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Abstract

The present paper is devoted to numerical investigation on fracture parame-
ters of cracked shells subjected to out-of-plane loading using ordinary state-
based peridynamics (PD). The nonlocal deformation gradient and equiva-
lent domain integral are introduced to evaluate fracture parameters. To re-
duce the surface effect and obtain more accurate results, the energy method
and volume correction algorithm are considered. Meanwhile, the adaptive
dynamic relaxation technique is employed to obtain steady-state solutions.
From comparisons between PD results and reference solutions, the proposed
PD shell model successfully evaluates fracture parameters in both single- and
mixed-mode loading conditions.
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1. Introduction

A novel numerical method, peridynamics (PD), was proposed by Silling
[1,2] to deal with complicated fracture phenomena. The PD theory based
on integro-differential equations can inherently define discontinuities in the
analysis domain without special numerical techniques. It has been demon-
strated that the PD theory successfully investigates different kinds of fracture
mechanics problems in several references, such as crack nucleation [3], crack
propagation [4], crack branching [5], and crack arrest [6].

Thin-walled structures, e.g., plates and shells, are widely used in en-
gineering applications owing to their high strength-to-weight ratio. Up to
now, two-dimensional (2D) plane and three-dimensional (3D) solid models
draw the main attention in most PD studies. 3D solid models typically
demand a relatively fine discretization in the through-thickness direction to
capture an accurate representation of the resistance to bending in thin-walled
structures. When simulating thin-walled structures, the computational re-
quirement would significantly increase by 3D solid models. Thus, structural
idealization is an effective approach to reduce computational time. Both
Kirchhoff-Love [7,8] and Mindlin-Reissner [9-11] plate theories are common
approaches for structural idealization in the PD literature.

In fracture mechanics analysis, J-integral and stress intensity factors
(SIFs) are regarded as primary fracture parameters in most previous exper-
iments and numerical studies. Generally, the shell model consists of plane
stress and plate bending approximations. Stress intensity factors and mo-
ment/shear intensity factors correspond to fracture parameters for in-plane
and out-of-plane loadings, respectively. Even though out-of-plane loading
is one of the major loads in plate and shell structures, its studies are rel-
atively less than in-plane ones. Sosa and Eischen [12] derived the contour
integral to evaluate mode-I moment intensity factors. Sosa and Herrmann
[13] further employed the contour integral to investigate mixed-mode frac-
ture problems under out-of-plane loading. Zehnder and Viz [14] summarized
fracture mechanics phenomena of plates and shells between different com-
putational methods. Several numerical methods were adopted to evaluate
moment/shear intensity factors in previous references, such as dual bound-
ary element method (DBEM) [15], extended finite element method (XFEM)
[16,17], phantom-node method [18], extended isogeometric analysis (XIGA)
[19,20], and meshfree method [21,22].

So far, a few fracture parameter studies have been carried out in the
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PD literature. In the beginning, Silling and Lehoucq [23] developed the
state-based PD J-integral. Hu et al. [24] derived the PD J-integral in bond-
based peridynamics (BBPD) and compared J-integral results between PD
and FEM. Le and Bobaru [25] investigated the effectiveness of surface effect
corrections in the PD J-integral evaluation. Stenström and Eriksson [26] pre-
sented the alternative J-integral approach via displacements obtained from
BBPD. These studies mentioned above were investigated under pure mode-I
fracture conditions. Subsequently, the PD studies on mixed-mode fracture
conditions were published for dynamic SIFs evaluation [27] and fatigue crack
growth analysis [28]. To the authors’ knowledge, fracture parameter as-
sessment, e.g., SIFs and J-integral, under out-of-plane loading is still not
discussed in the PD framework.

The fracture parameter assessment of flat shell structures is implemented
by employing the ordinary state-based peridynamics (OSPD) shell model
[10]. The energy method [29] and adaptive dynamic relaxation (ADR) tech-
nique [30] are applied to deal with surface effect corrections and quasi-static
problems, respectively. The domain form of the J-integral, also known as the
equivalent domain integral (EDI), [16] is proposed to evaluate fracture pa-
rameters. In addition, the derivative of variables in the J-integral evaluation
is obtained by introducing the nonlocal deformation gradient [31]. The pre-
sented PD shell model had successfully evaluated fracture parameters under
in-plane loading [32]. It aims to assess fracture parameters of cracked shells
subjected to out-of-plane loading in the present paper.

The remainder of this paper is organized as follows. The PD shell model
and some numerical techniques are briefly introduced in Section 2. The
nonlocal deformation gradient and EDI are presented to evaluate fracture
parameters in Section 3. Several numerical problems are demonstrated in
Section 4. The conclusions are given in Section 5.

2. Ordinary state-based peridynamic formulation

A novel non-local theory, Peridynamics, has been rapidly developed in
the field of computational mechanics. In the non-local theory, any material
point x interacts with the other material points x′ within a distance δ, as
illustrated in Fig. 1. Those material points x′ are called the family of x, Hx.
In contrast to classical continuum mechanics, the PD equation of motion is
expressed in terms of integro-differential equations [2,30] as follows:
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Figure 1: The interactional relationship of material points in PD.

ρ(x)ü(x, t) =

∫
Hx

[t(u′ − u,x′ − x, t)

−t′(u− u′,x− x′, t)]dV ′ + b(x, t),

(1)

where x, u and t denote the reference position vector, displacement vector
and time, respectively. ρ is the mass density, and V is the volume of a
material point. ü, t, and b represent the acceleration vector, force density
vector, and body force density vector, respectively.

Although the PD theory can well solve complicated fracture problems,
its low computational efficiency is an inherent drawback. Due to the non-
local characteristic, the interactions of each material point within Hx need
to be concerned in every time step. On the other hand, the PD equations of
motion are in dynamic form. The iteration procedure is required to obtain
steady-state solutions for static problems. Those features lead to expensive
computational time in PD. To reduce computational time, the PD shell model
proposed in Ref. [10] is adopted to deal with fracture parameter evaluation
for thin-walled structures instead of the 3D solid model.

2.1. Peridynamic model for shell structures

The OSPD model for shell structures [10] is employed in the present
paper. The schematic illustration of the PD shell model is presented in
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Fig. 2. x(k) and y(k) denote the initial and deformed positions of point
k, respectively. φ represents the angle of interaction between points k and
j with respect to the x1-axis. u(k)=[u v w θx θy]

T and t(k)(j) denote the
displacement and force density vectors of point k, respectively. Note that
the small deformation assumption is considered in the proposed PD model.

x(k)

Initial configuration

Deformed configuration
u

v
w

t (k)(j)

t (j)(k)

x(j)

y(j)u(k)

u(j)

h

y(k)

3x

1x

2x

Figure 2: Initial and deformed states of a flat shell in PD [32].

In order to derive the equations of motion for the PD shell model, the
strain energy densities in PD for in-plane, bending, and shear deformation
components need to be established beforehand. Meanwhile, the dilatations
and bond stretches are defined in a similar manner to the Mindlin plate the-
ory. By comparing dilatations and strain energy densities between classical
continuum mechanics and PD, the PD constants can be obtained.

The strain energy density in PD for in-plane deformation can be defined
as:

W̄ PD
ip(k) = aipϑ

2
ip(k) + bip

N∑
j=1

s2ip(k)(j)ξV(j), (2)

where ξ is the distance between x(k) and x(j). sip(k)(j) and ϑip(k) represent
the relative bond stretch and dilatation for in-plane deformation, respectively.
sip(k)(j) and ϑip(k) are expressed as below:
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sip(k)(j) =
(u(j) − u(k)) cosφ+ (v(j) − v(k)) sinφ

ξ
, (3)

ϑip(k) = dip

N∑
j=1

sip(k)(j)V(j). (4)

The PD constants for in-plane deformation are presented as:

aip =
Eh(3ν − 1)

4(1− ν2)
, bip =

2

πhδ2
, dip =

3E

πδ3(1 + ν)
, (5)

where E and ν denote Young’s modulus and Poisson’s ratio, respectively. δ
is the horizon size, and h is the shell thickness.

The strain energy density in PD for bending deformation can be defined
as:

W̄ PD
b(k) = abϑ

2
b(k) + bb

N∑
j=1

s2b(k)(j)ξV(j), (6)

where sb(k)(j) and ϑb(k) represent the relative bond stretch and dilatation for
bending deformation, respectively. sb(k)(j) and ϑb(k) are expressed as below:

sb(k)(j) =
−(θy(j) − θy(k)) cosφ+ (θx(j) − θx(k)) sinφ

ξ
, (7)

ϑb(k) = db

N∑
j=1

sb(k)(j)V(j). (8)

The PD constants for bending deformation are presented as:

ab =
Eh3(3ν − 1)

48(1− ν2)
, bb =

2

πhδ2
, db =

Eh2

4πδ3(1 + ν)
. (9)
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The strain energy density in PD for shear deformation can be defined as:

W̄ PD
s(k) =

1

4
Cs

N∑
j=1

(
w(j) − w(k)

ξ
−

θ̄(j) − θ̄(k)
2

)2ξV(j), (10)

where θ̄(k) and θ̄(j) represent the rotations with respect to the interaction
bond between points k and j. θ̄(k) and θ̄(j) are expressed as below:

θ̄(k) = −θy(k) cosφ+ θx(k) sinφ, (11)

θ̄(j) = −θy(j) cosφ+ θx(j) sinφ. (12)

The PD constants for shear deformation are presented as:

Cs =
3ksE

πδ3(1 + ν)
, (13)

where ks=5/6 denotes the shear correction factor.
The equations of motion are derived based on the Euler-Lagrange equa-

tion.

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0, (14)

where L=T -U represents the Lagrangian function. T and U denote the
kinetic and total potential energies. qi is the degree of freedom, and q̇i is the
time derivative of qi.

The equation of motion for the PD shell model can be written as:

m(k)ü(k) =
N∑
j=1

(t(k)(j) − t(j)(k))V(j) + b(k) =
N∑
j=1

f(k)(j)V(j) + b(k), (15)

whereN is the total number of material points within δ, and V(j) is the volume
of point j. m(k), ü(k), f(k)(j), and b(k) denote the mass matrix, acceleration
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vector, force density vector, and body force density vector, respectively. The
details of the equation of motion are given below:

m(k) =


ρh 0 0 0 0
0 ρh 0 0 0
0 0 ρh 0 0

0 0 0 ρh3

12
0

0 0 0 0 ρh3

12

 , (16)

ü(k) =


ü(k)

v̈(k)
ẅ(k)

θ̈x(k)
θ̈y(k)

 , f(k)(j) =


fu
(k)(j)

f v
(k)(j)

fw
(k)(j)

f θx
(k)(j)

f
θy
(k)(j)

 , b(k) =


bx(k)
by(k)
bz(k)
mx(k)

my(k)

 . (17)

The details of the force density vector f(k)(j) for each component are
expressed as below:

fu
(k)(j) = [

2aipdip
ξ

(ϑip(k) + ϑip(j)) + 4bipsip(k)(j)] cosφ, (18)

f v
(k)(j) = [

2aipdip
ξ

(ϑip(k) + ϑip(j)) + 4bipsip(k)(j)] sinφ, (19)

fw
(k)(j) =Cs{

w(j) − w(k)

ξ
− 1

2
[−(θy(k) + θy(j)) cosφ

+ (θx(k) + θx(j)) sinφ]},
(20)

f θx
(k)(j) =[

2abdb
ξ

(ϑb(k) + ϑb(j)) + 4bbsb(k)(j)] sinφ

+
1

2
Cs{(w(j) − w(k)) sinφ

− ξ

2
[−(θy(k) + θy(j)) sinφ cosφ+ (θx(k) + θx(j)) sin

2 φ]},

(21)
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f
θy
(k)(j) =− [

2abdb
ξ

(ϑb(k) + ϑb(j)) + 4bbsb(k)(j)] cosφ

− 1

2
Cs{(w(j) − w(k)) cosφ

− ξ

2
[−(θy(k) + θy(j)) cos

2 φ+ (θx(k) + θx(j)) sinφ cosφ]}.

(22)

2.2. Numerical implementation

PD constants are computed based on a complete horizon. If the material
point is close to the domain boundary, the PD constants are slightly differ-
ent from ones computed with the complete horizon [25]. This is called the
”surface effect” which strongly affects the accuracy of computational results
in the PD theory. The energy method [29] is proposed to reduce the surface
effect and obtain more accurate results.

In the energy method, the correction factors are established by comparing
dilatations and strain energy densities between classical continuummechanics
and PD. The correction factor for dilatation is expressed as below:

D(k) =
ϑCM(x(k))

ϑPD(x(k))
. (23)

With the corrected dilatation, the correction factor for strain energy den-
sity is expressed as below:

S(k) =
WCM(x(k))− alϑ

PD(x(k))
2

W PD(x(k))− alϑPD(x(k))2
, (24)

where al denotes the PD parameter for dilatation. l=ip and l=b represent
the PD parameter for in-plane and bending deformations, respectively.

The mean value of the correction factor is taken for each interaction bond
between points k and j.

ḡD(k)(j)m =
D(k)m +D(j)m

2
, ḡS(k)(j)m =

S(k)m + S(j)m

2
, (25)

where m=x1, x2 represent the x1- and x2-axis direction, respectively.
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To approximate the correction factor in the arbitrary direction, the prin-
cipal values of an ellipse are used, as illustrated in Fig. 3.

Gβ(k)(j) = ([
nx1

ḡβ(k)(j)x1

]2 + [
nx2

ḡβ(k)(j)x2

]2)−
1
2 , (26)

where β=D represents the dilatation term, and β=S represents the strain
energy density term. nx1 and nx2 are the x1 and x2 components of the normal
vector n, respectively.

Gb(k)(j)

gb(k)(j)x

gb(k)(j)x n

x2

x11

2

Figure 3: Principal values of an ellipse for the surface corrections.

The material points x in the horizon do not always possess complete
volume. Therefore, the volume correction is employed in the PD equation of
motion. A complete volume is taken into account when the material point
x is located within the range of ξ < δ−r. However, the material point x
located within the range of δ−r < ξ < δ only possesses a partial volume in
the horizon. Thus, a linear volume correction factor is introduced. r=∆x/2
is defined. The volume correction factor υ(j) is defined as:

υ(j) =


1, ξ < δ − r

(δ + r − ξ)/2r, δ − r < ξ < δ

0, δ < ξ

(27)

where ξ is the distance between points k and j.

10



In order to solve static problems, the ADR technique [30] is adopted in
the PD framework. Steady-state solutions can be obtained by introducing
stable mass and damping matrices into the PD equation of motion. The
details of the ADR technique for the PD shell model can be found in Ref.
[10].

2.3. Crack modeling

In the PD theory, the crack segment is modeled by eliminating interaction
bonds. When the interaction bond intersects with the crack segment, it is
irreversibly broken, as shown in Fig. 4. The dashed line represents the broken
bond between points k and j. The state of bond interaction is represented
by µ(ξ, t) in Eq. (28) [33].

Crack 

d 

d 
x(k)

x(j)

Figure 4: Schematic of crack modeling in PD.

µ(ξ, t) =

{
0 broken bond

1 intact bond
(28)

3. Evaluation of fracture parameters

Fracture toughness (Kc or Jc) represents a critical measure of the ma-
terial resistance to crack propagation. Fracture parameters (K or J) are
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evaluated to determine the status of crack extension. To ensure the safety of
structures, fracture parameters should attempt to prevent exceeding fracture
toughness. SIFs and J-integral of cracked shells are obtained by employing
EDI [16] in the present paper. In the J-integral formulation, the nonlocal
deformation gradient [31] is applied to evaluate displacement gradients and
stress resultants.

3.1. Nonlocal deformation gradient

The nonlocal deformation gradient [2] is commonly used in non-ordinary
state-based peridynamics (NOSPD). Thus, NOSPD can easily incorporate
with classical constitutive models without reformulating PD force states.
However, the nonlocal deformation gradient is only adopted to evaluate dis-
placement gradients and stress resultants in the proposed approach.

First of all, the nonlocal deformation gradient F at x is defined as:

F (x) = [

∫
Hx

ω(|ξ|)(Y (ξ)⊗ ξ)dV ′] ·K(x), (29)

where ξ and Y denote the reference distance vector and deformation vector
state, respectively. ω is the influence function, and K is the shape tensor.
ξ, Y , and K are given as follows:

ξ = x′ − x, (30)

Y (ξ) = (u′ + x′)− (u+ x), (31)

K(x) = [

∫
Hx

ω(|ξ|)(ξ ⊗ ξ)dV ′]−1. (32)

According to the equation ∇u=F -I, the displacement gradient can be
obtained. I is the identity matrix. The influence function ω=(δ/|x(j)−x(k)|)2
is chosen [11]. The discrete forms of ∇u and K are expressed as below:

∇u(k) = [
N∑
j=1

µ(k)(j)(
δ

|x(j) − x(k)|
)2(u(j) − u(k))⊗ (x(j) − x(k))Vj]K(k), (33)
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K(k) = [
N∑
j=1

µ(k)(j)(
δ

|x(j) − x(k)|
)2(x(j) − x(k))⊗ (x(j) − x(k))Vj]

−1, (34)

where the state of bond interaction µ(k)(j) is introduced in Eqs. (33) and
(34).

After obtaining displacement gradients, strain and stress components
can be evaluated by introducing strain-displacement and constitutive rela-
tions, respectively. Stress resultants, including moments and transverse shear
forces, are yielded by integrating stresses through the shell thickness.

3.2. Equivalent domain integral

The contour integral in cracked plates subjected to out-of-plane loading
is first proposed by Sosa and Eischen [12]. The contour integral based on the
Mindlin plate theory is defined in terms of stress resultants as:

J =

∮
Γ

[W̄ δ1β − (Mαβθα,1 +Qβw,1)]nβdΓ, (35)

where Mαβ and Qβ represent the moment and shear force components, re-
spectively. W̄ denotes the strain energy density expressed as below:

W̄ =
1

2
[Mαβθα,β +Qβ(θβ + w,β)]. (36)

EDI is more advantageous in PD. It is particularly convenient for comput-
ing J-integral with an arbitrary crack under uniform particle discretization.
Therefore, the contour integral is recast into the equivalent domain form by
applying the divergence theorem. Meanwhile, a smooth weight function q is
introduced over the domain of interest. The equivalent domain is illustrated
in Fig. 5. EDI can be obtained as:

J =

∫
A

[(Mαβθα,1 +Qβw,1)− W̄ δ1β]q,β dA

−
∫
C++C−

[Mαβθα,1 +Qβw,1]m2 q dC,
(37)
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1

x2

Figure 5: Domain form of the J-integral.

where C=C0+C++C−+Γ. The last integral of Eq. (37) omits due to the
traction-free crack faces. The traction-free boundary conditions (BCs) are
enforced along the upper and lower surfaces of the crack. The details of the
traction-free BCs in PD are discussed in Ref. [34]. The discrete form of EDI
is expressed as:

J =
N∑
i=1

{[(Mαβθα,1 +Qβw,1)− W̄ δ1β]q,β}iAi, (38)

where Ai is the area of a material point i located within the equivalent domain
enclosed by C. The weight function q is presented as:

q =


1 on Γ

0 on C0

0 < q < 1 C0 < r′ < Γ

(39)

In linear elastic fracture mechanics, moment intensity factor K1 can be
directly determined from J-integral under pure mode-I loading. The rela-
tionship is expressed as follows:

J =
12π

Eh3
K2

1 . (40)
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In mixed-mode loading conditions, the relationship between J-integral
and moment/shear intensity factors is given below:

J =
12π

Eh3
[K2

1 +K2
2 ] +

π

2ksGh
K2

3 , (41)

where G is the shear modulus.
The relationship in Eq. (41) is insufficient to separate moment/shear

intensity factors. Additional numerical techniques are required to obtain K1,
K2, and K3 in mixed-mode loading conditions. Since J-integral can also be
regarded as one of the failure criteria, J-integral is chosen to be a fracture
parameter for mixed-mode fracture problems in the present paper.

4. Numerical examples

The fracture parameter assessment of flat shells is carried out in the PD
framework. All the PD results are compared with reference solutions to
confirm the effectiveness of the PD shell model. In the numerical examples,
uniform particle distribution is utilized and constant horizon size δ is set
to 3.015∆x. ∆x denotes the particle spacing. Additionally, the normalized
moment intensity factors F1=K1/M

√
a and F1=K1/p0(

W
2
)2
√
a are defined

for bending moment and uniform pressure cases, respectively.

4.1. Flat square shell with a central crack under uniform pressure

A flat square shell including a central crack under uniform pressure is ana-
lyzed. The length L and widthW of the flat shell are 2.0 mm. Three different
shell thicknesses are considered, including W/2h=2, 6, and 10. The crack
lengths 2a/W are adopted from 0.1 to 0.9. Young’s modulus E and Pois-
son’s ratio ν are 1,000 GPa and 0.3, respectively. The flat shell is subjected
to uniform pressure p0=1.0 MPa with simply supported BCs on the top and
bottom edges. The numerical model and boundary conditions are shown in
Fig. 6. Four different particle spacings are taken, including ∆x=0.05, 0.025,
0.0125, and 0.00625 mm.

At first, the convergence analysis of K1 is carried out. From Fig. 7, it
can be found that the error of K1 gradually decreases with smaller particle
spacing. When the particle spacing is less than 0.00625 mm, the error is less
than 1%. Thus, ∆x=0.00625 mm is used in the following examination of
domain-independence.
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Figure 7: Convergence analysis of K1.
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Path-independence and domain-independence of fracture parameters are
important features in fracture mechanics for the contour integral and equiv-
alent domain integral, respectively. To examine the domain-independence of
K1, the normalized K1 is assessed for different integral domains with various
crack lengths. In the domain-independence assessment, W/2h=2 is set and
five different integral domains are taken. The hollow circle is adopted for
integral domains, as shown in Fig. 5. The inner radius of Γ is set to 4∆x.
Five outer radii of C0 are defined from 6∆x to 10∆x corresponded to Do-
main 1 - 5, respectively. The normalized K1 results are presented in Table 1.
According to the K1 results, the domain-independence of K1 is confirmed.

Moreover, the normalized K1 is also evaluated for three different shell
thicknesses with various crack lengths. The PD results are compared with
the reference results computed in Ref. [12]. The comparison in Fig. 8 shows
that the PD results are in good agreement with the reference results.

Table 1: Normalized moment intensity factor for different crack lengths and integral do-
mains.

Domain No.
2a/W Ref.[12] 1 2 3 4 5
0.1 0.457 0.467 0.476 0.467 0.467 0.470
0.2 0.428 0.430 0.439 0.444 0.438 0.437
0.3 0.426 0.432 0.440 0.432 0.432 0.434
0.4 0.433 0.429 0.438 0.443 0.437 0.437
0.5 0.452 0.460 0.469 0.460 0.460 0.463
0.6 0.494 0.489 0.499 0.505 0.498 0.498
0.7 0.566 0.570 0.582 0.571 0.571 0.574

4.2. Flat rectangular shell with an edge crack under bending load

A flat rectangular shell including an edge crack under bending load is
investigated. The length L and width W of the flat shell are 2.0 and 1.0
mm, respectively. The crack lengths a/W are adopted from 0.1 to 0.9. Two
different shell thicknesses, W/h=2 and 10, are considered. E=210 GPa and
ν=0.3 are chosen for the material properties. The flat shell is subjected
to bending moments M=1.0 MPa-mm with simply supported BCs on the
top and bottom edges. The numerical model and boundary conditions are
illustrated in Fig. 9. The particle spacing ∆x is 0.008 mm.
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The normalized K1 is investigated for two different shell thicknesses with
various crack lengths. In the previous studies, this numerical example had
been conducted by using DBEM [15] and RKPM [21]. Both studies are
considered as reference solutions to examine the proposed approach. The
comparison between three numerical methods is given in Fig. 10. The PD
results agree well with the other numerical results. It is worth mentioning
that the similar phenomena of F1 happen between Fig. 8 and Fig. 10.
F1 approximately maintains constant when a/W is less than 0.6 and then
significantly increases when a/W is greater than 0.6.
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Figure 10: Normalized moment intensity factor for different crack lengths.

4.3. Flat square shell with symmetric double edge cracks under bending load

A flat square shell including symmetric double edge cracks under bending
load is calculated. The geometry sizes and material properties are the same
as the first example, but only two shell thicknesses, W/2h=2 and 10, are
considered. Two cracks are symmetrically arranged on the left and right
edges of the flat shell. The crack lengths 2c/W are adopted from 0.1 to 0.9.
The flat shell is subjected to bending moments M=1.0 MPa-mm with simply
supported BCs on the top and bottom edges. In Fig. 11, the numerical
model and boundary conditions are presented. The particle spacing ∆x is
0.008 mm.
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Figure 11: Rectangular plate under bending with symmetric double edge cracks.

The normalized K1 is analyzed for two different shell thicknesses with
various crack lengths. Sosa and Eischen [12] and Dirgantara and Aliabadi
[15] carried out the same numerical example. The F1 results of the present
method and reference solutions are shown in Fig. 12. The developed PD
model offers accurate solutions since its computed values well match the
reference ones. From Fig. 12, F1 greatly increases with smaller c. It means
that the fracture parameter of a crack tip is strongly influenced by the other
crack tip when the distance between crack tips becomes closer.

4.4. Flat square shell with an inclined center crack under bending load

A flat square shell including an inclined center crack under bending load
is considered. The length L and width W of the flat shell are 10 mm. The
crack length 2a is 1.0 mm, and seven crack angles ϕ are adopted from 0◦ to
90◦. The shell thicknesses h/a are varied from 0.1 to 9.0 at regular intervals
of 0.1. E=200 GPa and ν=0.3 are chosen for the material properties. The
boundary conditions presented in Fig. 13 are the same as the third example.
The particle spacing ∆x is 0.04 mm.

The normalizedK1 is calculated for different shell thicknesses when ϕ=0◦.
Two reference solutions obtained from Sih [35] and Joseph and Erdogan [36]
are available. The PD results are compared with the reference solutions
mentioned above. The comparisons of K1 for h/a=0.1-0.9 and h/a=1.0-9.0
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Figure 12: Normalized moment intensity factor for different crack lengths.
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Figure 13: Square plate under bending with an inclined center crack.
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are shown in Fig. 14 (a) and (b), respectively. For thicker shells, the F1

results have a good agreement between three different numerical methods.
However, the PD results are obviously closer to the results of Ref. [36] for
thinner shells. The same conclusion is found in Refs. [17] and [22].

The J-integral is assessed for different crack angles when h/a=2.0 in
mixed-mode fracture conditions. The reference results of moment/shear in-
tensity factors are taken from Refs. [17] and [35]. By substituting K1, K2,
and K3 into Eq. (41), the reference result of J-integral can be obtained.
The comparisons of J-integral for ν=0.0 and 0.3 are expressed in Fig. 15 (a)
and (b), respectively. From the J-integral results between PD and reference
solutions, it is confirmed that the reasonable PD results can be obtained in
mixed-mode loading conditions by using the proposed approach.
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Figure 14: Normalized moment intensity factor for different plate thicknesses at ϕ=0◦, (a)
h/a=0.1-0.9, (b) h/a=1.0-9.0.

5. Conclusion

In the present paper, the OSPD shell model is proposed to assess frac-
ture parameters under out-of-plane loading. Moment intensity factor and
J-integral determine the status of crack extension under pure mode-I loading
and mixed-mode loading conditions, respectively. The nonlocal deformation
gradient and EDI are applied to evaluate fracture parameters. Some nu-
merical techniques are employed to obtain more accurate solutions in quasi-
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Figure 15: J-integral value for different crack angles, (a) ν=0.0, (b) ν=0.3.

static problems, including the energy method, volume correction, and ADR
method.

In order to examine the accuracy and effectiveness of the proposed ap-
proach, the PD results are compared with the other reference solutions. In
pure mode-I loading conditions, the well accurate PD results of moment in-
tensity factor can be determined. In addition, the reasonable PD solutions
of J-integral can also be obtained under mixed-mode loading conditions. It
is demonstrated that fracture parameters can be successfully evaluated by
the presented PD approach.
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Nomenclature 

Latin symbols 

aip, bip and dip: PD constants of in-plane term 

ab, bb and db: PD constants of bending term 

A: area of the domain form of the J-integral 

a: half crack length 

b=[bx by bz mx my]T: body force vector 

C: contour of the domain form of the J-integral 

Cs: PD constants of shear term 

D: factor of the energy method for dilatation 

E: Young’s modulus 

F: nonlocal deformation gradient 

F1: normalized moment intensity factor 

f=[f u f v f w f θx f θy]T: PD force density vector 

G: shear modulus 

gത: mean value of the correction factor for dilatation 

gതௌ: mean value of the correction factor for strain energy density 

𝐺ఉ: correction factor of the energy method 

Hx: material points within Horizon in the PD theory 

h: shell thickness 

I: identity matrix 

J: J-integral 

Jc: fracture toughness of J-integral 

K: shape tensor 

K(K1, K2 and K3): moment/shear intensity factors 

Kc: fracture toughness 

ks: shear correction factor 

L: shell length 

L: Lagrangian function 

M, 𝑀ఈఉ: bending moment and its components 

m: mass matrix 

mj: normal vector of EDI 

N: total number of material points within Horizon 

n=[nx1 nx2]T: normal vector and its components 

nj: normal vector of EDI 

p0: pressure load 



𝑄ఉ: shear forces 

q: weight function of EDI 

qi: degree of freedom in the Euler-Lagrange equation 

r: half distance of particle spacing 

S: factor of the energy method for strain energy density 

sip: bond stretch of in-plane term 

sb: bond stretch of bending term 

T: kinetic energy 

t: PD force density state 

t: time 

U: total potential energy 

u=[u v w θx θy]T: displacement vector 

V: volume of material point 

W: shell width 

𝑊ഥ : strain energy density 

𝑊ഥ ip: strain energy density of in-plane term 

𝑊ഥ b: strain energy density of bending term 

𝑊ഥ s: strain energy density of shear term 

x: reference position vector 

X: reference position vector state 

y: deformation vector 

Y: deformation vector state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Greek symbols 

Γ: contour of the domain form of the J-integral 

Δx: particle spacing 

δ: Horizon length 

�̅�: rotations with respect to the interaction bond 

𝜗ip: dilatation of in-plane term 

𝜗b: dilatation of bending term 

𝜇: state of bond interaction 

ν: Poisson’s ratio 

𝜉: distance between material points 

ρ: mass density 

𝜐: volume correction factor 

ϕ: crack angle 

𝜑: angle of interaction bond with respect to the x1-axis 

ω: weight function of nonlocal deformation gradient 

 

 

Abbreviations 

SIFs: stress intensity factors 

PD: peridynamics 

BBPD: bond-based peridynamics 

OSPD: ordinary state-based peridynamics 

NOSPD: non- ordinary state-based peridynamics 

DBEM: dual boundary element method 

XFEM: extended finite element method 

XIGA: extended iso-geometric analysis 

ADR: adaptive dynamic relaxation 

EDI: equivalent domain integral 

BCs: boundary conditions 
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