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COMPLICATED GENERALIZED TORSION ELEMENTS IN

SEIFERT FIBERED SPACES WITH BOUNDARY

KEISUKE HIMENO

Abstract. In a group, a non-trivial element is called a generalized torsion ele-

ment if some non-empty finite product of its conjugates is equal to the identity.
There are various examples of torsion-free groups which contain generalized

torsion elements. We can define the order of a generalized torsion element

as the minimum number of its conjugates required to generate the identity.
In previous works, 3–manifold groups which contain a generalized torsion el-

ement of order two are determined. However, there are few previous studies

that examine the order of a generalized torsion element bigger than two. In
this paper, we focus on Seifert fibered spaces with boundary, including the

torus knot exteriors, and construct concretely generalized torsion elements of

order 3, 4, 6 and others in their fundamental groups.

1. Introduction

In a group G, a non-trivial element g is called a generalized torsion element if

ga1ga2 · · · gak = 1 for some a1, a2, . . . , ak ∈ G

where gai = a−1
i gai. For a generalized torsion element g, we define the order of g

as the minimum number of its conjugates required to generate the identity, that is,

min{k | ga1ga2 · · · gak = 1 for some a1, a2, . . . , ak ∈ G}.

Since g ̸= 1, the order is at least two. If g is a generalized torsion element of order
k, then so is any conjugate of g.

In this paper, we focus on the fundamental group of a compact orientable Seifert
fibered space with boundary. For a compact orientable Seifert fibered space M , we
denote the base orbifold of M as B(±g, d; p1, . . . , pm), which has d (≥ 1) boundary
components and m cone points of indices p1, p2, . . . , pm, and +g means that the
underlying base surface is a genus g orientable surface, −g means that one is a
non-orientable surface with g cross-caps (see [7, 11], for examples). Note that if
d ≥ 1, then π1(M) is infinite and M is irreducible, and hence π1(M) is torsion-free
([1]).

There are many examples of torsion-free groups which have a generalized torsion
element. Naylor and Rolfsen have given a generalized torsion element in torus knot
groups [14]. Its construction is simple, and we now review it. The (p, q)–torus link
exterior E(Tp,q) (p, q ≥ 2) is a Seifert fibered space over B(+0, gcd(p, q); p, q). When
gcd(p, q) = 1, it is well known that π1(E(Tp,q)) has a presentation ⟨a, b | ap = bq⟩
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2 KEISUKE HIMENO

and this group is torsion-free and non-abelian. Let g = [a, b] := a−1b−1ab. Then
[a, bq] = 1, since bq = ap. A straightforward calculation gives

[a, bq] = [a, b][a, b]b[a, b]b
2

· · · [a, b]b
q−1

.

Since g ̸= 1, g is a generalized torsion element. (Note that [14] does not mention
the order of the generalized torsion element. This argument shows that the order
of g is at most q. In fact, we can prove that it is equal to q if p > q. See Theorem
7.2.) Subsequently, Motegi and Teragaito extended this result to the fundamental
groups of a Seifert fibered space using a similar construction method [12].

There are very few studies on the order of a generalized torsion element. In [10],
the order of a generalized torsion element is introduced and they give an lower bound
for the order in terms of stable commutator length (see Theorem 2.3). Generalized
torsion elements of order two in 3–manifold groups are studied in [8, 9], where the
determination of such 3–manifold groups is given. In particular, it implies that the
fundamental group of a Seifert fibered space M over B(±g, d; p1, . . . , pm), which is
not the solid torus, contains a generalized torsion element of order two if and only
if the underlying base surface is non-orientable or at least one of p1, . . . , pm is even.

We now give an observation for abelian 3–manifold groups. Let M be a compact
orientable 3–manifold whose π1(M) is abelian. Then M is one of the following (see
[1]);

(1) S2 × S1, S1 × S1 × [0, 1], or S1 × S1 × S1,
(2) the solid torus,
(3) the lens spaces L(n,m) (n ≥ 2).

Note that M admits a Seifert fibration in any case. For (1) and (2), π1(M)
contains no generalized torsion element, since it is free-abelian. For (3), it is well
known that L(n,m) admits infinitely many Seifert fibrations (see [11]). However,
π1(L(n,m)) = Zn can contain only a (generalized) torsion element whose order is
a divisor of n.

Next, we briefly summarize the situation without exceptional fiber. Let M be
a Seifert fibered space which have no exceptional fibers and assume that ∂M ̸=
∅. If the base surface B is orientable, then π1(M) cannot contain a generalized
torsion element, because π1(M) is bi-orderable (see [2, 12]). Suppose that B is non-
orientable. Let g ∈ π1(M) be a generalized torsion element satisfying ga1 · · · gak = 1
and let µ be the projection π1(M) → π1(M)/⟨h⟩ ∼= F where h is represented by a
regular fiber and F is a free group with positive rank. Then, we have

µ(g)µ(a1) · · ·µ(g)µ(ak) = 1 in F.

Since a free group admits no generalized torsion element, µ(g) = 1. This implies
that g is a power of h. Set g = hi. By the presentation (N) of π1(M) in Section
2.1, we have ggs1 = hi(hi)s1 = 1, so g is a generalized torsion element of order two.
Therefore, we focus on the case m ≥ 1 in the following.

In this paper, we present infinitely many mutually non-conjugate generalized
torsion elements in the fundamental group of a Seifert fibered space with boundary.
These elements are more complicated than ones suggested in [12, 14]. Let M be a
Seifert fibered space whose base orbifold is B(±g, d; p1, . . . , pm).

Theorem 1.1. Assume that d ≥ 1 and m ≥ 1. If at least one of p1, . . . , pm is a
multiple of three and M is not the solid torus, then π1(M) contains infinitely many
mutually non-conjugate generalized torsion elements of order three.
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The solid torus admits a Seifert fibration over B(+0, 1; p1), but its fundamental
group admits no generalized torsion element as mentioned above.

Theorem 1.2. Assume that d ≥ 1 and m ≥ 2. Let k be an odd integer, and
let q be a multiple of prime number r satisfying 3 ≤ r ≤ 37, or r = 4. If
{2k, q} ⊂ {p1, . . . , pm}, possibly as multi-sets, then π1(M) contains generalized
torsion elements of order four and six.

Remark 1.3. In Theorem 1.2, we believe that the conditions of k and q are redun-
dant. However, we need to impose these at present, because we rely on computer
program Scallop [16] for some part of the argument.

Table 1 is the list of the resulting generalized torsion elements in π1(M) and
conditions of M . Moreover, we can verify that the order of E1, I1 (resp. H1, J1)
is 4 (resp. 6) under certain conditions of indices using by the computer program
Scallop.

Case Conditions Elements Order

A
M is not the solid torus, d ≥ 1 and

at least one of p1, . . . , pm is a multiple of three
Dn 3

B
d ≥ 1, m ≥ 2 and

{2k, q(≥ 4)} ⊂ {p1, . . . , pm}, possibly as multisets
En 4∗

Hn 6∗

C
d ≥ 1, m ≥ 2 and

{2k, 3l} ⊂ {p1, . . . , pm}, possibly as multisets

In 4∗

Jn 6∗

Table 1. The list of the resulting generalized torsion elements
and conditions of M . The mark ∗ indicates the expected value.

As a special case, we have the following corollary for torus knot or link groups.

Corollary 1.4. (1) The fundamental group of the (p, q)–torus link exterior
contains a generalized torsion element of order three, whenever p or q is a
multiple of three.

(2) Let k be odd, and let q be a multiple of prime number r satisfying 3 ≤ r ≤ 37,
or r = 4. The fundamental group of the (2k, q)–torus link exterior contains
generalized torsion elements of order four and six.

Proof. As mentioned above, the (p, q)–torus link exterior E(Tp,q) has a Seifert fi-
bration over B(+0, gcd(p, q); p, q). Therefore, the conclusion immediately follows
from Theorems 1.1 and 1.2. □

From the above observation, we come to mind the following conjecture.

Conjecture 1.5. Let k ≥ 3 and M be Seifert fibered space whose base orbifold is
B(±g, d; p1, . . . , pm). Assume that π1(M) is non-abelian. Then π1(M) contains a
generalized torsion element of order k if and only if at least one of p1 . . . , pm is not
coprime to k.

Throughout the paper, we use the notation [g, h] = g−1h−1gh and ga = a−1ga
for a commutator and a conjugate in a group. The notation Z0 means Z.
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2. Preliminaries

2.1. Fundamental group of Seifert fibered space. Let M be a Seifert fibered
space over the base orbifold B(±g, d; p1, . . . , pm). Let B denote the underlying base
surface. Then, π1(M) has a presentation as follows (see [11]).

(O) When B is an orientable surface,

π1(M) = ⟨s1, t1, . . . , sg, tg, u1, . . . , um, v1, . . . , vd, h |
sihs

−1
i = h, tiht

−1
i = h, uihu

−1
i = h, vihv

−1
i = h,

u
pj

j = hqj , hb = [s1, t1] · · · [sg, tg]u1 · · ·umv1 · · · vd⟩.

(N) When B is a non-orientable surface,

π1(M) = ⟨s1, . . . , sg, u1, . . . , um, v1, . . . , vd, h |
sihs

−1
i = h−1, uihu

−1
i = h, vihv

−1
i = h,

u
pj

j = hqj , hb = s21 · · · s2gu1 · · ·umv1 · · · vd⟩.

In either case, b ∈ Z, and qj ∈ Z satisfying 0 < qj < pj and gcd(pj , qj) = 1.
Note that h ∈ π1(M) is a representative of a regular fiber of M , and the relations

show that u
pj

j (= hqj ) commutes with ui for any i. Moreover, ⟨h⟩ is a cyclic normal

subgroup of π1(M), and we can obtain a presentation of π1(M)/⟨h⟩ for (O) and
(N) as

π1(M)/⟨h⟩ = ⟨s1, t1, . . . , sg, tg, u1, . . . , um, v1, . . . , vd |
u
pj

j = 1, 1 = [s1, t1] · · · [sg, tg]u1 · · ·umv1 · · · vd⟩,
π1(M)/⟨h⟩ = ⟨s1, . . . , sg, u1, . . . , um, v1, . . . , vd |

u
pj

j = 1, 1 = s21 · · · s2gu1 · · ·umv1 · · · vd⟩,

respectively.
If d ≥ 1, then we can delete the generator vd by the last relation of π1(M)/⟨h⟩

in either case. Then, we have

π1(M)/⟨h⟩ ∼= Fw ∗ Zp1
∗ · · · ∗ Zpm

where Fw is the free group of rank w, which is 2g+d−1 if B is orientable, g+d−1
otherwise. And, Zpj is generated by uj .

Moreover, for given two cyclic factors Zpi and Zpj , there is the natural projection
Fw∗Zp1∗· · ·∗Zpm → Zpi∗Zpj . Therefore, there is the projection π1(M) → Zpi∗Zpj .
Similarly, for an infinite cyclic subgroup of Fw and a cyclic factor Zpi

, we can
consider the projection π1(M) → Z∗Zpi

. These maps will be used in the remaining
sections.

2.2. Cyclically reduced form in a free product of groups. Let A and B be
groups. Recall that any element g ∈ A∗B has a unique presentation g = g1g2 · · · gr
where gi ̸= 1, gi ∈ A or gi ∈ B, and gi, gi+1 are not in the same free factor. Such
a presentation is called the reduced form of g. Additionally, when g1, gr are in
different free factors, we call such a presentation a cyclically reduced form , and r
is called the syllable length denoted by λ(g) (see [13, Section 4.1]). Note that the
cyclically reduced form of the identity is the empty word, and its syllable length is
0.
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Using cyclically reduced forms, we can determine whether two elements in a free
product of groups are conjugate to each other.

Theorem 2.1 (Theorem 4.2 of [13]). If two cyclically reduced elements in a free
product of groups are conjugate to each other, then they are cyclic permutations of
each other, and hence, their syllable lengths coincide.

From the above theorem, we can define the syllable length of g ∈ A ∗ B, which
is not presented as a cyclically reduced form, as λ(g′), where g′ is presented as a
cyclically reduced form and conjugate to g.

2.3. Stable commutator length. Let G be a group. We prepare basic facts on
stable commutator length.

For g ∈ [G,G], the commutator length on G, denoted clG(g), is the minimum
number of commutators in G whose product yields g, and the stable commutator
length on G, denoted sclG(g), is defined to be

(2.1) sclG(g) = lim
n→∞

clG(g
n)

n
.

This limit exists, because the sequence {clG(gn)} is non-negative and subaddi-
tive. Hence this definition is well defined. See [3] for details.

Furthermore we can extend this definition (2.1) for an element g /∈ [G,G] as

(2.2) sclG(g) =

{
sclG(gk)

k if gk ∈ [G,G] for some k ≥ 2,

∞ otherwise.

This is independent of the choice of k ≥ 2 such that gk ∈ [G,G] in (2.2); see [10].
The following proposition is obvious, but it is very useful.

Proposition 2.2 (scl’s monotonicity [3]). Let ϕ : G → H be a homomorphism.
Then sclG(a) ≥ sclH(ϕ(a)) holds for a ∈ G.

For example, scl of the identity, or any torsion element, is 0. In general, com-
puting sclG(g) is very difficult. However, we can compute the scl on free product
of two cyclic groups Zp ∗ Zq by using Walker’s computer program Scallop [15].

For a generalized torsion element g, there is an inequality given in [10].

Theorem 2.3 ([10, Theorem 2.4]). If g ∈ G is a generalized torsion element of
order k, then

sclG(g) ≤
1

2
− 1

k
.

3. Case A: order 3 generalized torsion element Dn

Let M be a Seifert fibered space over B(±g, d; p1, . . . , pm), and assume that
d ≥ 1 and m ≥ 1. If at least one of p1, . . . , pm is a multiple of three, without loss
of generality, then we can write pm = 3l.

Assume that M is not the solid torus. Then the case (g, d,m) = (0, 1, 1) does
not occur. In the presentations (O) and (N) of π1(M) in Section 2.1, set

a =


u1 if m ≥ 2,

s21 if g ̸= 0 and m = 1,

v1 if g = 0, m = 1 and d ≥ 2,

and b = um. Note that the element a commutes with h in π1(M) in any case.
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Proposition 3.1. In π1(M), let

Dn = [a, bl][a, b2l]n[a, bl]n+1[a, b2l]−1 (n ∈ Z).
Then there exist three conjugates of Dn whose product is the identity.

Proof. By a direct calculation, we have

[a, bl]b
l

= b−l · (a−1b−labl) · bl

= b−la−1b−lab2l

= b−la−1 · blaa−1b−l · b−lab2l

= b−la−1bla · a−1b−2lab2l

= [a, bl]−1[a, b2l].

Since the element b3l(= hqm) commutes with a in π1(M), we have

[a, bl]b
2l

= b−2l · a−1b−labl · b2l

= b−2la−1b−l(ab3l)

= b−2la−1b−l(b3la)

= b−2la−1b2la

= [a, b2l]−1.

By similar calculations, we obtain [a, b2l]b
l

= [a, bl]−1 and [a, b2l]b
2l

= [a, b2l]−1[a, bl].
Let α, β be [a, bl], [a, b2l] respectively. Then Dn = αβnαn+1β−1 and

(3.1) αbl = α−1β, αb2l = β−1, βbl = α−1, βb2l = β−1α.

By (3.1), we have

Db2lβ−1

n = (αβnαn+1β−1)b
2lβ−1

= β · β−1(β−1α)nβ−n−1(β−1α)−1 · β−1

= (β−1α)nβ−n−1α−1,

Dblα−1

n = (αβnαn+1β−1)b
lα−1

= α · α−1βα−n(α−1β)n+1α · α−1

= βα−n(α−1β)n+1.

Therefore, we obtain

Db2lβ−1

n DnD
blα−1

n = (β−1α)nβ−n−1α−1 · αβnαn+1β−1 · βα−n(α−1β)n+1

= (β−1α)nβ−1α(α−1β)n+1

= (β−1α)n+1(α−1β)n+1

= 1.

□
In the following, set p = p1 if a = u1, otherwise p = 0.

Lemma 3.2. Dn ∈ π1(M) (n ∈ Z) satisfies the following.

(1) Dn ̸= 1;
(2) Suppose n, n′ ̸∈ {−2,−1, 0, 1}. Dn and Dn′ are not conjugate if n ̸= n′;
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(3) Suppose n ̸= −1, 0. Dn is not conjugate to D−1
n .

Proof. Let µ : π1(M) → Zp ∗ Z3l = ⟨a, b | ap = b3l = 1⟩ be the projection (see
Section 2.1). It suffices to show that µ(Dn) satisfies (1), (2) and (3).

The reduced form of µ(Dn) is{
ap−1b2labl(ap−1blab2l)n(ap−1b2labl)nap−1b2lab2lap−1b2la (n ≥ 0)

ap−1b2lab2lap−1b2la(blap−1b2la)−n−1(b2lap−1bla)−n−1blap−1b2la (n ≤ −1).

Then, µ(Dn) is conjugate to a cyclically reduced form

Xn =

{
ap−1blabl(ap−1blab2l)n(ap−1b2labl)nap−1b2lab2l (n ≥ 0)

ap−1blab2lap−1b2la(blap−1b2la)−n−1(b2lap−1bla)−n−1bl (n ≤ −1)

and its syllable length is

λ(µ(Dn)) = λ(Xn) =

{
8n+ 8 (n ≥ 0)

−8n (n ≤ −1).

Therefore, µ(Dn) is non-trivial by Theorem 2.1. Moreover, if µ(Dn) is conjugate
to µ(Dn′) (n′ ̸= n), then n′ = −(n + 1). When n ≥ 0, µ(D−(n+1)) is conjugate to
a cyclically reduced form

Yn = ap−1blab2lap−1b2la(blap−1b2la)n(b2lap−1bla)nbl.

When n ≥ 2, we can find that Xn and Yn are not cyclic permutations of each other
as we focus on b. Thus, µ(Dn′) (n′ ̸= n) is not conjugate to µ(Dn) by Theorem 2.1.

Finally, the reduced form of µ(D−1
n ) is{

ap−1blablap−1bla(b2lap−1bla)n(blap−1b2la)nb2lap−1bla (n ≥ 0)

ap−1blab2l(ap−1b2labl)−n−1(ap−1blab2l)−n−1ap−1blablap−1bla (n ≤ −1)

and it is conjugate to a cyclically reduced form

Zn =

{
b2lablap−1bla(b2lap−1bla)n(blap−1b2la)nb2lap−1 (n ≥ 0)

b2lab2l(ap−1b2labl)−n−1(ap−1blab2l)−n−1ap−1blablap−1 (n ≤ −1).

When n ̸= 0,−1, Xn and Zn are not cyclic permutations of each other as we focus
on b again. Therefore µ(Dn) is not conjugate to µ(D−1

n ) by Theorem 2.1. □

Remark 3.3. For (2) and (3) of Lemma 3.2, since µ(D−2) is conjugate to µ(D1),
we do not know whether D−2 is conjugate to D1. Moreover, when p = 2, we do
not know whether D−1 is conjugate to D0 as well, and Dn is conjugate to D−1

n for
n = −1, 0.

Proof of Theorem 1.1. Note that a non-trivial element g is a generalized torsion
element of order two if and only if g is conjugate to g−1.

Proposition 3.1 and Lemma 3.2 imply that the elements Dn (n ̸= −2,−1, 0, 1)
are non-trivial and mutually non-conjugate generalized torsion elements of order
three in π1(M). □
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4. Case B

Again, let M be a Seifert fibered space over B(±g, d; p1, . . . , pm), and assume
that d ≥ 1 and m ≥ 2. Assume that at least one of p1, . . . , pm is even, and then we
may set p1 = 2k, p2 = q. Set a = u1 and b = u2 as before.

Proposition 4.1. In π1(M), let

En = [ak, b]n[ak, b2][ak, b]n+1[ak, bq−1] (n ∈ Z).

Then there exist four conjugates of En whose product is the identity.

Proof. Let α := [ak, b], β := [ak, b2], γ := [ak, b3], δ := [ak, bq−1]. Then, En =
αnβαn+1δ. By a direct calculation, we have

αak

= α−1, βak

= β−1, γak

= γ−1, δa
k

= δ−1,(4.1)

αb = α−1β, βb = α−1γ, δb = α−1.(4.2)

By (4.2),

Eb
n = (αnβαn+1δ)b

= (α−1β)nα−1γ(α−1β)n+1α−1

= (α−1β)nα−1γα−1(βα−1)nβα−1.

Since Eαnβ
n = αn+1δαnβ, we obtain

Eb
nE

αnβ
n = (α−1β)nα−1γα−1(βα−1)nβα−1 · αn+1δαnβ

= (α−1β)nα−1γα−1(βα−1)n · βαnδαnβ.

Hence,

Ebβ−1α−nδ−1α−nβ−1

n Eδ−1α−nβ−1

n = (Eb
nE

αnβ
n )β

−1α−nδ−1α−nβ−1

= βαnδαnβ · (α−1β)nα−1γα−1(βα−1)n.

By (4.1),

Ebak

n Eαnβak

n = (αβ−1)nαγ−1α(β−1α)n · β−1α−nδ−1α−nβ−1.

Therefore, we have

Ebak

n Eαnβak

n Ebβ−1α−nδ−1α−nβ−1

n Eδ−1α−nβ−1

n = 1.

□

Lemma 4.2. When q ≥ 4, En ∈ π1(M) (n ∈ Z) satisfies the following.

(1) En ̸= 1;
(2) En and En′ are not conjugate if n ̸= n′.

Proof. Let µ be the projection π1(M) → Z2k ∗ Zq. Then µ(En) is conjugate to
(akbq−1akb)nakbq−2akb2(akbq−1akb)n+1akbakbq−1 (n ≥ 0)

akbq−1akb2akbakbq−2 (n = −1)

akbakbq−1akbq−1akbakb2akbq−2 (n = −2)

(akbakbq−1)−n−1akbq−1akbakbak(bq−1akbak)−n−3bq−1akb2akbq−2 (n ≤ −3)
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and hence, its syllable length is

λ(µ(En)) =


8n+ 12 (n ≥ 0)

8 (n = −1)

12 (n = −2)

−8n− 4 (n ≤ −3).

Claims can be shown in the same way as in the proof of Lemma 3.2. □
Lemmas 4.4, 5.2 and 5.4 below can be shown by the similar argument. Hence,

we shall only give a cyclically reduced form and its syllable length in their proofs.

Lemma 4.3. In π1(M), let

Hn = [ak, b]n[ak, b2][ak, b]n+1[ak, bq−1]2 (n ∈ Z).
Then there exist six conjugates of Hn whose product is the identity.

Proof. Let α = [ak, b], β = [ak, b2], γ := [ak, bq−1]. Then Hn = αnβαn+1γ2. By a
direct calculation, we have

αak

= α−1, βak

= β−1, γak

= γ−1,(4.3)

αbq−1

= γ−1, βbq−1

= γ−1α.(4.4)

By (4.3),

Hγ−2ak

n = (γ2 · αnβαn+1γ2 · γ−2)a
k

= (γ2αnβαn+1)a
k

= γ−2α−nβ−1α−n−1

Thus,

HnH
γ−2ak

n = αnβαn+1γ2 · γ−2α−nβ−1α−n−1

= αnβαβ−1α−n−1.

By (4.4),

(HnH
γ−2ak

n )α
nbq−1

= (βαβ−1α−1)b
q−1

= γ−1αγ−1(γ−1α)−1γ

= γ−1αγ−1α−1γ2.

Since Hα−1

n = αn+1βαn+1γ2α−1, we obtain

(HnH
γ−2ak

n )α
nbq−1

Hα−1

n = γ−1αγ−1α−1γ2 · αn+1βαn+1γ2α−1(4.5)

= γ−1αγ−1 · α−1γ2αn+1βαn+1γ2α−1.

Moreover,

((HnH
γ−2ak

n )α
nbq−1

Hα−1

n )γ
−1αγ−1ak

(4.6)

= αγ−2α−n−1β−1α−n−1γ−2α · γα−1γ.

By (4.5) and (4.6), we have

(HnH
γ−2ak

n )α
nbq−1

Hα−1

n ((HnH
γ−2ak

n )α
nbq−1

Hα−1

n )γ
−1αγ−1ak

= 1.

□
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Lemma 4.4. When q ≥ 4, Hn ∈ π1(M) (n ∈ Z) satisfies the following.

(1) Hn ̸= 1;
(2) Hn and Hn′ are not conjugate if n ̸= n′.

Proof. Let µ be the projection π1(M) → Z2k ∗ Zq. Then µ(Hn) is conjugate to
(akbq−1akb)nakbq−2akb2(akbq−1akb)n+1akbakbq−1akbakbq−1 (n ≥ 0)

akbq−1akb2akbakbq−1akbakbq−2 (n = −1)

akbakbq−1akbq−1akbakb2akbq−1akbakbq−2 (n = −2)

(akbakbq−1)−n−1akbq−1akbakbak(bq−1akbak)−n−3bq−1akb2akbq−1akbakbq−2 (n ≤ −3)

and hence, its syllable length is

λ(µ(Hn)) =


8n+ 16 (n ≥ 0)

12 (n = −1)

16 (n = −2)

−8n (n ≤ −3).

□

5. Case C

Again, let M be a Seifert fibered space over B(±g, d; p1, . . . , pm), and assume
that d ≥ 1 and m ≥ 2. If {2k, 3l} ⊂ {p1, . . . , pm}, possibly as multi-sets, we may
assume that p1 = 2k, p2 = 3l. Set a = u1 and b = u2 as before.

Lemma 5.1. In π1(M), let

In = [ak, bl]n[ak, b2l]n+2[ak, bl]n+1[ak, b2l]n+1 (n ∈ Z).
Then there exist four conjugates of En whose product is identity.

Proof. Let α := [ak, bl], β := [ak, b2l]. Then In = αnβn+2αn+1βn+1. By a direct
calculation, we have

αak

= α−1, βak

= β−1,(5.1)

αbl = α−1β, βbl = α−1.(5.2)

By (5.2),

Ib
l

n = (α−1β)nα−n−2(α−1β)n+1α−n−1.

Also,

Iα
nβn+2

n = αn+1βn+1αnβn+2.

Then we obtain

Ib
l

n Eαnβn+2

n = (α−1β)nα−n−2(α−1β)n+1α−n−1 · αn+1βn+1αnβn+2

= (α−1β)nα−n−2(α−1β)n+1βn+1αnβn+2

= (α−1β)nα−n−3(βα−1)n · βn+2αnβn+2.

Moreover,

Ib
lβ−n−2α−nβ−n−2

n Iβ
−n−2

n = Ib
lβ−n−2α−nβ−n−2

n Iα
nβn+2·β−n−2α−nβ−n−2

n

= (Ib
l

n Iα
nβn+2

n )β
−n−2α−nβ−n−2

= βn+2αnβn+2 · (α−1β)nα−n−3(βα−1)n.
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By (5.1),

Ib
lβ−n−2α−nβ−n−2ak

n Iβ
−n−2ak

n = β−n−2α−nβ−n−2 · (αβ−1)nαn+3(β−1α)n.

Therefore, we have

Ib
l

n Iα
nβn+2

n Ib
lβ−n−2α−nβ−n−2ak

n Iβ
−n−2ak

n = 1.

□

Lemma 5.2. In ∈ π1(M) (n ∈ Z) satisfies the following.

(1) In ̸= 1;
(2) In and In′ are not conjugate if n ̸= n′.

Proof. Let µ be the projection π1(M) → Z2k ∗ Z3l. Then µ(In) is conjugate to
(akb2lakbl)n(akblakb2l)n+2(akb2lakbl)n+1(akblakb2l)n+1 (n ≥ 0)

akb2lakbl (n = −1)

(b2lakblak)−n(blakb2lak)−n−2(b2lakblak)−n−1(blakb2lak)−n−1 (n ≤ −2)

and hence, its syllable length is

λ(µ(In)) =


16n+ 16 (n ≥ 0)

4 (n = −1)

−16n− 16 (n ≤ −2).

□

Lemma 5.3. In π1(M), let

Jn = [ak, bl][ak, b2l][ak, bl]−n[ak, b2l]2n+3 (n ∈ Z).

Then there exist six conjugates of Jn whose product is identity.

Proof. Let α := [ak, bl], β := [ak, b2l]. Then Jn = αβα−nβ2n+3. By a direct
calculation, we have

αak

= α−1, βak

= β−1,(5.3)

αb2l = β−1, βb2l = β−1α.(5.4)

By (5.3) and (5.4),

Jb2lak

n = β2α−1β−n(βα−1)2n+3.

Also,

Jb2lβ−2αβn−1

n = β−n+1α−1β2 · β−2αβn(β−1α)2n+3 · β−2αβn−1

= β(β−1α)2n+3β−2αβn−1

= (αβ−1)2n+3β−1αβn−1.

Then, we obtain

Jb2lak

n Jb2lβ−2αβn−1

n = β2α−1β−n(βα−1)2n+3 · (αβ−1)2n+3β−1αβn−1

= β2α−1β−n−1αβn−1.



12 KEISUKE HIMENO

Thus,

(Jb2lak

n Jb2lβ−2αβn−1

n )β
2α−1

Jn = β−n−1αβn+1α−1 · αβα−nβ2n+3(5.5)

= β−n−1αβn+2α−nβ2n+3

= β−n−1αβ−n−1 · β2n+3α−nβ2n+3.

Moreover,

((Jb2lak

n Jb2lβ−2αβn−1

n )β
2α−1

Jn)
β−n−1αβ−n−1

= β2n+3α−nβ2n+3 · β−n−1αβ−n−1.

By (5.3),

((Jb2lak

n Jb2lβ−2αβn−1

n )β
2α−1

Jn)
β−n−1αβ−n−1ak

(5.6)

= β−2n−3αnβ−2n−3 · βn+1α−1βn+1.

By (5.5) and (5.6), we have

(Jb2lak

n Jb2lβ−2αβn−1

n )β
2α−1

Jn((J
b2lak

n Jb2lβ−2αβn−1

n )β
2α−1

Jn)
β−n−1αβ−n−1ak

= 1.

□

Lemma 5.4. Jn ∈ π1(M) (n ∈ Z) satisfies the following.

(1) Jn ̸= 1;
(2) Jn and Jn′ are not conjugate if n ̸= n′.

Proof. Let µ the projection π1(M) → Z2k ∗ Z3l. Then µ(Jn) is conjugate to

akb2lakblakblakblakblak(b2lakblak)n−2b2lakb2lakb2l(akblakb2l)2n+2 (n ≥ 2)

akb2lakblakblakblakb2lakb2l(akblakb2l)4 (n = 1)

akb2lakbl(akblakb2l)4 (n = 0)

akb2lakblakblakb2lakb2lakblakblakb2l (n = −1)

akblakblakb2lakb2lakblakb2lakb2lakbl (n = −2)

akblakblakb2l(akb2lakbl)−n−1akb2lakb2lakb2lak(blakb2lak)−2n−5blakbl (n ≤ −3)

and hence, its syllable length is

λ(µ(Jn)) =



12n+ 16 (n ≥ 2)

28 (n = 1)

20 (n = 0)

16 (n = −1)

16 (n = −2)

−12n− 8 (n ≤ 3).

□

6. The order of E1, H1, I1, J1

In this section, we will determine the order of E1, H1, I1, J1 under some condi-
tions. To see this, we use a stable commutator length; see Section 2.3.

Again, let M be a Seifert fibered space over B(±g, d; p1, . . . , pm), and assume
that d ≥ 1 and m ≥ 2. Assume that at least one of p1, . . . , pm is even, and then we
may set p1 = 2k, p2 = q.
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Lemma 6.1. Let r be a prime number satisfying 5 ≤ r ≤ 37, or r ∈ {4, 6, 9}. If k
is odd, and q is a multiple of r, then sclπ1(M)(E1) ≥ 1/4.

Proof. Let µ : π1(M) → Z2 ∗ Zr = ⟨a, b | a2 = br = 1⟩ be the projection.
Then, µ(E1) = [a, b][a, b2][a, b]2[a, b−1]. The computer program Scallop verifies
sclZ2∗Zr

(µ(E1)) = 1/4 for r = 4, 5, 6, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37. Therefore, we
obtain sclπ1(M)(E1) ≥ sclZ2∗Zr

(µ(E1)) = 1/4 by scl’s monotonicity. □

Lemma 6.2. Let r be a prime number satisfying 5 ≤ r ≤ 37, or r ∈ {4, 6, 9}. If k
is odd, and q is a multiple of r, then sclπ1(M)(H1) ≥ 1/3.

Proof. Let µ : π1(M) → Z2 ∗ Zr = ⟨a, b | a2 = br = 1⟩ be the projection. Then,
µ(H1) = [a, b][a, b2][a, b]2[a, b−1]2. Again, the computer program Scallop verifies
sclZ2∗Zr (µ(H1)) = 1/3 for r = 4, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37. Therefore, we
obtain sclπ1(M)(H1) ≥ sclZ2∗Zr (µ(H1)) = 1/3 by scl’s monotonicity. □

Suppose q = 3l.

Lemma 6.3. If k is odd, and l ̸≡ 0 (mod 3), then sclπ1(M)(I1) ≥ 1/4.

Proof. Let µ be the natural projection π1(M) → Z2 ∗ Z3 = ⟨a, b | a2 = b3 = 1⟩.
Then

µ(I1) =

{
[a, b][a, b2]3[a, b]2[a, b2]2 (l ≡ 1 (mod 3))

[a, b2][a, b]3[a, b2]2[a, b]2 (l ≡ 2 (mod 3)).

Again, the computer program Scallop verifies that sclZ2∗Z3(µ(I1)) = 1/4, so we
have sclπ1(M)(I1) ≥ sclZ2∗Z3(µ(I1)) = 1/4 by scl’s monotonicity. □

Lemma 6.4. If k is odd, and l ̸≡ 0 (mod 3), then sclπ1(M)(J1) ≥ 1/3.

Proof. Let µ be the projection π1(M) → Z2 ∗ Z3 = ⟨a, b | a2 = b3 = 1⟩. Then

µ(J1) =

{
[a, b][a, b2][a, b]−1[a, b2]5 (l ≡ 1 (mod 3))

[a, b2][a, b][a, b2]−1[a, b]5 (l ≡ 2 (mod 3)).

Again, the computer program Scallop verifies that sclZ2∗Z3
(µ(J1)) = 1/3, so we

have sclπ1(M)(J1) ≥ sclZ2∗Z3
(µ(J1)) = 1/3 by scl’s monotonicity. □

We remark that if a generalized torsion element g ∈ G satisfies sclG(g) ≥ 1/4,
then the order of g is at least four by Theorem 2.3.

Proof of Theorem 1.2 for order four. First, set r = 3. Thus we can write q = 3l.
By Proposition 5.1 and Lemma 6.3, I1 gives a generalized torsion element of order
four in π1(M) if l ̸≡ 0 (mod 3). If l ≡ 0 (mod 3), then q is a multiple of 9. Then
Proposition 4.1 and Lemma 6.1 show that E1 is a generalized torsion element of
order four.

Second, assume that either r is a prime number with 5 ≤ r ≤ 37, or r = 4. Then
Proposition 4.1 and 6.1 again imply the conclusion. □

We remark that if a generalized torsion element g ∈ G satisfies sclG(g) ≥ 1/3,
then the order of g is at least six by Theorem 2.3.

Proof of Theorem 1.2 for order six. First, set r = 3. Thus we can write q = 3l. By
Proposition 4.3 and Lemma 6.2, H1 gives a generalized torsion element of order
six in π1(M) if l ̸≡ 0 (mod 3). If l ≡ 0 (mod 3), then q is a multiple of 9. Then
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Proposition 5.3 and Lemma 6.4 show that J1 is a generalized torsion element of
order six.

Second, assume that either r is a prime number with 5 ≤ r ≤ 37, or r = 4.
Then Proposition 5.3 and Lemma 6.4 again imply the conclusion, and the proof of
Theorem 1.2 has been completed. □
Remark 6.5. When q = 2, En and Hn are generalized torsion elements of order two
(although E−1 is the trivial element). Also, when q = 3, En is a generalized torsion
element of order two again, and if k is odd, sclZ2∗Z3

(µ(H1)) = 1/4 by Scallop. So,
we don’t know the order of Hn in this case.

On the other hand, it is easy to check that I0, I−1, I−2, J0 and J−1 are generalized
torsion elements of order two. Moreover, by replacing ak with a, J−2 becomes
conjugate to D1. By the same calculation as Proposition 3.1, it follows that three
conjugates of J−2 is the identity hence J−2 is a generalized torsion element of order
three.

7. Other results on the order of generalized torsion elements

Let M be a Seifert fibered space whose base orbifold is B(±g, d; p1, . . . , pm).

Theorem 7.1. Let k ≥ 2 and l ≥ 1. Assume that M satisfies one of the following;

(1) d ≥ 2,
(2) d = 1 and g ̸= 0.

For (1), set a = v1 and b = um, otherwise, set a = s21 and b = um.
If pm = kl, then [an, bl] ∈ π1(M) (n ̸= 0) is a generalized torsion element of

order k.

Proof. Since bkl (= hqm) commutes with a, [a, bkl] = 1. As mentioned in Section 1,
we have

[a, bkl] = [a, bl][a, bl]b
l

[a, bl]b
2l

· · · [a, bl]b
(k−1)l

.

Therefore, the product of k conjugates of [a, b] yields the identity.
Let µ : π1(M) → Z ∗ Zkl = ⟨a, b | bkl = 1⟩ be the projection. By Proposition 5.6

of [5], sclZp∗Zq
(µ([an, bl])) = 1/2 − 1/k. Thus the order of [an, bl] is equal to k by

scl’s monotonicity and Theorem 2.3. □
Theorem 7.2. Let p ≥ k ≥ 2 and l ≥ 1. Assume that d = 1 and g = 0 (hence,
B is the disk). Moreover, assume that pi = p and pj = kl (i ̸= j). Set a = ui and
b = uj. Then [a, bl] ∈ π1(M) is a generalized torsion element of order k.

Proof. The proof is similar to the proof of Theorem 7.1. □
Lemma 7.3. Let h ∈ π1(M) be represented by the regular fiber of M . If B is
orientable and d ≥ 1, then [h] ∈ H1(M) = π1(M)/[π1(M), π1(M)] is not a torsion
element.

Proof. By Section 2.1, H1(M) has a presentation

H1(M) = ⟨[s1], [t1], . . . , [sg], [tg], [u1], . . . , [um], [v1], . . . , [vd], [h] |
pj [uj ] = qj [h], b[h] = [u1] + · · ·+ [um] + [v1] + · · ·+ [vd]⟩

=⟨[s1], [t1], . . . , [sg], [tg], [v1], . . . , [vd−1]⟩
⊕ ⟨[u1], . . . , [um], [h] | pj [uj ] = qj [h]⟩.

Let U = ⟨[u1], . . . , [um], [h] | pj [uj ] = qj [h]⟩.
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Assume that [h] ∈ U has finite order, then U is finite, since the relations of U
show that [uj ] has finite order for any j.

On the other hand, the relations of U can be expressed as
p1 −q1

p2 −q2
. . .

pm −qm




[u1]
...

[um]
[h]

 = 0,

where each empty entry is zero. Since the rank of the above m × (m + 1) matrix
is at most m, the degree of freedom is at least one. Therefore, U is infinite, a
contradiction. □

Recall that if d ≥ 1, then π1(M) is torsion-free.

Theorem 7.4. Assume that m ≥ 1, and let N (≥ 2) be the minimum of positive
divisors of p1, . . ., pm. If B is orientable and d ≥ 1, then the order of a generalized
torsion element in π1(M) is at least N .

Proof. Let g ∈ π1(M) be a generalized torsion element of order k, and let µ : π1(M) →
π1(M)/⟨h⟩ ∼= F2g+d−1 ∗ Zp1

∗ · · · ∗ Zpm
be the projection. Let

(7.1) gx1 · · · gxk = 1 (xi ∈ π1(M)).

Then we have

(7.2) µ(g)µ(x1) · · ·µ(g)µ(xk) = 1.

Thus, by the abelianization on π1(M)/⟨h⟩, k[µ(g)] = 0 in Z2g+d−1⊕Zp1⊕· · ·⊕Zpm .
If µ(g) ̸∈ [π1(M)/⟨h⟩, π1(M)/⟨h⟩], k is a multiple of at least one of p1, . . . , pm, in
particular, k ≥ N . Thus, it suffices to consider the case µ(g) ∈ [π1(M)/⟨h⟩, π1(M)/⟨h⟩].

Claim 7.5. µ(g) is not conjugate into F2g+d−1.

Proof. Assume that µ(g) is conjugate into F2g+d−1. Let µ(g) = y−1fy = fy for
f ∈ F2g+d−1, y ∈ π1(M)/⟨h⟩. By (7.2),

fyµ(x1) · · · fyµ(xk) = 1.

Let ϕ : π1(M)/⟨h⟩ → F2g+d−1 be the natural projection. Then, we obtain

fϕ(yµ(x1)) · · · fϕ(yµ(xk)) = 1 in F2g+d−1.

Since the free group cannot contain a generalized torsion element (see [6]), f = 1.
This implies g ∈ ⟨h⟩, and hence, gk = 1 by (7.1). Since π1(M) is torsion-free, g = 1,
a contradiction. □
Claim 7.6. µ(g) is not conjugate into Zpj

for any j.

Proof. If µ(g) were conjugate into Zpj
, then µ(g)pj = µ(gpj ) = 1 so gpj ∈ ⟨h⟩.

By (7.1), [g] ∈ H1(M) is a torsion element of H1(M) (possibly trivial), hence
[h] ∈ H1(M) is a torsion element (possibly trivial). This contradicts Lemma 7.3. □

Thus µ(g) is not conjugate into one factor of F2g+d−1∗Zp1
∗· · ·∗Zpm

. After a con-
jugation and replacing subscripts, if necessary, we can express µ(g) = a1b1 · · · aLbL
with ai ∈ A = F2g+d−1 ∗ Zp1 ∗ · · · ∗ Zpm−1 , bi ∈ Zpm , ai ̸= 1, bi ̸= 1 and L ≥ 1.
Recall that µ(g) ∈ [π1(M)/⟨h⟩, π1(M)/⟨h⟩]. Thus Theorem 3.1 of [4] shows

sclA∗Zpm
(µ(g)) ≥ 1

2
− 1

N
.
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By scl’s monotonicity and Theorem 2.3, we have 1/2 − 1/N ≤ 1/2 − 1/k, so k ≥
N . □
Remark 7.7. Theorem 7.4 does not hold when B is non-orientable, because then
π1(M) contains a generalized torsion element of order two, regardless of the indices
of exceptional fibers.
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