with a singular point, where v1 and v2 are the vertices of B.

Proof. The cell-decomposition Ci is obtained from Ci−1 by the atomic move ai−1. First, suppose
that ai−1 is the atomic move flatting a bigon B ⊂ Ci−1 to an edge. Let v1 and v2 denote the
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vertices of B, and let e1 and e2 denote the edges of B. If B contains no singular points, then we
can prove that ai−1 has the effect (b), (c), or (d) as the same argument of the proof of Theorem
4.6. Assume that B contains at least one singular point. Note that the number of singular points
in B is one or two. We consider the following cases:

• The entire of B lies in ∂Ci−1:

– The edges e1 and e2 are not identified:

∗ If v1 and v2 are not identified, then B forms a disk with one or two singular points
in ∂Ci−1. The atomic move ai−1 is the move flatting the disk to an edge, so ai−1

does not change the underlying singular 3-manifold Mi−1.

∗ If v1 and v2 are identified, then B forms a disk whose two boundary points are
identified at a singular point. The atomic move ai−1 is the move flatting the surface
to a circle, so ai−1 does not change the underlying singular 3-manifold Mi−1.

– The edges e1 and e2 are identified:

∗ The vertices v1 and v2 are not identified:

· If either v1 or v2 is identified to a singular point s, then B is a 2-sphere boundary
which touches another boundary at the point s as shown in Figure 15. In this
case, ai−1 has the effect filling a 2-sphere boundary with a 3-ball.

singular point s

B

ai−1

∂Ci−1 ∂Ci

Figure 15: The case where B forms a 2-sphere in the boundary with a singular point

· Similarly, if both of v1 and v2 are identified to singular points, then the atomic
move ai−1 has the effect filling a 2-sphere boundary with a 3-ball.

∗ The case where v1 and v2 are identified does not occur. Singular points occur only
when we shrink copies of the annulus A to points. However, A is a surface obtained
by removing two open disks from a disk in this case as shown Figure 16. This
contradicts that A is an annulus.

• Either v1 or v2 is in ∂Ci−1 and the other points of B are in the interior of Ci−1:

– The edges e1 and e2 are not identified, then B forms a disk in Ci−1 with a singular point.
The atomic move ai−1 is the move flatting the disk to an edge, so ai−1 does not change
the underlying singular 3-manifold Mi−1.

– The edges e1 and e2 are identified, then B forms a 2-sphere in Ci−1 with a singular
point. In this case, the atomic move ai−1 has the effect cutting the underlying singular
3-manifold Mi−1 along an embedded 2-sphere and filling the resulting boundaries with
3-balls.

• Both v1 and v2 are in ∂Ci−1 and the other points of B are in the interior of Ci−1:

– The edges e1 and e2 are not identified:
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B

A

Figure 16: The case where B lies in ∂Ci−1, the edges e1 and e2 are identified, and the vertices v1 and
v2 are identified

∗ The vertices v1 and v2 are not identified, then B forms a disk with one or two
singular points. The atomic move ai−1 is the move flatting the disk to an edge, so
ai−1 does not change the underlying singular 3-manifold Mi−1.

∗ The vertices v1 and v2 are identified, then B forms a disk whose two boundary
points are identified at a singular point. The atomic move ai−1 is the move flatting
the surface to a circle, so ai−1 does not change the underlying singular 3-manifold
Mi−1.

– Both e1 and e2 are identified:

∗ The vertices v1 and v2 are not identified, then B forms a 2-sphere with one or two
singular points. The atomic move ai−1 is the move flatting the 2-sphere to an edge,
so ai−1 has the effect cutting the underlying singular 3-manifold Mi−1 along an
embedded 2-sphere and filling the resulting boundaries with 3-balls.

∗ The vertices v1 and v2 are identified, then B forms a 2-sphere whose two boundary
points are identified at a singular point. The atomic move ai−1 is the move flatting
the surface to a circle, so ai−1 has the effect cutting the underlying singular 3-
manifold Mi−1 along an embedded 2-sphere and filling the resulting boundaries
with 3-balls.

• Either e1 or e2 is in ∂Ci−1 and the other points are in the interior of Ci−1:

– The vertices v1 and v2 are not identified, then B forms a disk with one or two singular
points. Note that e1 and e2 are not identified from the assumption. The atomic move
ai−1 is the move flatting the disk to an edge, so ai−1 does not change the underlying
singular 3-manifold Mi−1.

– The vertices v1 and v2 are identified, then B forms a disk whose two boundary points
are identified at a singular point. The atomic move ai−1 is the move flatting the surface
to a circle, so ai−1 does not change the underlying singular 3-manifold Mi−1.

• Both the edges e1 and e2 are in ∂Ci−1 and the other points are in the interior of Ci−1:

– The edges e1 and e2 are not identified:

∗ The vertices v1 and v2 are not identified:

· Either v1 or v2 is identified to a singular point, then B forms a properly embedded
disk with a singular point. The atomic move ai−1 is the move flatting the disk to
an edge, so ai−1 has the effect cutting open the underlying singular 3-manifold
Mi−1 along a properly embedded disk.

· The vertices v1 and v2 are identified to singular points, e1 ⊂ S0
i−1, and e2 ⊂ S1

i−1,
then B forms a properly embedded disk with the two singular points, and ai−1 is
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B

S1
i−1

S0
i−1

S 1
i

S 0
i

Figure 17: The case where v1 and v2 are not identified and e1 ⊂ S0
i−1, and e2 ⊂ S1

i−1

B

S1
i−1

S0
i−1

S 1
i

S 0
i

ai−1

Figure 18: The case where v1 and v2 are identified and e1 ⊂ S0
i−1 and e2 ⊂ S1

i−1

the move flatting the disk to an edge. Note that the edge obtained from the disk
is divided into two edges because the 3-cells containing the edge are connected
only by the edge as shown in Figure 17. Therefore, ai−1 has the effect cutting
the underlying singular 3-manifold Mi−1 along a properly embedded disk. In the
case where e1 ⊂ S1

i−1 and e2 ⊂ S0
i−1, we can obtain the same results.

· The vertices v1 and v2 are identified to singular points and e1 and e2 are in Sk
i−1,

then B forms a properly embedded disk, and so ai−1 has the effect cutting the
underlying singular 3-manifold Mi−1 along a properly embedded disk.

∗ The vertices v1 and v2 are identified:

· The edge e1 lies in S0
i−1 and the edge e2 lies in S1

i−1, then B forms a disk whose
two boundary points are identified at a singular point as shown in Figure 18, and
so ai−1 is the move flatting the surface to a circle. Therefore, ai−1 has the effect
cutting the underlying singular 3-manifold Mi−1 along a bigon whose vertices are
identified. In the case where e1 ⊂ S1

i−1 and e2 ⊂ S0
i−1, we can obtain the same

results.

· The edges e1 and e2 are in Sk
i−1, then B forms a disk whose two boundary points

are identified at a singular point as shown in Figure 19, and so ai−1 is the move
flatting the surface to a circle.
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∂Ci−1

ai−1

singular point

∂Ci

Figure 19: The case where v1 and v2 are identified and e1 and e2 are in Sk
i−1

• The edges e1 and e2 are identified:

– The vertices v1 and v2 are not identified:

∗ Either v1 or v2 is identified to a singular points, then B forms a 2-sphere with a
singular point. In this case, the atomic move ai−1 is the move flatting the 2-sphere
to an edge, and so ai−1 has the effect cutting the underlying singular 3-manifold
Mi−1 along an embedded 2-sphere and filling the resulting boundaries with 3-balls.

∗ The vertices v1 and v2 are identified to singular points, then B forms a 2-sphere
with two singular points. In this case, the atomic move ai−1 is the move flatting
the 2-sphere to an edge, and so ai−1 has the effect cutting the underlying singular
3-manifold Mi−1 along an embedded 2-sphere and filling the resulting boundaries
with 3-balls.

– The vertices v1 and v2 are identified, then B forms a 2-sphere whose two points are
identified at a singular point, and so the atomic move ai−1 is the move flatting the
surface to a circle. Therefore, ai−1 has the effect cutting the underlying singular 3-
manifold Mi−1 along an embedded 2-sphere and filling the resulting boundaries with
3-balls.

Next, we assume that ai−1 flats a triangular pillow to a triangle. Let P denote the triangular
pillow flattened by ai−1, and t1 and t2 denote the triangles of P .

• If t1 and t2 are in ∂Ci−1, then P is a 3-ball component. Thus, ai−1 has the effect removing
a 3-ball component from Mi−1.

• We consider the case where t1 and t2 are identified. If t1 and t2 are identified without a
twist, then P is a 3-sphere component. If t1 and t2 are identified with a twist, then P is a
lens space L(3, 1) component. A 3-sphere component and a L(3, 1) component in Mi occur
by the operation (d) because (d) is the only operation which may add a component with no
boundaries. If there is a L(3, 1) component, then there is an embedded 2-sphere bounding
a 3-manifold cl(L(3, 1) − B3) in the canonical exterior cl(S × I − N(D̂)). This contradicts
that S × I is irreducible, where S is the supporting surface of the virtual link diagram D.
Therefore, P forms a 3-sphere, and so ai−1 has the effect removing a 3-sphere component.

• In the case where at least one of the faces of P identifies to a face of cells other than P , then
P is an embedded 3-ball in Ci−1. The atomic move ai−1 is the move flatting this 3-ball to a
disk, hence ai−1 does not change the topology of the underlying singular 3-manifold Mi−1.

Finally, we assume that ai−1 is the move flatting a bigonal pillow to a bigon. Let P denote the
bigonal pillow flattened by ai−1, and b1 and b2 denote the bigons of P .

• If b1 and b2 are in ∂Ci−1, then P is a 3-ball component. Thus, ai−1 has the effect removing
a 3-ball component.
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• If t1 and t2 are identified without a twist, then P is a 3-sphere component. If t1 and t2 are
identified with a twist, then P is a projection space component. In this case, P does not
forms a projection space for the same reason that a L(3, 1) component does not exist in Mi,
and so P forms a 3-sphere. Therefore, ai−1 has the effect removing a 3-sphere component.

• In the case where at least one of the faces of P identifies to a face of cells other than P , ai−1

does not change the underlying 3-manifold because P is an embedded 3-ball in Ci.

Definition 4.7. Let M be the exterior of a link in a thickened closed orientable surface S × I
and T be a triangulation of M . There are two triangulations of S in the boundary of T , and we
denote these by S0 and S1. Suppose that there is a normal vertical annulus A in T . Let C0 be the
cell-decomposition obtained from T by the non-destructive crushing procedure using A and T be
the triangulation obtained from T ′ by the crushing procedure using A. From Lemma 4.2, there is
a sequence of cell-decompositions C0 → C1 → · · · → Cn = T ′, and Ci is obtained from Ci−1 by an
atomic move if 1 ≤ i ≤ n. Let Sk

i denote the union of the subset obtained from Sk in ∂Ci. Then,
we define the subsets Vi and Ei of ∂Ci as follows:

• Ei =
⋃

ej ⊂ S0
i ∩ S1

i

ej , where ej are edges of Ci.

• Vi =

 ⋃
vj ∈ S0

i ∩ S1
i

vj

−

 ⋃
vj ∈ Ei

vj

, where vj are vertices of Ci.

Note that the 2-cells in S0
i ∪ S1

i are removed from Ci because the 2-cells do not belong to any
3-cells in Ci, thus, there are no 2-cells in S0

i ∩ S1
i . Therefore, Vi is the set of all singular points in

Ci, and S0
i ∩ S1

i = Vi ∪ Ei. We define V ′ ⊂ T ′ by Vn and E′ ⊂ T ′ by En.

Lemma 4.4. Suppose the same situation of Definition 4.7. Then, V ′ and E′ satisfy one of the
following conditions:

• |V ′| = 2 and |E′| = 0,

• |V ′| = 1 and |E′| = 0,

• |V ′| = 1, |E′| = 2, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 2, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 4, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 1, and the component of E′ is a circle constructed by two edges,

• |V ′| = 0 and |E′| = 0.

Proof. C0 is obtained from T by cutting T along the annulus A and then each copies of A to a
point. Therefore, |V0| = 2 and |E0| = 0.

Ci+1 is obtained from Ci by an atomic move ai. From the proof of Lemma 4.3, if |Vi| ≠ |Vi+1|
or |Ei| ̸= |Ei+1|, then the atomic move ai is the move flatting a bigon B to an edge and B
contains singular points. Furthermore, by the proof of Lemma 4.3, B satisfies one of the following
conditions:

(I) B ⊂ ∂Ci, e1 = e2, and B contains one singular point (Figure 20(a)),

(II) B ⊂ ∂Ci, e1 = e2, and B contains two singular points (Figure 20(b)),

(III) ∂B ⊂ ∂Ci, v1 ̸= v2, and e1 ⊂ Sk
i and e2 ⊂ Sl

i (Figure 20(c)),

(IV) ∂B ⊂ ∂Ci, v1 = v2, and e1 ⊂ Sk
i and e2 ⊂ Sl

i (Figure 20(d)),

21



B

(a) type (I)

B

(b) type (II)

B

(c) type (III)

B

(d) type (IV)

Figure 20: The types of a bigon B

where e1 and e2 are the edges of B and k ̸= l. We say that a bigon B has type (I), (II), (III), or
(IV) if B has singular points and B satisfies the condition (I), (II), (III), or (IV), respectively.

• If there are no bigons whose type is (I), (II), (III), or (IV) in Ci for any i (0 ≤ i ≤ n), then
T ′ satisfies |V ′| = 2 and |E′| = 0.

• If there is a bigon B whose type is (I) in Ci and ai is the move flatting B to an edge, then ai

removes the singular point contained in B. Note that there are no bigons whose type is (II)
or (III) in any cell-decompositions Cj (j > i) since the number of singular points in Cj is one
or less.

– If there are no bigons whose type is (I) or (IV) in any cell-decompositions Cj (j > i),
then |V ′| = 1 and |E′| = 0.

– If there is a bigon Bj whose type is (I) in a cell-decomposition Cj (j > i) and aj is the
move flatting Bj , then |V ′| = 0 and |E′| = 0.

– If there is a bigon whose type is (IV) in a cell-decomposition Cj (j > i) and aj is the move
flatting Bj , then |V ′| = 0, |E′| = 2, and each component of E′ is a circle constructed by
one edge.

• Suppose that there is a bigon B whose type is (II) in Ci and ai is the move flatting B to an
edge. In this case, Ci+1 has no singular points, and so there are no bigons whose type are
(I)–(IV) in any cell-decompositions Cj (j > i). Therefore, |V ′| = 0 and |E′| = 0.

• If there is a bigon B whose type is (III) in Ci and ai is the move flatting B to an edge, then the
atomic move ai flats B to a circle constructed by two edges as shown Figure 17. Therefore,
Ci+1 satisfies |Vi+1| = 0, |Ei+1| = 1, and the component of Ei+1 is a circle constructed by
two edge. Let ē1 and ē2 denote the edges in Ei. We prove that ē1 and ē2 are not identified
in T ′. Suppose that ē1 and ē2 are not identified in Cj and ē1 and ē2 are identified in Cj+1,
where i < j ≤ n − 1. In this case, there is a bigon B̄ whose edges are ē1 and ē2 in Cj , and
aj is the move flatting B̄ to an edge. The edges ē1 and ē2 are in Ej ⊂ S0

j ∩ S1
j , and so B̄ is

a component of Sk
j , where k = 0 or 1. However, a component of Sk

j has at least one triangle
because a component of S × {k} ⊂ ∂T has triangles and these triangles are not removed by
the atomic moves and the move shrinking the annulus A. This contradicts that a component
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constructed by B does not contain triangles, therefore, ē1 and ē2 are not identified in T ′.
Thus, |V ′| = 0, |E′| = 1, and the component of E′ is a circle constructed by two edges.

• Suppose that there is a bigon B whose type is (IV) in Ci and ai is the move flatting B to an
edge. Note that the atomic moves do not eliminate a circle constructed by one edge.

– If there are no bigons whose type is (I) or (IV) in any cell-decompositions Cj (j > i),
then |V ′| = 1 and |E′| = 2.

– If there is a bigon Bj whose type is (I) in a cell-decomposition Cj (j > i) and aj is the
move flatting Bj , then |V ′| = 0 and |E′| = 2.

– If there is a bigon whose type is (IV) in a cell-decomposition Cj (j > i) and aj is the move
flatting Bj , then |V ′| = 0, |E′| = 4, and each component of E′ is a circle constructed by
one edge.

5 The proof that classical knot recognition is in NP

Let D be a diagram of a virtual link L. We can regard L as a link D̂ in S × I, where S is a closed
orientable surface. Let M be the exterior cl(S × I −N(D̂)). By Theorem 2.4, L is classical if and
only if g(S) is reduced to zero by repeating splitting and destabilization, where g(S) denotes the
sum of the genera of connected components of S. In this section, we give an algorithm to split
and destabilize on a triangulation of M .

5.1 Splitting on a triangulation

In this subsection, we give an algorithm to split on a triangulation of the exterior of a link in a
thickened closed orientable surface S × I.

Operation 5.1. Suppose that D̂ is a link in a thickened closed orientable surface S × I, M is the
exterior of D̂, and T is a triangulation of M . Given T and a normal 2-sphere F in M with respect
to T , do the following operations:

1. perform the crushing procedure on T using F ,

2. remove the components which contain no torus boundaries other than the boundary compo-
nents obtained from the copies of S.

The splitting operation is performed at least once by Operation 5.1.

Lemma 5.1. Suppose that D̂ is a link in a thickened closed orientable surface S × I, T is a
triangulation of the exterior M = cl(S × I −N(D̂)) of D̂, and F is a normal 2-sphere in M with
respect to T . Let T ′ be the triangulation obtained by the step 1 of Operation 5.1 and M ′ be the
underlying 3-manifold of T ′. Then, there is a sequence of 3-manifolds M → M0 → M1 → · · · →
Mn−1 → Mn = M ′, and Mi+1 is obtained from Mi by one of the following operations:

• splitting Mi by an essential 2-sphere,

• compressing the boundary of Mi,

• adding a 3-ball or a 3-sphere component,

• filling a boundary 2-sphere with a 3-ball,

• removing a 3-ball or a 3-sphere component.

Moreover, if the given normal surface F is essential in M , then splitting is performed at least once.
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Proof. Consider performing the crushing procedure using F on T . Let C0 be the cell-decomposition
which is obtained by the non-destructive crushing procedure and M0 be the underlying 3-manifold
of C0. The 3-manifold M0 is obtained from M by splitting if F is essential, otherwise, M0 is
obtained by adding a 3-sphere component to M . In either case, M0 is obtained from M by one
of the above four operations. Since M contains no two-sided projective planes, M0 also contains
no two-sided projective planes. By Theorem 4.6, there is a sequence of 3-manifold M0 → M1 →
· · · → Mn−1 → Mn = M ′ and, Mi+1 is obtained from Mi by one of the following operations:

• cutting open along a properly embedded disk S in Mi,

• cutting open along a 2-sphere S in Mi and filling the resulting boundary spheres with 3-balls,

• removing a 3-ball, a 3-sphere, a lens space L(3, 1), a projective space RP 3, S2 × S1 or a
twisted S1 bundle S2×̃S1 component,

• filling a boundary sphere in ∂Mi with a 3-ball.

By observing the above operations, we have the following.

1. The operation cutting Mi open along a properly embedded disk S in Mi:

• In the case where ∂S is essential in ∂Mi:

– This case implies that there is a component D̂′ of D̂ and ∂S is in ∂N(D̂′), i.e., D̂′

is the trivial knot. Thus, Mi+1 is obtained from Mi by compressing the boundary
∂N(D̂′)

• In the case where ∂S is inessential in ∂Mi:

– If S is essential in Mi, this operation is the splitting operation.

– If S is inessential in Mi, this operation is the operation to add a 3-ball.

2. The operation cutting open Mi along an embedded 2-sphere S ⊂ Mi and filling the resulting
boundary spheres with 3-balls:

• If S is essential in Mi, this operation is the splitting operation.

• If S is inessential in Mi, this operation is the operation to add a 3-sphere.

3. The operation removing a 3-ball, a 3-sphere, a lens space L(3, 1), a projective space RP 3,
S2 × S1 or a twisted S1 bundle S2×̃S1 component:

• A 3-ball component or a 3-sphere component may be added to Mi by the above opera-
tions. This operation removes one of these components.

4. The operation filling a boundary sphere with a 3-ball:

• A boundary component in ∂Mi which is a 2-sphere is one of the follows:

– a component of a copy of the supporting surface whose genus is 0 ,

– a boundary component obtained by compressing the boundary of Mj (j < i),

– the boundary of a 3-ball component.

This operation deletes one of these boundaries.

From these observation, we see that Mi+1 is obtained from Mi by one of the above four
operations. Furthermore, M0 is obtained by cutting M open along the given normal 2-sphere and
shrinking each copy of F to a point. Therefore, the splitting is performed at least once if F is
essential.

By the proof of Lemma 5.1, we see the following corollary.

Corollary 5.1. Suppose the same situation of Operation 5.1. Let D̂′ and D̂′′ be sublinks of D̂.
A component of the 3-manifold M ′ obtained from M by Operation 5.1 is one of the following
3-manifolds with zero or more open 3-balls removed:
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• cl(S × I −N(D̂′)),

• B3 −N(D̂′′),

• S3 −N(D̂′′),

Note that there is a 2-sphere boundary other than the boundary components obtained from
the copies of S in the resulting 3-manifold M ′ if and only if there is a split component D̂′′ of D̂
which is the trivial knot and the boundary ∂N(D̂′′) is compressed.

In particular, we consider the case where D̂ ⊂ S × I is a knot, S is connected, g(S) is not
zero, and F is an essential 2-sphere in the exterior M of D̂. Since g(S) is not zero, then there is
an embedded cl(B3 − N(D̂)) whose 2-sphere boundary is F in the exterior M , and the splitting
operation using F is performed by Operation 5.1. Therefore, the underlying 3-manifold M ′ of
the resulting triangulation of Operation 5.1 is cl(S3 −N(D)) or the empty set. Note that if D̂ is
the trivial knot, then ∂N(D̂) may be compressed by an essential disk whose boundary is essential
in ∂N(D̂). In this case, all components are removed in the step 2 of Operation 5.1, i.e., M ′ is
the empty set. Conversely, if D̂ is not the trivial knot, then there are no essential disk whose
boundary is essential in ∂N(D̂), and so ∂N(D̂) keeps its topology as the torus and the component
containing ∂N(D̂) is not removed. Thus, if the underlying 3-manifold of the resulting triangulation
of Operation 5.1 is the empty set, then D̂ is the trivial knot.

Corollary 5.2. Suppose that S is a closed orientable surface whose genus is not zero, D̂ is a knot
in S×I, and T is a triangulation of the exterior M = cl(S×I−N(D̂)). If F is an essential normal
2-sphere in M with respect to T , then the underlying 3-manifold M ′ of the resulting triangulation
of Operation 5.1 is cl(S3 −N(D̂)) or the empty set. Furthermore, if M ′ is the empty set, then D̂
is the trivial knot.

Next, we consider the number of tetrahedra in the triangulation obtained by Operation 5.1. If
a normal surface F is not a vertex link, then F contains at least one quadrilateral normal disk, and
the crushing procedure removes the tetrahedra which contain quadrilateral normal disks. Thus,
Corollary 5.3 holds.

Corollary 5.3. Operation 5.1 reduces the number of tetrahedra if a normal surface F is not a
vertex link.

In particular, Operation 5.1 using an essential normal 2-sphere reduces the number of tetrahedra
since any essential normal 2-sphere is not a vertex link.

Next, we analyze the running time of Operation 5.1.

Lemma 5.2. If a normal 2-sphere F is a vertex surface, then Operation 5.1 is carried out in time
O(n2), where n is the number of tetrahedra of T .

Proof. Let x = (x1, . . . , x7n) denote the vector representation of F . By Theorem 4.1, for each
integer i = 1, . . . , 7n, xi is 2

7n−1 or less. Thus, xi can be encoded with O(log 27n−1) = O(n) bits,
and so x can be encoded with O(n2) bits because there are 7n integers in x, and so we can read
x in time O(n2). Consider the running time of each step of Operation 5.1. The step 1 runs in
O(n) since the crushing procedure can be carried out in time O(n) from Theorem 4.7. Suppose
that T ′ is the triangulation obtained from T by the step 1 and M ′ is the underlying 3-manifold of
T ′. Let n′ be the number of tetrahedra in T ′. Since we can determine whether each component
of M ′ contains components of ∂N(D̂) in O(n′) time and n′ < n by Corollary 5.3, the step 2 runs
in O(n) time. Hence, Operation 5.1 is carried out in time O(n2).

5.2 Destabilization on a triangulation

In this subsection, we give an algorithm to destabilize on a triangulation T of the exterior M
of a link D̂ in a thickened closed orientable surface S × I. Recall that destabilization is the
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operation cutting M along a vertical essential annulus and filling each copy of the annulus with
D2 × I. Suppose that A is a vertical normal annulus in M with respect to T . Let T ′ denote the
triangulation obtained by crushing procedure using A on T , and let M ′ denote the underlying
singular 3-manifold. Suppose that V ′ and E′ is the subset of T ′ defined by Definition 4.7. We
define three operations removing components in V ′ and E′.

Operation 5.2. Let s ∈ V ′ be a singular point in T ′. Then, we call the following operation
desingularization:

• stretching the singular point s to an edge as depicted in Figure 21.

a singular point

Figure 21: Desingularization

Operation 5.3. Let c be a circle constructed by one edge in E′ ⊂ T ′.

1. Choosing a triangle t in ∂T ′ containing the circle c.

2. Adding a cone which is obtained by gluing two faces of a tetrahedron. Let c′ be the circle in
the bottom of the cone and t′ be the side of the cone.

3. Gluing t and t′ so that c and c′ are identified.

4. Desingularizing at the vertex in the circle c = c′.

We illustrate Operation 5.3 in Figure 22.

c

c′

t

t′

Figure 22: Operation 5.3

Operation 5.4. Let c be a circle constructed by two edges in E′ ⊂ T ′.

1. Gluing the two edges of c.
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2. Desingularizing at each end point of the edge identified the two edges.

We illustrate Operation 5.4 in Figure 23.

Figure 23: Operation 5.4

Operation 5.5. Suppose that D̂ is a link in a thickened closed orientable surface S × I and T is a
triangulation of the exterior M = cl(S × I −N(D̂)) of D̂. Given T and a vertical normal annulus
A in M with respect to T , carry out the following operations:

1. crush T using A, and let T ′ be the triangulation obtained from T ,

2. if there are circles constructed by one edge in E′ ⊂ T ′, then run Operation 5.3 at each circle,

3. if there are circles constructed by two edges in E′ ⊂ T ′, then run Operation 5.4 at each
circle,

4. if there are singular points in T ′, then desingularize at each singular point,

5. remove the components which contains no torus boundaries other than the boundary com-
ponents obtained from the copies of S.

Lemma 5.3. Suppose that D̂ is a link in a thickened closed orientable surface S × I, T is a
triangulation of the exterior M = cl(S × I −N(D̂)) of D̂, and A is a vertical normal surface in M
with respect to T . Consider running the steps 1–4 of Operation 5.5 on T using A. Let T ′′ and
M ′′ denote the resulting triangulation and the underlying 3-manifold, respectively. Then, there is
a sequence of 3-manifolds M → N0 → N1 → · · · → Nn = M ′′ such that N0 is obtained from M
by destabilizing using A and for any i (0 ≤ i ≤ n − 1), Ni+1 is homeomorphic to Ni or Ni+1 is
obtained from Ni by one of the following operations:

5.3.1. splitting using an essential 2-sphere or an essential disk on Ni,

5.3.2. compressing the boundary of Ni,

5.3.3. adding a 3-ball or a 3-sphere component,

5.3.4. filling a boundary 2-sphere in ∂Ni with a 3-ball,

5.3.5. removing a 3-ball or a 3-sphere component.

5.3.6. destabilizing using a vertical essential annulus on Ni,

5.3.7. cutting open Ni along an embedded 2-sphere and then filling one resulting boundary with
a 3-ball and gluing the other resulting boundary to the boundary obtained by removing a
3-ball from S2 × I.

Proof. Let T ′ be the triangulation obtained from T by crushing procedure using A and M ′ be the
underlying singular 3-manifold of T ′. From Lemma 4.2, there is a sequence of cell-decompositions
C0 → C1 → · · · → Cn = T ′, where C0 is the cell-decomposition obtained by the non-destructive
crushing procedure using A and Ci+1 is obtained from Ci by an atomic move ai. For any i, we
denote the singular 3-manifold of Ci by Mi. By Lemma 4.3, Mi+1 is homeomorphic to Mi or Mi+1

is obtained from Mi by one of the following operations:
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(a) removing a 3-ball or a 3-sphere component,

(b) filling a boundary sphere in ∂Mi with a 3-ball,

(c) cutting open Mi along a properly embedded disk in Mi,

(d) cutting open Mi along an embedded 2-sphere in Mi and filling the resulting boundaries with
3-balls,

(e) cutting open Mi along a bigon B which satisfies the following conditions:

• ∂B ∩ S0
i ̸= ∅,

• ∂B ∩ S1
i ̸= ∅,

• v1 and v2 are identified at a singular point, where v1 and v2 are the vertices of B,

where Sk
i is the subset of ∂Mi obtained from S ×{k} ⊂ ∂M . If Mi+1 is not homeomorphic to Mi,

we define ai as the operation to obtain Mi+1 from Mi, otherwise we define ai as the operation
doing nothing.

Claim A. Each of the operations (a)–(d) corresponds to the operations 5.3.1–5.3.5 in the statement
of Lemma 5.3.

Proof of Claim A. We show Claim A by observing each of the operations (a)–(d).

• The operation (a) corresponds to the operation 5.3.5.

• The operation (b) corresponds to the operation 5.3.4.

• We consider the operation (c). Let D denote the disk cutting open Mi. In the case where ∂D
is essential in ∂Mi, then the operation (c) is the move compressing the boundary of Mi, i.e.,
the operation (c) corresponds to the operation 5.3.2. In the case where ∂D is not essential in
∂Mi, if D is essential in Mi, then the operation (c) is splitting using D, i.e., the operation (c)
corresponds to the operation 5.3.1, otherwise, the operation (c) is the move adding a 3-ball
component, i.e., the operation (c) corresponds to the operation 5.3.3.

• We consider the operation (d). Let S denote the 2-sphere cutting open Mi in the operation
(d). If S is essential in Mi, then the operation (d) is splitting using S, i.e., the operation
(d) corresponds to the operation 5.3.1, otherwise, the operation (d) is the move adding a
3-sphere component, i.e., the operation (d) corresponds to the operation 5.3.1.

Therefore, the operations (a)–(d) correspond to the operations 5.3.1–5.3.5 in the statement of
Lemma 5.3.

As with the proof of Lemma 4.4, we define the types of bigon B in Ci containing singular points
as follows:

(I) B ⊂ ∂Ci, e1 = e2, and B contains one singular point (Figure 20(a)),

(II) B ⊂ ∂Ci, e1 = e2, and B contains two singular points (Figure 20(b)),

(III) ∂B ⊂ ∂Ci, v1 ̸= v2, and e1 ⊂ Sk
i and e2 ⊂ Sl

i (Figure 20(c)),

(IV) ∂B ⊂ ∂Ci, v1 = v2, and e1 ⊂ Sk
i and e2 ⊂ Sl

i (Figure 20(d)),

where e1 and e2 are the edges of B and k ̸= l.

Claim B. We consider applying the move ai and desingularization to Mi. Then, if ai is not an
atomic move flatting a bigon of type (I), (II), (III), or (IV) in Ci to an edge, then the resulting
singular 3-manifold does not depend on the order of ai and desingularization.

Proof of Claim B. The operation ai is the move doing nothing or one of the operations (a)–(e) by
Lemma 4.3. We prove Claim B by dividing into these cases:

• If ai is the move doing nothing, then it is clear that the resulting singular 3-manifold does
not depend on the order of ai and desingularization.
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cutting along D

cutting along D
′

Figure 24: The operation cutting along a disk and desingularization

• If ai is the move removing a 3-ball component or a 3-sphere component, then the resulting
singular 3-manifold does not depend on the order of ai and desingularization since a 3-ball
component and a 3-sphere component in Mi does not contain singular points.

• In the case where ai is the move filling a 2-sphere boundary S in ∂Mi with a 3-ball, S contains
no singular points since an atomic move ai is not the move flatting a bigon of type (I) or
(II) by the assumption. Therefore, in this case, the resulting singular 3-manifold does not
depend on the order of ai and desingularization.

• We consider the case ai is the move cutting open Mi along a properly embedded disk D in
Mi. If D contains no singular points, then the resulting singular 3-manifold does not depend
on the order of desingularization and ai. We suppose that D contains singular points. Let
M ′

i denote the 3-manifold obtained from Mi by desingularization at first, then the properly
embedded disk D′ in M ′

i is obtained from D. The 3-manifold obtained by cutting open M ′
i

along D′ is homeomorphic to the 3-manifold obtained from Mi by cutting open Mi along D
and then desingularization as shown Figure 24.

• Suppose that ai is the move cutting open Mi along an embedded 2-sphere in Mi and filling
the resulting boundaries with 3-balls. In this case, we can prove the resulting singular 3-
manifold does not depend on the order of ai and desingularization in the same way of the
proof of the case where ai is the move cutting open Mi along an properly embedded disk.

• We consider the case where ai is the move cutting open Mi along a bigon B which satisfies
the following conditions:

– ∂B ∩ S0
i ̸= ∅,

– ∂B ∩ S1
i ̸= ∅,

– each of v1 and v2 is identified with a singular point, where v1 and v2 are the vertices of
B.

In this case, the bigon in Ci corresponding toB is a bigon of type (III) or (IV). This contradicts
that ai is not an atomic move flatting a bigon of types (I), (II), (III), or (IV) to an edge.

From Lemma 4.4, V ′ and E′ defined in Definition 4.7 satisfy one of the following conditions:

• |V ′| = 2 and |E′| = 0,

• |V ′| = 1 and |E′| = 0,
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Figure 25: The case where there is a boundary 2-sphere containing two singular points

• |V ′| = 1, |E′| = 2, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 2, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 4, and each component of E′ is a circle constructed by one edge,

• |V ′| = 0, |E′| = 1, and the component of E′ is a circle constructed by two edges,

• |V ′| = 0 and |E′| = 0.

We prove Lemma 5.3 by dividing into these cases.

The case where |V ′| = 2 and |E′| = 0
Suppose that |V ′| = 2 and |E′| = 0. M0 is obtained from M by cutting open M along A and

shrinking each copies of A to a point. From the assumption, M ′ has two singular points, and M ′′

is obtained from M ′ by desingularization at each singular point.
Let N0 be the 3-manifold obtained from M0 by desingularizing at each singular point in M0,

and N0 → N1 → · · · → Nn be the sequence of 3-manifolds, where Ni+1 is obtained from Ni by
applying the operation ai. For each Ci (0 ≤ i ≤ n), there are no bigons of types (I), (II), (III), or
(IV) from the assumption, hence, we see that ai is one of the operations (a)–(d) by the proof of
Lemma 4.3, and so ai is one of the operations 5.3.1–5.3.5 by Claim A.

Since we can swap the order of desingularization and each of the operations (a)–(d) if there
are no bigons of types (I), (II), (III), or (IV) in each Ci by Claim B, Nn is homeomorphic to
M ′′. Now, N0 is obtained from M by cutting along A, shrinking each copy of A to a point, and
desingularizing at each singular point. This move is equal to destabilization using A. Therefore,
N0 is obtained from M by destabilization using A, and Ni+1 is obtained from Ni by the operations
5.3.1–5.3.5 for any i (0 ≤ i < n).

The case where |V ′| = 1 and |E′| = 0
We suppose that |V ′| = 1 and |E′| = 0. This assumption implies that there is a type (I) bigon

B in a cell-decomposition Ci and Mi+1 is obtained from Mi by filling the 2-sphere boundary S
in Mi corresponding to B with a 3-ball. By the proof of Lemma 4.4, for each cell-decomposition
Cj (0 ≤ j ≤ n), there are no bigons of type (I), (II), (III), or (IV) other than B. Let Ni be the
3-manifold obtained from Mi by desingularizing at the singular point contained in the 2-sphere
boundary S in Mi. For each j which is greater than i, let Nj be the 3-manifold obtained from
Nj−1 by the operation aj−1. We see that Ni+1 ≃ Mi+1 as shown in Figure 25, and so Nj ≃ Mj if
j ≥ i. Now, we have the sequence of 3-manifolds and singular 3-manifolds
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M → M0 → · · · → Mi
desingularization−−−−−−−−−−→ Ni → Ni+1 → · · · → Nn ≃ M ′ ≃ M ′′.

Let N0 be the 3-manifold obtained from M0 by desingularizing at each singular point in M0

and we inductively define Nj+1 as the 3-manifold obtained from Nj by the operation aj−1 for
each j (0 ≤ j < i − 1). N0 is obtained from M by cutting M along A, shrinking each copy of
A to a point, and desingularizing at each singular point. Therefore, N0 is obtained from M by
destabilizing using A. We can swap the order of applying desingularization and the operations
other than ai since there are no bigons of types (I), (II), (III), or (IV) by Claim B. Thus, there
is a sequence of 3-manifolds M → N0 → · · · → Nn ≃ Mn, and Nj+1 is obtained from Nj by the
operations 5.3.1–5.3.6 in the statement of Lemma 5.3 by Claim A.

The case where |V ′| = 0 and |E′| = 0
We suppose that |V ′| = 0 and |E′| = 0. This assumption implies that either of the following

situations holds:

• There are two cell-decompositions Ci and Cj containing type (I) bigons Bi ⊂ Ci and Bj ⊂ Cj ,
and each of Mi+1 and Mj+1 is obtained by filling a 2-sphere boundary containing a singular
point with a 3-ball.

• There is a cell-decomposition Ci containing a type (II) bigon B and Mi+1 is obtained from
Mi by filling a 2-sphere boundary containing the two singular points with a 3-ball.

In either case, we can show that Lemma 5.3 holds by the same argument of the case where V ′ = 1
and E′ = 0.

The case where |V ′| = 0, |E′| = 1, and the component of E′ is a circle constructed by
two edges

Suppose that |V ′| = 0, |E′| = 1 and the component of E′ is a circle constructed by two edges.
In this case, there is a cell-decomposition Ci containing a bigon B of type (III), and Mi+1 is
obtained from Mi by cutting Mi along a properly embedded disk corresponding to B. In addition,
for each cell-decomposition Cj (0 ≤ j ≤ n), there are no bigons of types (I), (II), (III), or (IV)
other than B by the proof of Lemma 4.4.

From the assumption, T ′′ is obtained from T ′ by Operation 5.4. We define a similar operation
for the underlying 3-manifold Mj of a cell-decomposition Cj which satisfies |Vj | = 0, |Ej | = 1,
and the component of Ej is a circle constructed by two edges. Let v1 and v2 denote the vertices
in the circle in Ej , and let e1 and e2 denote the edges in the circle in Ej . We denote the points
and the arcs in Mj corresponding to v1, v2, e1, and e2 by v1, v2, e1, and e2, respectively. We define
Operation 5.4′ as the operation gluing the two edges e1 and e2 and then desingularizing at the
two points v1 and v2. Then, M

′′ is obtained from M ′ by Operation 5.4′.

Claim C. We consider applying the move aj and Operation 5.4′ to Mj . If aj is not an atomic
move flatting a bigon of type (I), (II), (III), or (IV) in Cj , then the resulting 3-manifold does not
depend on the order of aj and Operation 5.4′.

Proof of Claim C. The operation aj is one of operations (a)–(d) because aj is not an atomic move
flatting a bigon of type (I), (II), (III), or (IV) in Cj . If aj is an operation (c) or (d), then we
can prove that the resulting 3-manifold does not depend on the order of aj and Operation 5.4′

in the same way of the proof of Claim B. Furthermore, if aj is the operation (a) removing a 3-
sphere component of Mj , then we can swap the order of aj and Operation 5.4′ since the 3-sphere
component has no boundaries. We suppose that aj is an operation (a) removing a 3-ball or an
operation (b), i.e., the atomic move aj flats a bigon B ⊂ ∂Cj whose edges are identified. Let
S denote the 2-sphere boundary constructed by B. If S does not contain the circle in Ej , then
we can swap the operation aj and Operation 5.4′. If S contains the circle in Ej , then the circle
divides S into two disks. This contradicts that S is constructed by just one bigon B. Therefore,
the resulting 3-manifold does not depend on the order of aj and Operation 5.4′.
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Figure 26: The case where there is a disk containing two singular points and which intersects S0
i and

S1
i

Let Ni+1 denote the 3-manifold obtained from Mi+1 by Operation 5.4′, and for any j which is
greater than i, we inductively define Nj as the 3-manifold obtained from Nj−1 by the operation
aj−1. Then, Nn is homeomorphic to M ′′ because the order of Operation 5.4′ and the operation
aj can be swapped if j ̸= i by Claim C. Furthermore, Ni+1 is homeomorphic to the 3-manifold
obtained from Mi by desingularizing at each singular point as shown Figure 26, and so we apply
desingularization to Mi instead of the two operations, ai and Operation 5.4′. Now, we have the
sequence of 3-manifolds and singular 3-manifolds

M → M0 → · · · → Mi
desingularizations−−−−−−−−−−−→ Ni+1 → · · · → Nn ≃ M ′′.

Let N0 be the 3-manifold obtained from M0 by desingularizing at each point in M0, and for any
j (j ≤ i), we inductively define Nj as the 3-manifold obtained from Nj−1 by the operation aj−1.
For any j other than i, the resulting 3-manifold does not depend on the order of desingularization
and the operation aj by Claim B. Therefore, we have the following sequence of the 3-manifolds

M → N0 → · · ·Ni ≃ Ni+1 → · · · → Nn ≃ M ′′.

If j ̸= 0, then Nj is obtained from Nj−1 by one of the operations 5.3.1–5.3.5 by Claim A. N0

is obtained from M by cutting along the annulus A in M , shrinking each copy to a point, and
desingularizing at each singular point. Thus, N0 is obtained from M by destabilization using A.
Therefore, there is a sequence of 3-manifolds M → N0 → · · · → Nn ≃ M ′′, and Nj+1 is obtained
from Nj by one of the operations 5.3.1–5.3.6.

The case where |V ′| = 1, |E′| = 2, and each component of E′ is a circle constructed by
one edge

Suppose that |V ′| = 1, |E′| = 2, and each component of E′ is a circle constructed by one edge.
In this case, T ′′ is obtained from T ′ by Operation 5.3 at each circle in E′ and then desingularizing
at the singular point in T ′. We define a similar operation for the underlying singular 3-manifold
of a cell-decomposition Cj which has circles constructed by one edge in Ej . Let c be a circle
constructed by one edge in Cj and c be the circle in Mj corresponding to c. We call the operation
shrinking c to a point and then desingularizing at the point Operation 5.3′. As with Claim C, the
resulting 3-manifold does not depend on the order of Operation 5.3′ and the operation aj .
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From the assumption, there is a cell-decomposition Ci containing a bigon B of type (IV) and
Ci+1 is obtained from Ci by flatting B to an edge. In addition, there are no bigons of types (I),
(II), (III), or (IV) in for each Cj (0 ≤ j ≤ n) other than B by the proof of Lemma 4.4. Let Ni+1 be
the 3-manifold obtained from Mi+1 by Operation 5.3′ and desingularization at the singular point
in Mi+1, and for any j which is greater than i, we define Nj+1 as the 3-manifold obtained from
Nj by the operation aj . We can swap the order of the operation aj and Operation 5.3′, and we
can also swap the order of aj and desingularization by Claim B. Therefore, we have M ′′ ≃ Nn.

Let Ni denote the 3-manifold obtained from Mi by desingularizing at each singular point in
Mi.

Claim D. The 3-manifoldNi+1 is obtained fromNi by the operation 5.3.6 or 5.3.7 in the statement
of Lemma 5.3.

Proof of Claim D. We obtain the properly embedded annulus B′ in Ni from B by desingularization.
Let b′0 and b′1 denote the boundary component of B′. First, we prove that b′0 bounds a disk in ∂Ni

if and only if b′1 bounds a disk in ∂Ni. For any cell-decompositions Cj (0 ≤ j < i), there are no
bigons of types (I), (II), (III), or (IV), and so Ni is homeomorphic to the 3-manifold obtained from
M0 by desingularizing at first and then applying the operations aj (0 ≤ j < i) by Claim B. The
destabilization using A is the same as the operation cutting open M along A, shrinking each copy
of A to a point, and desingularizing at each singular point. Now, we see that Ni is obtained from
M by the operations 5.3.1–5.3.6 by Claim A. M is a 3-manifold obtained from S × I by removing
embedded open solid tori, and so we can obtain the component of Ni containing B′ from F × I by
removing embedded open solid tori and embedded open 3-balls, where F is an orientable surface.
Therefore, we can obtain F × I from the component of Ni containing B′ by gluing solid tori and
3-balls, and we obtain the properly embedded annulus B′′ in F × I. ∂B′′ intersects with F × {0}
and F × {1} because the bigon B ⊂ Ci is the type (IV), i.e., ∂B intersects with S0

i and S1
i . Let

f : S1 × I → F × I be the embedding map of B′′ and p : F × I → F be the projection map. Then,
p ◦ f : S1 × I → F is an isotopy from p ◦ f |S1×{0} to p ◦ f |S1×{1}. Hence, B′′ ∩ F × {0} bounds a
disk in the boundary of F × I if and only if B′′ ∩ F × {1} also bounds a disk in the boundary of
F × I. Thereby, b′0 bounds a disk in ∂Ni if and only if b′1 bounds a disk in ∂Ni.

We show that if b′0 and b′1 bound disks in ∂Ni, then Ni+1 is obtained from Ni by the operation
5.3.7. Let D0 and D1 denote the disks in the boundary of Ni bounded by b′0 and b′1. Then,
B′ ∪D0 ∪D1 is a 2-sphere, and the boundary of the regular neighborhood ∂N(B′ ∪D0 ∪D1) is a
disjoint union of a 2-sphere and an annulus. We denote the 2-sphere component of ∂N(B′∪D0∪D1)
by S. S splits the component of Ni containing S into two components. One of the components is
a 3-manifold obtained by removing an open 3-ball and an open regular neighborhood of D̂′

1 from

F ×I, where F is a closed orientable surface and D̂′
1 is a sublink of D̂ which may be the empty set,

and we denote this component by X1. The other component is a component obtained by removing
an open regular neighborhood of D̂′

2 from a 3-ball, where D̂′
2 is a sublink of D̂ which may be the

empty set, and we denote this component by X2.
Mi+1 has two components which have a circle corresponding to a circle in Ei+1. Let Y1 and

Y2 be the components in Ni+1 which are obtained from the components corresponding to the
components containing a circle in Ei+1. One of Y1 and Y2 is homeomorphic to the 3-manifold
obtained from X1 by filling the copy of S with a 3-ball, and the other component is homeomorphic
to the 3-manifold obtained by gluing the copy of S to the boundary obtained by removing a 3-ball
from S2 × I as shown in Figure 27. Therefore, Ni+1 is obtained from Ni by the operation 5.3.7.

Next, we prove that if b′0 and b′1 do not bound disks in ∂Ni, then Ni+1 is obtained from Ni

by the destabilization using B′, i.e., the operation 5.3.6. Mi+1 is obtained from Mi by flatting
the bigon in Mi corresponding to B, and Ni+1 is obtained from Mi+1 by shrinking the two circles
in Mi corresponding to Ei+1 to points and then desingularizing at the two singular points, i.e.,
Operation 5.3′. On the other hand, Mi+1 is homeomorphic to the 3-manifold obtained from Ni

by flatting the annulus B′ to a circle, thus, Ni+1 is obtained from Ni by the operation cutting Ni
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D1
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X2

Y1

Y2

Mi

Mi+1

Ni

Ni+1

≃

flatting the bigon
to a circle

cutting Ni along S

Operation 5.3′

the operation 5.3.7

desingularization

filling one boundary with a 3-ball and
gluing the other resulting boundary to

the boundary obtained by removing a 3-ball from S2 × I.

B′

B

Figure 27: The case where each component of the boundary of B′ bounds a disk in the boundary of
Ni

along B′, shrinking each copy of B′ to a point, and desingularizing at the two singular points. This
operation is equal to destabilization using B′ as shown in Figure 28. Therefore, Ni+1 is obtained
from Ni by destabilization using B′.

Let N0 be the 3-manifold obtained from M0 by desingularizing at the singular points, and for
any j (0 ≤ j < i − 1), let Nj+1 be the 3-manifold obtained from Nj by the operation aj . The
resulting 3-manifold does not depend on the order of desingularizing and the operations aj (0 ≤
j < i− 1) by Claim B, therefore, there is a sequence of 3-manifolds M → N0 → · · · → Nn ≃ M ′′

and for any j (0 ≤ j < n), Nj+1 is obtained from Nj by one of the operations 5.3.1–5.3.7.

The case where |V ′| = 0, |E′| = 2, and each component of E′ is a circle constructed by
one edge

Suppose that |V ′| = 0, |E′| = 2. This implies that there is a type (I) bigon Bi ⊂ Ci and a type
(IV) bigon Bj ⊂ Cj , and Ci+1 and Cj+1 are obtained from Ci and Cj by flatting the bigons in Mi

and Mj corresponding to Bi and Bj . In this case, we can show Lemma 5.3 by the same argument
of the proof of the case where V ′ = 1 and E′ = 0 and the case where V ′ = 1 and E′ = 2.

The case where |V ′| = 0, |E′| = 4, and each component of E′ is a circle constructed by
one edge

We suppose that |V ′| = 0, |E′| = 4, and each component of E′ is a circle constructed by
one edge. In this case, T ′′ is obtained from T ′ by Operation 5.3 at each circle in E′. From the
assumption, there are two cell-decompositions Ci and Cj containing a type (IV) bigon and the
atomic moves ai and aj are the move flatting a type (IV) bigon to an edge. We suppose that i < j,
and let Bi and Bj denote the bigons in Mi and Mj corresponding to the type (IV) bigons in Ci

and Cj , respectively.
If there are no annuli in ∂Mj whose boundary contains two points identified with a singular

point and whose boundary is ∂Bj , then we can prove that there is a sequence of 3-manifolds
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desingularization

flatting the bigon
to a circle

Operation 5.3′ ×2

destabilization

Mi

Mi+1

Ni

Ni+1

B B′

Figure 28: The case where each component of the boundary of B′ does not bound a disk in the
boundary of Ni

M → N0 → · · · → Nn ≃ M ′′ and Nk+1 is obtained from Nk by one of the operations 5.3.1–5.3.7
as the same argument of the case where |V ′| = 1, |E′| = 2.

We suppose that there is an annulus F in Mj whose boundary contains two points identified
with a singular point and whose boundary is ∂Bj . In this case, F contains a circle in Ej . Let c1
and c2 denote the circles obtained from Bi in Cj , and suppose that c1 is in F . If Bj and c1 have
no intersections, then the resulting 3-manifold does not depend on the order of the operation aj

and Operation 5.3′ for c1 as shown Figure 29.
We prove that Bj and c1 have no intersections. Let s be the singular point contained in Bj . We

see that s ∈ Vj and c1 ∈ Ej . From the definition of Vj and Ej , Vj ∩Ej = ∅, thus, s∩ c1 = ∅. If the
edges of Bj are identified to c1, then s∩ c1 ̸= ∅, and so Bj and c1 have no intersections. Therefore,
the resulting 3-manifold does not depend on the order of the operation aj and Operation 5.3′ for
c1.

Let M ′
j be the singular 3-manifold obtained from Mj by applying Operation 5.3′ at c1 and

c2. We denote the bigon obtained from Bj in M ′
j by B′

j . Then, each boundary component of B′
j

bounds a disk in the boundary of M ′
j . Therefore, as the same argument of the case where |V ′| = 1,

|E′| = 2, we can prove that there is a sequence of 3-manifolds M → N0 → · · · → Nn ≃ M ′′ and
for any k, Nk+1 is obtained from Nk by one of the operations 5.3.1–5.3.7.

We can show the same result as Corollary 5.1 for Operation 5.5.

Corollary 5.4. Suppose the same situation of Operation 5.5. Let D̂′ and D̂′′ be sublinks of D̂.
A component of the 3-manifold M ′ obtained from M by Operation 5.5 is one of the following
3-manifolds with zero or more open 3-balls removed:

• cl(S ′ × I −N(D̂′)), where S ′ is a closed orientable surface,

• B3 −N(D̂′′),

• S3 −N(D̂′′),
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Bj

aj

aj

c1

M ′
j

F

Figure 29: The 3-manifold obtained from Mj by the operation aj and Operation 4.1’

Consider the case where D̂ is a knot in a thickened closed orientable surface. As the same
argument of Corollary 5.2, if the underlying 3-manifold of the resulting triangulation of Operation
5.5 is the empty set, then D̂ is the trivial knot. Thus, the following corollary holds.

Corollary 5.5. Suppose that S is a closed orientable surface whose genus is not zero, D̂ is a knot
in S × I, and T is a triangulation of the exterior M = cl(S × I−N(D̂)). If F is a vertical essential
normal annulus in M with respect to T , then the underlying 3-manifold M ′ of the resulting
triangulation of Operation 5.1 is the empty set or one of follows:

• cl(S ′ × I −N(D̂)), where S ′ is a closed orientable surface,

• B3 −N(D̂),

• S3 −N(D̂).

Furthermore, if M ′ is the empty set, then D̂ is the trivial knot.

In order to analyze the running time of Operation 5.5, we consider the number of tetrahedra
increased by Operation 5.5.

Lemma 5.4. Let T be a triangulation of the exterior M of a link D̂ in a thickened closed orientable
surface and A be a vertical essential normal surface in M with respect to T . Run Operation 5.5
using A on T , and let T ′ be the resulting triangulation. Suppose that p is a singular point in T ′.
S denotes a boundary component of T ′ which contains p, and |S| denotes the number of triangles
in S. Then, the number of tetrahedra increased by the desingularization at p is O(|S|).

Proof. Let N denote the set of triangles which contain p in S. For any triangle t in N , np(t)
denotes the number of vertices of t which are identified to p. Stretching p to an edge, for any
2-simplex t in N , np(t) tetrahedra are added to T ′ as shown in Figure 30. np(t) is at most three,
so that this operation increases the number of tetrahedra by O(|S|).
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Figure 30: Desingularization at each 2-simplex

Corollary 5.6. Let D̂ be a link in a thickened closed orientable surface S × I and T be a trian-
gulation of the exterior M = cl(S × I −N(D̂)). Let Sk (k = 0 or 1) denote the triangulation of S
in the boundary of T . Suppose that |Sk| ≥ |S1−k|, where |Sk| is the number of triangles in Sk.
Then, the number of tetrahedra increased by Operation 5.5 is O(|Sk|).

Proof. The crushing procedure does not increase the number of tetrahedra, therefore, |T ′| ≤ |T |.
The number of triangles in a boundary component containing components in V ′ or E′ is O(|Sk|)
because such boundary component is obtained from S0 ∪ S1 and the number of triangles in the
boundary of T is not increased by the crushing procedure. Thus, the number of tetrahedra
increased by desingularization is O(|Sk|).

Operation 5.3 is the operation adding a tetrahedron and applying desingularization once, and
so Operation 5.3 increases the number of tetrahedra by O(|Sk|) by Lemma 5.4. Operation 5.4 is
the operation gluing two edges and applying desingularization twice, and so Operation 5.4 also
increases the number of tetrahedra by O(|Sk|) by Lemma 5.4.

Desingularization is carried out at most twice other than Operation 5.3 and Operation 5.4 since
the number of singular points in T ′ is at most two by Lemma 4.4. Similarly, Operation 5.3 and
Operation 5.4 are carried out at most four times. Therefore, the number of tetrahedra increased
by Operation 5.5 is O(|Sk|).

Now, we have O(|Sk|) = O(n), where n is the number of tetrahedra in a triangulation T of the
exterior of a link in a thickened closed orientable surface S × I. Thus, the number of tetrahedra
is increased exponentially with the number of Operation 5.5. Therefore, it takes too much time to
solve classical knot recognition if we simply perform Operation 5.5. For this reason, we consider
reducing the number of triangles in the triangulations S0 and S1 before performing Operation
5.5. The following lemma is based on the method of constructing a one-vertex triangulation of a
classical knot exterior in [8].

Lemma 5.5. Let S be a closed orientable connected surface whose genus is not zero, D̂ be a
link in S × I, and T be a triangulation of the exterior M = cl(S × I − N(D̂)) of D̂. Let Sk

(k = 0 or 1) denote the triangulations of S in the boundary of T . Suppose that M is irreducible
and ∂-irreducible. Then, we can reduce the vertices of Sk to one while keeping the topology of M .
Furthermore, this operation can be carried out in time O(n3), where n is the number of tetrahedra
in T .

Proof. We show that the number of vertices of Sk is reduced to one by crushing procedure using
normal disks. If there are two or more vertices in Sk, then there is an edge e which connects
distinct vertices and lies on Sk. ∂N(e) denotes the boundary of a small regular neighborhood of
e in T . ∂N(e) is an inessential disk in T .

Suppose that ∂N(e) is a normal disk, then we can reduce the vertices of Sk by the crushing
procedure using ∂N(e). Since T is irreducible and ∂-irreducible, we can obtain the 3-manifold
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represented by the crushed triangulation by adding 3-balls and 3-spheres to E. Thus, the triangu-
lation obtained by removing 3-balls and 3-spheres from the crushed triangulation is a triangulation
of M .

Consider the case where ∂N(e) is not a normal surface. In this situation, two or more edges
of a tetrahedron in T are identified to e depicted as Figure 31. We can obtain a normal surface
which is an inessential disk as the boundary of a small neighborhood of a subcomplex constructed
as follows.

e

e∂N(e)

Figure 31: The case where ∂N(e) is not a normal surface

First, we define E = {e}. Then, we apply the following operations as much as possible:

• If there is a 2-simplex whose two or more edges belong to E , then the entire of the 2-simplex
is added to E .

• If there is an tetrahedron whose all faces belong to E , then the entire of the tetrahedron is
added to E .

E

E

E

E

E

E
E

Figure 32: The construction of E

Claim A. The boundary of a small regular neighborhood of E , denote ∂N(E), consists of inessen-
tial disks and inessential 2-spheres.

Proof of Claim A. If E = {e}, ∂N(E) is an inessential disk since T is ∂-irreducible and the entire
of e lies on Sk. We observe the effect of the operations to extend E .

• The operation to add an entire 2-simplex if the two or more edges of the 2-simplex belong
to E :
– If there is a 2-simplex whose two edges belong to E , ∂N(E) is isotopic to the original

surface (Figure 33(a)).

– If there is a 2-simplex whose three edges belong to E , ∂N(E) is obtained by cutting the
original surface along a circle and filling the copies of the circles with disks parallel to the
2-simplex (Figure 33(a)). This operation divides the original surface into two surfaces.
These surfaces are inessential because T is irreducible and ∂-irreducible.

• The operation to add an entire tetrahedron if all faces of the tetrahedron belong to E :
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(a) The case where two edges in E
(b) The case where three edges in E

Figure 33: The effect of extending E

– ∂N(E) is obtained by removing a 2-sphere component from the original surface.

From the above observation, the component of ∂N(E) consists of inessential disks and inessen-
tial 2-spheres.

Claim B. ∂N(E) is a normal surface with respect to T .

Proof of Claim B. ∂N(E) can be obtained as a normal surface by placing normal disks for each
tetrahedron ∆ as follows:

• If the entire of ∆ belongs to E , then no normal disks are placed.

• If the entire of ∆ does not belong to E and a face of ∆ belongs to E , then we place the
triangle normal disk which is parallel to the face as shown in the left of Figure 34.

• If no faces of ∆ belongs to E and an edge of ∆ belongs to E , then we place the quadrilateral
normal disk which has no intersection with the edge as shown in the center of Figure 34.

• If a vertex of ∆ belongs to E and any edge whose one of the end points is the vertex does
not belong to E , then we place the triangle normal disk surrounding the vertex as shown in
the right of Figure 34.

E

E

E

Figure 34: How to place normal disks

The normal surface which is an inessential disk is obtained by removing the components which
has no boundaries from ∂N(E). This normal surface is inessential in T . Therefore, we can reduce
the number of vertices in Sk by the crushing procedure using this normal surface while keeping
the topology of Sk. We can reduce the number of vertices in Sk to one by repeatedly performing
this operation.

Next, we analyze the running time to construct E . It takes O(n) time to perform the operation
to check the conditions and add i-simplices (i = 0, 1, 2, 3) to E for each tetrahedron. The operation
is run O(n) times to construct E . Thus, E is constructed in time O(n2).
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It takes O(n) time to obtain ∂N(E), a small neighborhood of E , as a normal surface by placing
and gluing normal disks. The normal surface has at most two disks for each normal disk type for
each tetrahedron. Thus, we can remove components which has no boundaries in time O(n).

There are O(n) vertices in Sk. Thus, we can reduce the vertices of Sk to one in time O(n3).

From this lemma, it turns out that we can suppose that each component of Sk has only one
vertex. It is possible to suppress the increase in the number of tetrahedra when Operation 5.5 is
performed based on this assumption.

Lemma 5.6. Let T be a triangulation of the canonical exterior M of a virtual link diagram D
and A ⊂ M be a vertical essential vertex annulus with respect to T . There are two triangulations
of S in the boundary of T , and S0 and S1 denote them. Assume that each Sk has only one vertex.
Then, the number of tetrahedra increased by Operation 5.5 is O(c), where c is the number of the
real crossings of D.

Proof. By Corollary 3.2, we have g(Sk) ∈ O(c). Sk has only one vertex, and so we see that
|Sk| ∈ O(c) from the relationship of the Euler characteristic and the genus of Sk. Thus, the
number of tetrahedra increased by Operation 5.5 is O(c) from Lemma 5.6.

Next, we consider the running time of Operation 5.5.

Lemma 5.7. Let T be a triangulation of the canonical exterior M of a virtual link diagram D and
A be a vertical essential normal annulus in M with respect to T . Suppose that each triangulation
of S in the boundary of T has exactly one vertex. If A is a vertex annulus with respect to T , then
Operation 5.5 is carried out in O(n2 + c) time, where n is the number of tetrahedra in T .

Proof. Let x = (x1, . . . , x7n) denote the vector representation of the given vertex surface A. As
shown in Lemma 5.2, we can read x in time O(n2). From Theorem 4.7, we can carry out the step
1 in time O(n). Let T ′ be the triangulation obtained by the step 1 of Operation 5.5. We can
carry out desingularization in time O(n), and desingularization is carried out at most twice since
the number of the singular points in T ′ is at most two from Lemma 4.4, therefore, the step 2 is
carried out in O(n) time. Operation 5.3 and Operation 5.4 can be carried out in O(n) time since
we can carry out desingularization in O(n) time. Operation 5.3 and Operation 5.4 are carried out
at most four times by Lemma 4.4, thus, the step 3 and the step 4 take in O(n) time. Let T ′′

denote the triangulation obtained from T by running the step (1)–(4) of Operation 5.5. We can
remove the components of which contain no components of ∂N(D̂) in O(n) time since the size
of T ′′ is O(n + c), where c is the number of the real crossings in D. Thereby, we can carry out
Operation 5.5 in time O(n2 + c).

5.3 The determination of a vertex surface

In this subsection, we give a method of determining whether an integer vector x is the representa-
tion of a vertex surface in a triangulation of the canonical exterior of a virtual link diagram. This
method is used in the proof of Theorem 1.1.

First of all, we give a way to calculate the Euler characteristic of a normal surface.

Lemma 5.8. Suppose that T is an n-tetrahedra triangulation of a 3-manifold M and F is a
normal surface in M with respect to T . vF ∈ R7n denotes the vector representation of F . Given
the vector vF , let χ : R7n → R be the function that outputs the Euler characteristic of F . Then
χ is a linear function.

Proof. For any i = 1, . . . , 7n, we define ai = 1 + ei + vi, where:
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• ei is defined as a sum over edges of the normal disk corresponding to the i-th element of vF :
an edge of the normal disk contributes −1 to this sum if the edge lies on the boundary of T ,
or − 1

2
if the edge is internal to T ,

• vi is defined as a sum over vertices of the normal disk corresponding to the i-th element of
vF : a vertex of the normal disk contributes 1

d
, where d is the degree of the 1-simplex of T

that the vertex lies within.

Consider the linear function χ(vF ) = (a1, . . . , a7n) · vF . A vertex of degree d in F contributes a
total of 1

d
· d = 1 to χ(vF ). An internal edge of F contributes a total of − 1

2
· 2 = −1 to χ(vF ) and

a boundary edge of F contributes −1 to χ(vF ). A face of F contributes 1 to χ(vF ). Therefore,
χ(vF ) gives the Euler characteristic of F .

Next, we introduce basic properties of vertex surfaces.

Definition 5.1. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be vectors in Rd. We say that x
dominates y if for any index i = 1, . . . , d satisfies that yi = 0 if xi = 0. Furthermore, we say that
x strictly dominates y if x dominates y and there is an index i which satisfies xi ̸= 0 and yi = 0.

Lemma 5.9 (Burton [2]). Let T be an n-tetrahedra triangulation of a 3-manifold M . P denotes
the projective solution space which is defined by the matching equations of T . Let xF be the vector
representation of a normal surface in M with respect to T . If there are no vertex surfaces whose
vector representations dominate xF , then the projection of xF onto the hyperplane

∑7n
i=0 xi = 1

is a vertex solution in P.

From this lemma, we can prove the following lemma.

Lemma 5.10. Assume that T is an n-tetrahedra triangulation of the exterior M of a link in a
thickened closed orientable surface S×I and x ∈ Z7n is an integer vector. Then, we can determine
whether x is the vector representation of a vertex 2-sphere with respect to T in polynomial time
of n.

Proof. By Theorem 4.1, if there is an index i which does not satisfy xi ≤ 27n−1, then x is not the
vector representation of a vertex surface, and so we assume xi ≤ 27n−1.

We can verify that x is the vector representation of a normal surface by checking x ≥ 0, the
matching equations Ax = 0 and the quadrilateral condition for each tetrahedron. These conditions
can be checked in polynomial time since xi ≤ 27n−1.

Next, we check that the projection of x onto the hyperplane
∑

xi = 1 is a vertex solution
in P, where P is the projective solution space which is defined by the matching equation of T .
By Lemma 5.9, we can check this by checking that there are no normal surfaces whose vector
representations are strictly dominated by x. Let NZ(x) and Z(x) be the sets as follows:

• NZ(x) = {i ∈ {1, . . . , 7n}|xi ̸= 0},
• Z(x) = {i ∈ {1, . . . , 7n}|xi = 0}.

If an integer vector y which is dominated by x is the vector representation of a normal surface in
T , then y satisfies the following conditions:

• y ≥ 0,

• the matching equations Ay = 0,

• xi = 0 ⇒ yi = 0.

From the third condition, if x satisfies the quadrilateral condition for each tetrahedron, then y
satisfies the quadrilateral condition for each tetrahedron. Thus, y is the vector representation of a
normal surface if y satisfies the three conditions. Additionally, there is an index i which satisfies
xi ̸= 0∧ yi = 0 if x strictly dominates y. We consider to determine whether there is such a vector
using linear algebra.
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Let y be an integer vector which is dominated by x and represents a normal surface in T . y
satisfies the following conditions:

• y ≥ 0,

• Ay = 0,

• for any j ∈ Z(x), yj = 0.

We call the set of these conditions C. Conversely, if an integer vector satisfies the conditions in
C, then the vector is dominated by x and represents a normal surface in T .

Additionally, if x strictly dominates y, then there is an index i ∈ NZ(x) which yi = 0. For
each index i ∈ NZ(x), Ci denotes the condition which is obtained by adding the condition yi = 0
to C. Conversely, if an integer vector satisfies the conditions in Ci, then the vector is strictly
dominated by x and represents a normal surface in T .

We consider how to determine if there is a vector y which satisfies the conditions of Ci. ek

denotes the 7n-dimensional row vector whose k-th coordinate is 1 and the other coordinates are 0,
and IZ(x) denotes a matrix which is obtained by arranging all row vectors ej (j ∈ Z(x)) vertically.
For any element i in NZ(x), we define the matrix Mi as follows:

Mi =

 A
IZ(x)

ei

 .

Then there is a vector y which satisfies the conditions in Ci if and only if rank(Mi) ̸= 0 holds.
There are no normal surfaces whose vector representations are dominated by x if rank(Mi) = 0

holds for any element i in NZ(x). Therefore, the projection of x onto the hyperplane
∑7n

i=1 xi = 1
is a vertex solution of P by Lemma 5.9. We can verify that rank(Mi) = 0 holds for each element i in
NZ(x) in polynomial time because we can calculate rank(Mi) in polynomial time and |NZ(x)| <
7n holds.

By the above discussion, we can verify that x is the vector representation of a normal surface in
T and the projection of x onto the hyperplane

∑7n
i=1 xi = 1 is a vertex solution in P in polynomial

time. From the definition of a vertex surface, the normal surface F represented by x is a vertex
surface if F is connected and two-sided in T .

If the Euler characteristic of F is not two, then F is not a 2-sphere, and if F has boundaries,
then F is not a 2-sphere. We can check these conditions in polynomial time, and so we suppose
that F is a closed surface whose Euler characteristic is two. We show that F is a vertex surface if
and only if GCD(x1, . . . , x7n) = 1, where GCD(x1, . . . , x7n) is the greatest common divisor of all
elements which satisfies xi ̸= 0.

Assume that F is a vertex surface which is a 2-sphere. GCD(x1, . . . , x7n) ≤ 2 holds because
F is a vertex surface. If GCD(x1, . . . , x7n) = 2, then 1

2
x is the vector representation of a normal

surface which is a properly embedded projective plane. This contradicts that a projective plane
cannot be embedded in the exterior of a link in a thickened closed orientable surface. Therefore,
GCD(x1, . . . , x7n) = 1.

Assume that GCD(x1, . . . , x7n) = 1. F is a connected 2-sphere since GCD(x1, . . . , x7n) = 1
and the Euler characteristic of F is two. T and F are orientable, and so F is two-sided in T .
Therefore, F is a vertex surface.

Lemma 5.11. Assume that T is an n-tetrahedra triangulation of the exterior M of a link in a
thickened closed orientable surface S × I and x ∈ Z7n is an integer vector. Then we can determine
whether x is the vector representation of a vertex annulus F in M with respect to T such that
∂F is in S × {0} ∪ S × {1} in polynomial time of n, where S × {k} is a copy of supporting surface
of D in the boundary of M .
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Proof. In the same argument as Lemma 5.10, we can verify that x is the vector representation of
a normal surface with respect to T and the projection of x onto the hyperplane

∑7n
i=1 xi = 1 is a

vertex solution in P in polynomial time, where P is the projective solution space defined by the
matching equations of T .

Let F denote the normal surface represented by x. If F is an annulus whose boundary is in
S × {0} ∪ S × {1}, then the Euler characteristic of F is zero and F ∩ (S × {0} ∪ S × {1}) ̸= ∅.
These conditions can be verified in polynomial time. We show that the normal surface F which
satisfies these conditions is a vertex annulus whose boundary is in S × {0} ∪ S × {1} if and only
if GCD(x1, . . . , x7n) = 1.

Assume that F is a vertex annulus whose boundary is in S ×{0}∪S ×{1}. Since F is a vertex
surface, GCD(x1, . . . , x7n) ≤ 2. If GCD(x1, . . . , x7n) = 2, then 1

2
x is the vector representation of

a normal Moebius band F ′ in M . However, the Moebius band cannot be properly embedded in
S × I. This is contradiction, and so GCD(x1, . . . , x7n) = 1.

Assume that GCD(x1, . . . , x7n) = 1. F is an annulus or a Moeibus band since GCD(x1, . . . , x7n) =
1, F has the Euler characteristic zero, and F has boundaries. Since ∂F is in S × {0} ∪ S × {1},
F is an annulus, for otherwise F would be a properly embedded Moebius band in S × I. Since M
and F are orientable, F is two-sided in M . Therefore, F is a vertex surface.

Corollary 5.7. Assume that T is an n-tetrahedra triangulation of the exterior M of a link in a
thickened closed orientable surface S × I and x ∈ Z7n is an integer vector. Then we can determine
whether x is the vector representation of a vertical vertex annulus F in M with respect to T in
polynomial time of n.

Proof. By Lemma 5.11, we can determine whether x is the vector representation of a vertex
annulus F in M with respect to T such that ∂F is in S × {0} ∪ S × {1} in polynomial time of n.
F is vertical if and only if ∂F ∩S ×{0} ̸= ∅ and ∂F ∩S ×{1} ̸= ∅. This condition can be checked
in polynomial time of n.

Consider the case where D̂ is a knot in a thickened closed orientable surface S × I. Recall that
a properly embedded annulus A in the exterior M = cl(S × I −N(D)) is classicalization annulus
if ∂A ⊂ S × {k} (k = 0 or 1) and A separates ∂N(D) and S × {1 − k}. We give an algorithm
determining whether a given annulus is a classicalization annulus.

Algorithm 5.1. Assume that T is an n-tetrahedra triangulation of the exterior M of a knot D̂
in a thickened closed orientable surface S × I. Given a normal annulus A in M with respect to T ,
do the following steps:

1) if ∂A ∩ S × {0} ≠ ∅ and ∂A ∩ S × {1} ̸= ∅, output “no”, otherwise, run the following steps,

2) assume that ∂A∩S×{k} = ∅ (k = 0 or 1), and choose a path P in the 1-skeleton of T which
connects S × {k} and ∂N(D̂),

3) if |A ∩ P | is odd, then output “yes”, otherwise, output “no”.

A normal surface with respect to T and a path in the 1-skeleton intersect transversally. There-
fore, a normal annulus A whose boundary is in S × {k} separates ∂N(D̂) and S × {1− k} if and
only if there is a path P such that |P ∩ A| is odd and P connects ∂N(D̂) and S × {1 − k}. On
the other hand, if ∂A ⊂ S ×{k}, then for each pair of paths P1 and P2 which connect ∂N(D̂) and
S × {1 − k}, P1 ∩ A ≡ P2 ∩ A (mod 2). Thus, Algorithm 5.1 outputs “yes” if and only if A is a
classicalization annulus.

Next, we show that if A is a vertex surface, then Algorithm 5.1 runs in polynomial time.

Lemma 5.12. Suppose the same situation of Algorithm 5.1 and A is a vertex surface with respect
to T . Then, Algorithm 5.1 runs in O(n2) time, where n is the number of tetrahedra in T .

43



Proof. Let x = (x1, . . . , x7n) denote the vector representation of A. Since A is a vertex surface,
x can be read in O(n2) time. The step 1 can be run in time O(n). A path P is obtained by the
following operation: choose a spanning tree of the 1-skeleton of T and choose a path connecting
∂N(D) and S ×{k} in the spanning tree, where S ×{k} is the supporting surface of D which does
not contain ∂A in ∂M . Since this operation can be carried out in O(n) time, the step 2 runs in
O(n), and the length of P is O(n). We can calculate |A ∩ P | in O(n2) time since the length of P
is O(n) and xi ≤ 27n−1 by Theorem 4.1. Therefore, Algorithm 5.1 runs in O(n2) time.

Corollary 5.8. Assume that T is an n-tetrahedra triangulation of the exterior M of a knot in a
thickened closed orientable surface S × I and x ∈ Z7n is an integer vector. Then we can determine
whether x is the vector representation of a classicalization vertex annulus F in M with respect to
T in polynomial time of n.

Proof. By Lemma 5.11, we can determine whether x is the vector representation of a vertex
annulus F in M with respect to T such that ∂F is in S × {0} ∪ S × {1} in polynomial time. By
Lemma 5.12, the vertex annulus F can be determined whether F is a classicalization annulus in
polynomial time of n. Therefore, we can determine whether x is the vector representation of a
classicalization vertex annulus F in polynomial time of n.

5.4 The proof of Theorem 1.1

We say that a decision problem is in NP if there is a non-deterministic Turing machine which solves
the problem in polynomial time. It is possible to prove the main theorem using this definition,
but we use an alternative definition using a string called a witness. See [22] for details.

Theorem 5.1. The following propositions are equivalent.

• A decision problem is in NP.

• There is a non-deterministic Turing machine which solves the problem in polynomial time.

• There is a deterministic Turing machine M which satisfies the following conditions:

– for any input s whose answer is “yes”, there is a witness w whose length is polynomial
length of |s|, M accepts (s, w) in polynomial time, where |s| denotes the length of s.

– for any input s whose answer is “no” and any string w, M rejects (s, w) in polynomial
time.

⟨D⟩ denotes the oriented Gauss code of a virtual knot diagram D. In order to prove the main
theorem, we show that there is a deterministic Turing machine M which satisfies the following
conditions:

• for any diagram D which represents a classical knot, there is a witness w whose length is
bounded by a polynomial of |⟨D⟩|, and M accepts (⟨D⟩, w) in polynomial time,

• for any virtual knot diagram D and any string w, if D does not represent any classical knot,
then M rejects (⟨D⟩, w) in polynomial time.

Theorem 1.1. Classical knot recognition is in NP.

Proof. Let K be a virtual knot and D be a diagram of K with c real crossings. Note that g(F )
represents the genus of a surface F , and we define g(∅) = 0, where ∅ is the empty set. Let M be
the deterministic Turing machine defined as follows:

1. Check whether w is a code of a sequence (possibly empty) of integer vectors. In that case,
let (x0, . . . ,xm−1) be the sequence of integer vectors represented by w. Otherwise reject.

2. Construct a triangulation T0 of the canonical exterior of D from ⟨D⟩. Choose a triangulation
of the supporting surface of D in the boundary of T0, and S0 denotes it.
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3. For any integer i = 0, . . . ,m− 1, do the following steps:

• If xi represents a vertex 2-sphere with respect to Ti, then perform Operation 5.1. Let
Ti+1 be the resulting triangulation and Si+1 be the boundary component of Ti+1 which
is obtained from Si.

• If xi does not represents a vertex 2-sphere, then reduce the vertices of Si to one (if Si

has two or more vertices), and we denote the resulting triangulations obtained from Ti

and Si by T ′
i and S ′

i, respectively.

– If xi represents a classicalization vertex annulus with respect to T ′
i , then accept.

– If xi represents a vertical vertex annulus A with respect to T ′
i , then perform Op-

eration 5.5 using A, and let Ti+1 be the resulting triangulation and Si+1 be the
boundary component of Ti+1 which is obtained from S ′

i.

– If xi does not represent a classicalization vertex annulus or a vertical vertex annulus
with respect to T ′

i , then reject.

4. If g(Sm) = 0, then accept. Otherwise reject.

Claim A. K is a classical knot if and only if there is a witness w such that M accepts (⟨D⟩, w)
and w can be encoded with polynomial length of c.

Proof of Claim A. Suppose that K is a classical knot, and we show that there is a witness w such
that M accepts (⟨D⟩, w) and w can be encoded with polynomial length of c. Let M0 denote the
canonical exterior of D, T0 be the triangulation of M0 constructed by the argument of Corollary
3.1, and S0 be a triangulation of the supporting surface of D in the boundary of T0.

In the case where g(S0) is zero, if w is a code of the empty sequence, then M accepts (⟨D⟩, w).
Suppose that g(S0) is not zero. In this case, we define a witness w as follows:

1. Let X be the empty sequence of integers vectors.

2. For any integer i, add an integers vector xi to X inductively as follows:

• In the case where g(Si) is zero, go step 3.

• In the case where g(Si) is not zero:

– If Mi is reducible, then there is an essential vertex 2-sphere Fi in Mi with respect
to Ti by Theorem 4.2. Then, add the vector representation xi of Fi to X, and go
to the step 3.

– If Mi is irreducible, then reduce the vertices of Si to one (if Si has two or more
vertices), and we denote the resulting triangulations obtained from Ti and Si by
T ′
i and S ′

i, respectively. By Theorem 2.4, there is a vertical essential annulus in
Mi since K is classical. Therefore, there is a vertical essential vertex annulus or a
classicalization vertex annulus in Mi with respect to T ′

i by Theorem 4.5.

∗ If there is a classicalization vertex annulus Fi, then add the vector representation
xi of Fi to X, and go to the step 3.

∗ If there are no classicalization vertex annuli and there is a vertical essential vertex
annulus Fi, then add the vector representation xi of Fi to X, run Operation 5.5 on
T ′
i using Fi, and reduce the vertices of the triangulated surface obtained from Si to

one by the argument used in Lemma 5.5. Let Ti+1 be the resulting triangulation,
Mi+1 be the underlying 3-manifold, and Si+1 be the boundary surface in Ti+1

obtained from S ′
i. Then, repeat the step 2 for the integer i+ 1.

3. Encode X.

For each Si, g(Si+1) is less than g(Si). This implies that the length of X is at most g(S0), and so
the length of X is O(c) by Corollary 3.2, in particular, X is a finite sequence.
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We show that M accepts (⟨D⟩, w). Suppose that X = (x0, . . . ,xm−1). By the construction
of X, the normal surfaces represented by x0, . . . ,xm−2 are vertical annuli. Let Fm−1 denote the
normal surface represented by xm−1.

First, suppose that Fm−1 is a 2-sphere, then the underlying 3-manifold of Tm is cl(S3−N(D̂)) or
the empty set by Corollary 5.2. In either case, Sm is the empty set, and so M accepts (⟨D⟩, w) since
we define g(∅) = 0. Next, suppose that Fm−1 is a vertical annulus. This implies that g(Sm) = 0,
thus, M accepts (⟨D⟩, w). Finally, if Fm−1 is a classicalization annulus, then M accepts (⟨D⟩, w).

Consider the length of the witness w obtained by the above operation. By Theorem 4.1, each
xi can be encoded with O(|Ti|2) length, where |Ti| is the number of tetrahedra in Ti. By the
construction of S ′

i, each S ′
i has exactly one vertex, thus |Ti+1| is |Ti|+O(c) by Lemma 5.6. Since

|T0| is O(c) and the length of X is O(c), each |Ti| is O(c2). Therefore, each xi is encoded with
O(c4) length, and the witness w obtained by the above operation is encoded with O(c5) length.

Next, assume that M accepts (⟨D⟩, w), and we show that K is classical. The Turing machine
M accepts (⟨D⟩, w) if and only if g(Sm) = 0 or there is a classicalization annulus Fi, where Fi is
the normal surface represented by xi. First, if there is a classicalization annulus Fi, then K is a
classical knot by Lemma 2.2. Next, suppose that there are no classicalization annuli and g(Sm)
is zero. Let Mm denote the underlying 3-manifold of Tm. From Corollary 5.2, Corollary 5.5 and
g(Sm) = 0, Mm is one of the followings:

• cl(S2 × I −N(D̂)),

• B3 −N(D̂),

• S3 −N(D̂),

• the empty set.

If Mm is not the empty set, then K is a classical knot, and if Mm is the empty set, then K is the
trivial knot by Corollary 5.2 and Corollary 5.5.

By Claim A, if L is classical, there is a witness w such that M accepts (⟨D⟩, w). If M accepts
(⟨D⟩, w), D is a diagram of a classical knot. Considering the contraposition of this proposition,
for any virtual knot diagram D and any string w, if D dose not represent any classical knot, then
M rejects (⟨D⟩, w).

Lastly, we analyze the running time of the deterministic Turing machine M .

Claim B. M runs in polynomial time of |(⟨D⟩, w)|.
Proof of Claim B. It is clear that the step 1 runs in polynomial time of |(⟨D⟩, w)|. By Corollary
3.1, the step 2 runs in O(c) time, where c is the number of real crossings in D. For each Ti, |Ti| is
O(c2) by the discussion in the proof of Claim A.

• The vector xi can be determined whether xi represents a vertex 2-sphere with respect to Ti

in polynomial time of |Ti| by Lemma 5.10.

– In the case where xi represents a vertex 2-sphere with respect to Ti, Operation 5.1 runs
in polynomial time of |Ti|.

– In the case where xi does not represent a vertex 2-sphere with respect to Ti, we can
reduce the vertices of Si to one in O(|Ti|3) = O(c6) time by Lemma 5.5. Note that |T ′

i |
is less than |Ti|.

∗ The vector xi can be determined whether xi represents a classicalization vertex
annulus with respect to T ′

i in polynomial time of |T ′
i | by Corollary 5.8.

∗ The vector xi can be determined whether xi represents a vertical vertex annulus
with respect to T ′

i in polynomial time of |T ′
i | by Corollary 5.7, and Operation 5.5

also runs in polynomial time of |Ti|.
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The step 3 is repeated at most O(c) times since g(S0) is O(c), therefore, the step 3 runs in
polynomial time of c. The genus of Sm is calculated in O(|Tm|) = O(c2) time.

Since the steps 2–4 run in polynomial time of c and c is O(|(⟨D⟩, w)|), each step runs in
polynomial time of |(⟨D⟩, w)|. Therefore, the running time of M is polynomial time of |(⟨D⟩, w)|.

By Claim A and Claim B, we see that classical knot recognition is in NP.

6 Algorithm for classical knot recognition

In this section, we give an algorithm for classical knot recognition, prove the correctness of the
algorithm, and analyze the running time of the algorithm. Let D be a virtual knot diagram
and M = cl(S × I −N(D̂)) be the canonical exterior of D with a triangulation T . We can solve
classical knot recognition by finding an essential 2-sphere, a classicalization annulus, or an essential
vertical annulus in M and performing Operation 5.1 or Operation 5.5. If g(S) = 0, then D is a
classical knot diagram, thus suppose that g(S) ̸= 0. If M is reducible, then there is an essential
vertex 2-sphere in M with respect to S by Theorem 4.2, and if M is irreducible and there is
an vertical essential annulus, then there is a vertical essential vertex annulus or a classicalization
vertex annulus in M with respect to T by Theorem 4.5. Thus, we can find these surfaces by
enumerating the vertex surfaces in M with respect to T if there are these surfaces.

6.1 Algorithm and its correctness

Note that g(∅) is defined as 0, where ∅ is the empty set. We describe an algorithm for classical
knot recognition.

Algorithm 6.1. Let K be a virtual knot and D be a diagram of K.

1. Construct a triangulation T of the canonical exterior of D. There are two triangulations of
the supporting surface of D in ∂T , and denote one of them by S.

2. Output “yes” if g(S) = 0, otherwise run the following steps.

3. Enumerate all vertex solutions in the projective solution space defined by the matching
equations of T , and VT denotes the list of all vertex solutions.

4. For each xi ∈ VT , calculate the minimum positive integer ki so that kixi is an integers vector.

5. Output “yes” if there is a vector xi ∈ VT which satisfies the following conditions:

• The vector kixi represents a vertex 2-sphere F with respect to T .

• The triangulation S ′, the triangulation obtained from S by Operation 5.1 using F , is
the empty set, i.e., the resulting triangulation of Operation 5.1 is cl(S3 −N(D̂)).

6. Reduce the vertices of S to one, and T ′ and S ′ denote the triangulation obtained from T
and S, respectively.

7. Enumerate all vertex solutions in the projective solution space defined by the matching
equations of T ′, and VT ′ denotes the list of all vertex solutions.

8. For each x′
i ∈ VT ′ , calculate the minimum positive integer k′

i so that k′
ix

′
i is an integers

vector.

9. Output “yes” if there is a vector x′
i such that k′

ix
′
i represents a classicalization vertex annulus

with respect to T ′.

10. Check whether there is a vector x′
i ∈ VT ′ which satisfies the following conditions:

• The vector k′
ix

′
i represents a vertical vertex annulus A with respect to T ′;

47



• g(S ′′) < g(S ′), where S ′′ is the triangulation obtained from S ′ by Operation 5.5 using
A.

(a) If there is a vector x′
i which satisfies the above conditions, then run Operation 5.5 using

A on T ′, where A is the vertical annulus represented by k′
ix

′
i. Redefine T as the resulting

triangulation of Operation 5.5 and S as the boundary of the resulting triangulation T
obtained from S ′, and then go to the step 2.

(b) Otherwise, output “no”.

Theorem 6.1. Algorithm 6.1 outputs “yes” if and only if K is a classical knot.

Proof. If Algorithm 6.1 outputs “yes”, then g(S) = 0, there is an essential 2-sphere, or there is a
classicalization annulus in the underlying 3-manifold of T . In any case, we see that K is a classical
knot.

Suppose that K is a classical knot. Let T be the triangulation of the canonical exterior
constructed in the step 1 of Algorithm 6.1 and S be the triangulation of the supporting surface
of a given diagram D in the boundary of T . If g(S) = 0, then Algorithm 6.1 outputs “yes” in the
step 2, and so we consider the case where g(S) ̸= 0. Let M denote the underlying 3-manifold of
T . If M is reducible, then there is an essential vertex 2-sphere by Theorem 4.2, and so Algorithm
6.1 outputs “yes” in the step 5. Suppose that M is irreducible. Let T ′ denotes the triangulation
of M constructed in the step 6. If M is irreducible, then there is a vertical essential annulus in
M by Theorem 2.4. Therefore, there is a vertex surface which is an essential vertical annulus or
a classicalization annulus in M with respect to T ′ by Theorem 4.5. If there is a classicalization
vertex annulus, then Algorithm 6.1 outputs “yes” in the step 6. Otherwise, there is a vertical
essential vertex annulus A. In this case, Operation 5.5 using A on T ′ reduces the genus of S.
Since K is classical, g(S) is reduced to 0 (or an essential 2-sphere or a classicalization annulus in
M is found in the middle of reducing g(S)). Thus, Algorithm 6.1 outputs “yes”.

6.2 Double description method

In order to enumerate vertex solutions in a projective solution space, we use double description
method ([4]). In this subsection, assume that A is a (s, t)-matrix, where s and t are natural
numbers, and P = {x ∈ Rt | x ≥ 0,

∑
xi = 1, Ax = 0} is the projective solution space defined by

A. We denote the i-th row of A by mi. Then P is the intersection of the following subspaces of
Rt:

• O = {x ∈ Rt | x ≥ 0},
• the hyperplane J = {x ∈ Rt |

∑
xi = 1},

• the hyperpalnes H1, H2, . . . , Hs, where Hi is the solution space of the equation mi · x = 0.

Algorithm 6.2 (Double description method). Suppose that a (s, t)-matrix A is given. Let P
denote the projective solution space defined by A. Then we can obtain all vertex solutions in P
as follows.

We define P0 as O ∩ J , and for each i = 1, . . . , s, we define Pi as O ∩ J ∩H1 ∩ · · · ∩Hi. Let Vi

be the set of all vertex solutions of Pi for each i = 0, . . . , s. In particular, Ps is P, and Vs is the set
of all vertex solutions in P = Ps. Then Vi can be obtained from Vi−1 by the following operations:

1. Let V0 = {ei|1 ≤ i ≤ t}, where ei ∈ Rt is the vector whose coordinate xj is one if j = i,
otherwise xj is zero.

2. For each i = 1, . . . , s, Vi is defined as follows:

(a) Split Vi−1 to S0, S+ and S−, where these sets are defined as follows:

• S0 = {v ∈ Vi−1 | mi · v = 0},

48



• S+ = {v ∈ Vi−1 | mi · v > 0},
• S− = {v ∈ Vi−1 | mi · v < 0}.

In other words, S0, S+ and S− contain the element of Vi−1 that lies in, above and below
the hyperplane Hi, respectively.

(b) Add all elements of S0 to Vi.

(c) For each pair (u,w) ∈ S+×S−, if u andw are adjacent in Pi−1, then add the intersection
point of Hi and the line segment connecting u and w to Vi.

While we do not describe in detail how to determine whether two points u and w are adjacent
in Pi−1 in the step 2-(c) of Algorithm 6.2, one of the methods is described below.

Fukuda and Prodon proved the following lemma in more general case, and Burton adapted it
to the projective solution space. Note that Z(x) = {k ∈ N | xk = 0}.
Lemma 6.1 (Fukuda and Prodon [10], Burton [4]). Let Pi−1, u and w be the subspace of Rt

and vertex solutions of Pi−1 in the step 4-(c) of Algorithm 6.2. Then u and w are adjacent in
Pi−1 if and only if the dimension of the intersection space of H1 ∩ · · · ∩Hi−1 and the hyperplane⋂

k∈Z(u)∩Z(w){x ∈ Rt|xk = 0} is two.

We describe how to check that the dimension of the intersection space of H1 ∩ · · · ∩Hi−1 with⋂
k∈Z(u)∩Z(w){x ∈ Rt|xk = 0} is two. Ai−1 denotes the submatrix obtained by deleting all rows

below the i-th row from (s, t)-matrix A. Let ek ∈ Rt be the unit vector whose k-th coordinate is 1
and the other coordinates are 0, and let IZ(u)∩Z(w) be the matrix obtained by deleting k-th rows
which satisfies k /∈ Z(u) ∩ Z(w) from the t× t identity matrix. Then we consider the matrix

M =

(
Ai−1

IZ(u)∩Z(w)

)
.

The dimension of the intersection of H1∩· · ·∩Hi−1 and
⋂

k∈Z(u)∩Z(w){x ∈ Rt|xk = 0} is obtained

by calculating the dimension of the kernel of M; dim(ker(M)) denotes it, where ker(M) is the
kernel of M . Since the equation dim(ker(M)) = t − rank(M) holds, we can check whether two
vectors u and w are adjacent in Pi−1 by calculating the rank of M .

Next, we analyze the running time of Algorithm 6.2. The rank of M can be calculated in time
O((s+ t)3) because the number of rows of M is at most s+ t. We can analyze the running time of
Algorithm 6.2 if the size of Vi is known. We can show lemma 6.2 in the same way as the discussion
of the number of vertex surfaces in [3].

Lemma 6.2. Let A be an input matrix of Algorithm 6.2, and suppose that A is a (s, t)-matrix.

For each i = 0, . . . , s, |Vi| ∈ ϕO(t) holds, where ϕ = 1+
√
5

2
.

Lemma 6.3. Let A be an input matrix of Algorithm 6.2, and suppose that A is a (s, t)-matrix.

Then, Algorithm 6.2 runs in time O(s(s+ t)3)ϕO(t2).

Proof. We analyze the time to construct Vi from Vi−1. By Lemma 6.2, |Vi−1| ∈ ϕO(t) holds, so
that |S0|, |S+| and |S−| ∈ ϕO(t). Therefore, it takes ϕO(t) time to add |S0| to Vi. For each pair
(u,w) ∈ S+ × S−, we can determine whether two vectors u and w are adjacent in Pi−1 in time
O((s + t)3). Furthermore, we can calculate the intersection point of Hi and the line segment

connecting u and w in time O(t). There are ϕO(t2) pairs in S+ × S−, so that we can construct Vi

in time O((s+ t)3)ϕO(t2). Because i ≤ s, Algorithm 6.2 runs in time O(s(s+ t)3)ϕO(t2) .

To enumerate vertex surfaces in a triangulation T , we consider enumerating vertex solutions
in the projective solution space defined by the matching equations of T . Suppose that T has n
tetrahedra and A is the matching equations of T . Since the number of rows of A is 7n, and the
number of columns is at most 6n, the following corollary holds.

49



Corollary 6.1. Let T be an n-tetrahedra triangulation, and let A be the matrix defined by the
matching equations of T . Then, we can enumerate all vertex solutions in the projective solution

defined by A in time ϕO(n2). Futhermore, the number of the vertex solutions is ϕO(n).

6.3 The running time of Algorithm 6.1

Next, we give a method to calculate the minimum positive integer k so that kx is an integer vector,
where x is a vertex solution of the matching equations of a triangulation T of a 3-manifold. We
can calculate the integer k in polynomial time of the number of tetrahedra in T .

Lemma 6.4. Let T be a triangulation which has n tetrahedra. Given a vertex solution x in the
projective solution space defined by the matching equations of T , we can calculate the minimum
positive integer k so that kx is an integer vector in time O(n3 logn).

Proof. Let NZ(x) = {i ∈ {1, . . . , 7n}|xi ̸= 0}, and let m be the size of NZ(x). xi is a non-zero
rational number if i ∈ NZ(x), so that let xi = ai

bi
, where ai, bi ̸= 0 are natural numbers. We

can assume that ai and bi are relatively prime by reducing xi when we calculate x. Now, k is
the least common multiple of bij , where ij ∈ NZ(x). We denote this by LCM(b1, . . . , b7n). We
can calculate LCM(b1, . . . , b7n) by calculating the least common multiple of two natural numbers
O(logn) times.

Let α and β be natural numbers which are not 0, and we assume that α ≥ β. In general,
LCM(α, β) can be obtained by dividing the product of α and β by the greatest common divisor
of α and β, denoted by GCD(α, β). We can calculate GCD(α, β) by modulo operation O(logα)
times by using Euclidean Algorithm. Multiplication, division, and modulo operation of α and β
can be carried out in time O((logα)2), and so we can calculate LCM(α, β) in time O((logα)3).

Next, we analyze the size of bi. We have xi =
kxi∑
kxj

because x is the projection of kx onto the

hyperplane
∑

xi = 1. By Theorem 4.1, for each integer j = 1, . . . , 7n, kxj ≤ 27n−1 holds, and so
we have

∑
kxj ≤ 7n27n−1. Now, we see that ai and bi are relatively prime and xi =

ai
bi

= kxi∑
kxj

,

and so bi ≤ 7n27n−1 holds. On the other hand, for any integers ij and ij′ in NZ(x), we have
LCM(bij , . . . , bij′ ) ≤ LCM(b1, . . . , b7n) = k =

∑
kxj ≤ 7n27n−1. Therefore, we can calculate

k = LCM(b1, . . . , b7n) in time O((logn)(log(7n27n−1))3) = O(n3 logn).

Theorem 6.2. Algorithm 6.1 runs in time ϕO(c4), where c is the number of real crossings of a

given diagram and ϕ = 1+
√
5

2
.

Proof. The step 1 runs in time O(c) by Lemma 3.1. Furthermore, |T | is O(c), where T is the
triangulation obtained by the argument of Lemma 3.1.

We consider the number of tetrahedra in T . Recall that the genus of a virtual knot diagram
D, denoted by sg(D), is the genus of the supporting surface of D. The steps 2–10 are repeated
at most sg(D) times since the step 10-(a) must reduce the genus of S. Since sg(D) is O(c) by
Corollary 3.2, the steps 2–10 run O(c) times. The triangulation T may be changed in the step 6
and the step 10-(a). The step 6 does not increase the number of tetrahedra, and the step 10-(a)
increases the number of tetrahedra by O(c) by Lemma 5.6. Thus, the number of tetrahedra of T
is O(c2).

The step 2 runs in time O(c2) since g(S) is calculated in time O(|S|) = O(|T |) = O(c2). By

Corollary 6.1, the list of all vertex solutions is calculated in time ϕO(|T |2) = ϕO(c4), and so the step

3 and the step 7 run in time ϕO(c4). Let VT denote the list of all vertex solutions in the projective
solution space defined by the matching equation of T . For each x ∈ VT , we can calculate the
minimum positive integer k so that kx is an integers vector in time O(|T |3 log |T |) = O(c6 log c2)

time by Lemma 6.4. Thus, the step 4 and the step 8 run in time ϕO(|T |) = ϕO(c2).
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Consider the running time of the step 5. For each kx, we can determine whether kx represents
a vertex 2-sphere with respect to T in polynomial time by Lemma 5.10, and Operation 5.1 runs

in time O(|T |2) = O(c4). Since the length of VT is ϕO(c2), the step 5 runs in time ϕO(c2). In the

same argument, the step 9 and the step 10 run in time ϕO(c2) by Lemma 5.11 and Lemma 5.12.

We see that the running time of each step of Algorithm 6.1 is less than ϕO(c4), and the steps

2–10 runs O(c) times. Therefore, Algorithm 6.1 runs in time ϕO(c4).

7 Experimental performance

By Theorem 6.2, Algorithm 6.1 runs in time ϕO(c4). However, Burton verified that Lemma 6.2 is
not a sharp bound of the number of vertex solutions by the computational experiment in [3]. Thus,
it is expected that we can get a better bound of the running time of Algorithm 6.2. We describe
the result of testing of Algorithm 6.1 for some virtual knot diagrams and estimate a better bound
of the running time of the algorithm.

7.1 Implementation

Algorithm 6.1 has been implemented in C++ with Regina. Regina is a software package to
calculate for low-dimensional topology and is developed by Burton et al.([1, 7]). Regina specializes
in calculation regarding triangulations and normal surfaces, and so it is suitable for implementation
of algorithms which use essential surfaces in triangulations.

Let T be the triangulation of the canonical exterior of an input diagram which is constructed
by the argument of Corollary 3.1. If Algorithm 6.1 is implemented simply, it takes too much time
to enumerate vertex solutions because T has many tetrahedra. In the experiment, the number of
tetrahedra in T is reduced heuristically when T is constructed and when T is changed. The detail
of the operation to reduce the number of tetrahedra is written in [5].

7.2 Input data

The input data are the diagrams in the table of virtual knots made by Green ([11]). We use the
oriented Gauss codes of virtual knot diagrams which have five or less real crossings in the table
of virtual knots. The diagrams in the table are encoded by a different way from oriented Gauss
code. However, it is easy to convert them.

7.3 Experimental method

In Algorithm 6.1, the part which takes the longest time is the enumeration of the vertex solutions.
The running time of this part increases exponentially with increasing the number of tetrahedra.
Thus, it is not possible to run the algorithm in realistic time if a triangulation of the canonical
exterior of an input diagram has many tetrahedra. Therefore, we conduct the experiment as
follows:

1) construct all triangulations of the canonical exteriors of input diagrams by the argument of
Corollary 3.1,

2) reduce the number of tetrahedra in the triangulations heuristically, and

3) run the program of Algorithm 6.1 in ascending order of the size of the triangulations.

In this experiment, we measure the running time for the diagrams whose canonical exterior
triangulations have 27 or less tetrahedra.
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7.4 Experimental result

The experiment result is shown in Figure 35. In Figure 35(a), the horizontal axis shows the number
of real crossings in the diagrams, and the vertical axis shows the running time. In Figure 35(b),
the horizontal axis shows the number of tetrahedra in the triangulations obtained by the diagrams,
and the vertical axis shows the running time.

We estimate a linear relationship of the pairs {(c, log2 t)} using the least squares method,
where c is the number of real crossings of an input diagram D and t is the running time when
D is an input diagram. As a result, the linear function log2 t = 2.250c − 0.887 is obtained. The
function t = 22.250c−0.887 is shown in Figure 35(a). We also estimate a linear relationship of the
pairs {(n, log2 t)}, where n is the number of tetrahedra in a triangulation, and the linear function
log2 t = 1.674n− 31.696 is obtained. The function t = 21.674n−31.696 is shown in Figure 35(b).

(a) The relationship of the number of real crossings
and the running time

(b) The relationship of the number of tetrahedra in a
triangulation and the running time

Figure 35: The running time of Algorithm 6.1

Furthermore, Figure 36 shows the relationship of the number of real crossings in an input
diagram and the number of tetrahedra in the triangulation obtained from the diagram in the
second step. In Figure 36, the horizontal axis shows the number of real crossings, and the vertical
axis shows the number of tetrahedra. In addition, the results of diagrams whose supporting genera
are zero, one, two, and tree are shown in violet, blue, green, and yellow, respectively.

7.5 Consideration

As shown in Figure 35(b), it seems that the average of the running time is bounded by 2O(n), where
n is the number of tetrahedra in the triangulation constructed in the second step of the experiment.
From Figure 36, we see that the number of tetrahedra in the triangulation in the second step
increases linearly with increasing the number of real crossings. Therefore, it is expected that the
average of the running times is bounded by 2O(c), where c is the number of real crossings in an
input diagram. This result implies that the time complexity of Algorithm 6.1 is also bounded by
2O(c).

Figure 36 shows that a triangulation which has many tetrahedra is obtained from a diagram
whose supporting genus is large. In this experiment, the running time is measured for diagrams
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Figure 36: The relationship of the number of tetrahedra and the number of real crossings

whose canonical exterior triangulations constructed in the second step have 27 or less tetrahedra.
As shown in Figure 36, each of such diagrams has small supporting genus. Therefore, in order to
solve classical knot recognition for a diagram with larger supporting genus, we need to develop a
faster algorithm.

8 Discussion

In this study, we showed that classical knot recognition is in NP, gave the exponential time algo-
rithm for classical knot recognition, and tested Algorithm 6.1 for the diagrams whose triangulations
of the canonical exteriors have few tetrahedra.

We have two future tasks. The first one is to show that classical link recognition is in NP. In the
case where an input is a virtual knot diagram, we showed that if there is a vertical essential annulus
in the canonical exterior of the input diagram, then there is a vertex surface which is a vertical
essential annulus or a classicalization annulus with respect to a triangulation of the exterior. Note
that a classicalization annulus is defined for only the exterior of a knot in a thickened closed
orientable surface. Since a vertex surface is encoded with polynomial length, a vertical essential
annulus or a classicalization annulus is used for a polynomial length witness if and only if the
input is a diagram of a classical knot. On the other hand, in the case where an input is a diagram
of a virtual link which has two or more components, it is not known whether there is a vertical
essential annulus which is a vertex surface with respect to a triangulation of the canonical exterior
of the virtual link diagram even though there is a vertical essential annulus in the exterior. For
this reason, it is not known that there is a polynomial length witness for an input of classical link
recognition.

The other future task is to give a faster algorithm for classical knot recognition. The exper-
imental result shows that the running time increases with increasing the number of tetrahedra
exponentially. The reason why it takes much time to run the algorithm is that the enumeration
of vertex surfaces takes much time. However, the experiment in [3] suggests that the number of
vertex surfaces increases exponentially with increasing the size of a triangulation. Thus, as long
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as we enumerate vertex surfaces, it seems that a faster algorithm cannot be constructed. There-
fore, we consider to find a vertex surface by solving an integer programming problem as with the
algorithm for unknot recognition in [8]. In [8], Burton and Ozlen proposed a fast algorithm for
unknot recognition using an integer programming problem and the branch and bound method. It
is expected that we can solve classical knot recognition quickly by using this method.
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