広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Relationship between foot morphologic characteristic and postural control after jump-landing in youth competitive athletes
Author(s)	Maeda, Noriaki; Tsutsumi, Shogo; Arima, Satoshi; Ikuta, Yasunari; Ushio, Kai; Komiya, Makoto; Tashiro, Tsubasa; Nishikawa, Yuichi; Kobayashi, Toshiki; Nakasa, Tomoyuki; Adachi, Nobuo; Urabe, Yukio
Citation	Journal of Back and Musculoskeletal Rehabilitation , 37 (2) : 419 - 426
Issue Date	2023-11-16
DOI	
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00056131
Right	© 2024 - IOS Press. All rights reserved. Maeda N, Tsutsumi S, Arima S, et al. Relationship between foot morphologic characteristic and postural control after jump-landing in youth competitive athletes. Journal of Back and Musculoskeletal Rehabilitation. 2024;37(2):419-426. doi:10.3233/BMR-230122 This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご 確認、ご利用ください。
Relation	

1	Relationship between Foot morphologic characteristic and
2	postural control after jump-landing in youth competitive
3	athletes.
4	
5	Authors: Noriaki Maeda ^{a,*} , Shogo Tsutsumi ^a , Satoshi Arima ^a ,
6	Yasunari Ikuta ^{b,c} , Kai Ushio ^c , Makoto Komiya ^a , Tsubasa Tashiro ^a ,
7	Yuichi Nishikawa ^d , Toshiki Kobayashi ^e , Tomoyuki Nakasa ^{b,f} , Nobuo
8	Adachi ^{b,c} , Yukio Urabe ^a
9	
10	Institutions and affiliations:
11	^a Department of Sports Rehabilitation, Graduate School of
12	Biomedical and Health Sciences, Hiroshima University, 1-2-3
13	Kasumi, Minami-ku, Hiroshima 734-8553, Japan
14	^b Department of Orthopaedic Surgery, Graduate School of
15	Biomedical and Health Sciences, Hiroshima University, Hiroshima,
16	Japan
17	° Sports Medical Center, Hiroshima University Hospital, Hiroshima,
18	Japan
19	^d Faculty of Frontier Engineering, Institute of Science & Engineering,
20	Kanazawa University, Japan
21	^e Department of Biomedical Engineering, Faculty of Engineering,
22	The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung
23	Hom, Hong Kong, China
24	^f Medical Center for Translational and Clinical Research, Hiroshima
25	University Hospital, Hiroshima, Japan

26 ***Corresponding author:**

- 27 Noriaki Maeda
- 28 Department of Sport Rehabilitation, Graduate School of Biomedical
- 29 and Health Sciences, Hiroshima University,
- 30 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- 31 Tel.: +81 82-257-5410; Fax: +81 82-257-5344
- 32 E-mail: norimmi@hiroshima-u.ac.jp
- 33
- 34 Abstract

35	BACKGROUND: Foot arch dynamics play an important role in
36	dynamic postural control. Association between foot arch dynamics and
37	postural control among adolescent athletes remains poorly explored.
38	OBJECTIVE: To examine the relationship between foot arch
39	dynamics, intrinsic foot muscle (IFM) morphology, and toe flexor
40	strength and dynamic postural stability after jump landing and
41	repetitive rebound jump performance in competitive adolescent
42	athletes.
43	METHODS: Based on foot arch dynamics, evaluated from relative
44	change in the foot arch height in sitting and standing positions, 50
45	adolescent athletes were classified as stiff, normal, or flexible. IFM

46 morphology was evaluated by ultrasonography. Dynamic postural

47	stability index (DPSI) was measured as participants jumped and
48	landed with the right leg onto a force plate, whereas repetitive rebound
49	jumping performance was assessed using the jump height and reactive
50	jump index.
51	RESULTS : The stiff group had a significantly worse DPSI and
52	vertical stability index than the normal group (p=0.26, p=0.44,
53	respectively), and worse anteroposterior stability index (APSI) values
54	than the flexible group ($p=0.005$). Multivariate regression models of
55	the relationship between the APSI and foot arch dynamics showed
56	adequate power (probability of error $= 0.912$).
57	CONCLUSIONS: Increased foot arch stiffness negatively affects
58	dynamic balance during jump-landing, which may deteriorate their
59	performance.
60	Keywords: jump; postural balance; ultrasonography
61	
62	1. Background
63	The foot arch has a spring-like quality that absorbs shock during
64	movement, reduces ground reaction forces [1], and stores and releases

65 elastic strain energy [2]. The intrinsic foot muscles (IFMs) and tendons

66	that form the foot arch help in shock absorption by the foot during
67	motion, and play a role in foot flexibility. Furthermore, the IFMs
68	contribute to the foot stiffness needed to transmit adequate forces [3],
69	as well as to postural control [4]. However, the relationship between
70	postural control and the foot arch height (FAH) has not been examined,
71	and factors contributing to postural control need to be investigated in
72	more detail. In addition, most of these reports are based on adults, and
73	little has been examined in adolescents, who are said to have relatively
74	flexible feet. Notably, reduced postural control caused by
75	physiological abnormalities of the foot arch, including the pes planus
76	(flat foot) and pes cavus (high foot), may lead to musculoskeletal
77	injuries such as ankle sprains [5].
78	Reduced arch flattening is associated with toe-flexor muscle
79	strength. A study of 448 feet of healthy young adults showed that FAD
80	was associated with relative toe flexor strength from the sitting to
81	standing position [6]. In addition, a comparison of foot morphology
82	and toe flexor strength between judo athletes and 24 physically active
83	healthy subjects each showed that the judo group had lower arch height
84	and stronger toe flexor strength [7]. These findings suggest that FAD

85	and toe grasping muscle strength are involved in athletic
86	characteristics. Additionally, force attenuation and postural control
87	during landing are essential factors for preventing sports injuries [8].
88	To our knowledge, the association between foot arch dynamics, cross-
89	sectional area (CSA) of selected muscles, and physical performance,
90	including postural control during jump-landing by adolescent
91	competitive athletes, has not yet been explored. Hence, this study was
92	performed to investigate whether foot arch dynamics, IFM
93	morphology, and toe flexor strength are related to dynamic postural
94	stability and repetitive rebound jump performance after jump-landing
95	performed by adolescent competitive athletes. We hypothesized that
96	foot arch dynamics would be associated with the maintenance of
97	dynamic postural stability among adolescent competitive athletes.
98	
99	2. Materials and methods
100	2.1 Experimental procedure
101	Fifty adolescent competitive athletes (28 boys: 13.5 ± 1.1

102 years old, and 22 girls; 13.0 ± 0.98 years old) who underwent medical

103 and physical examinations at the Sports Medical Center at Hiroshima

104	University Hospital participated in this cross-sectional study,
105	conducted between July 2021 and August 2021 (Table 1). Only those
106	who had been selected by Hiroshima City as specially strengthened
107	athletes in 2021 were enrolled in the study. The included athletes
108	played sports such as rugby, badminton, sailing, judo, handball,
109	wrestling, archery, water polo, figure skating, table tennis, kendo,
110	hockey, and basketball. The exclusion criteria were as follows: any
111	injury that required taking a break from sports activities within the past
112	3 months, any error during any of the measurements, any neurological
113	disorder that might have affected balance, and any lower extremity
114	injury. This study protocols complied with the tenets of the Declaration
115	of Helsinki and was approved by the Ethical Committee for
116	Epidemiology at Hiroshima University (file number: E-941).
117	Informed consent was obtained from the participants, guardians and
118	instructors of all study participants.
119	The foot posture index, which is an assessment of the internal
120	and external rotations of the foot in the standing position, was used to
121	determine the pes planus alignment [9]. The index consists of the
122	following six items: palpation of the talar head, observation of the

123	supra- and inferior curvature of the external malleolus, calcaneal
124	frontal plane position, prominence in region of talovavicular joint,
125	congruence of medial longitudinal arch, and abduction/adduction of
126	forefoot on rearfoot. Each item is scored on a 5-point scale (-2, -1, 0,
127	+1, +2). The lowest score of -12 indicates external rotation of the foot,
128	and the highest score of +12 indicates internal rotation. Previous study
129	indicate that the use of only the five image-based criteria of the FPI-6
130	demonstrates strong intra-rater reliability [10].
131	The FAH was measured using a ruler as the perpendicular
132	distance from the navicular tuberosity to the floor in the sitting and
133	standing positions [2]. Semi-permanent ink was used to mark the skin
134	over the navicular tuberosity, the location of which was determined by
135	palpation. The FAH was measured with no weight-bearing on each
136	foot in the sitting position and with approximately 50% weight-bearing
137	on each foot in the standing position (Fig 1). These assessments were
138	performed by one physical therapist with at least 5 years of experience.
139	The FAH relative to the height was determined as follows:

141 relative FAH =
$$\left(\frac{\text{FAH}}{\text{height}}\right) \times 100$$

143	A digital grip dynamometer (T.K.K.3361; Takei Scientific
144	Instruments, Niigata, Japan) comprising strain-gauge force
145	transducers was used. Participants were asked to gradually increase
146	their toe flexor strength for 0 to 3 s, with a maximum force maintained
147	for 2 s. The force exerted by the metatarsophalangeal joints when the
148	bar was pulled was measured. The foot was placed on a digital grip-
149	measuring dynamometer, and fixed to a heel stopper and belt. During
150	measurements, participants were instructed to perform the task in the
151	sitting position with their hip and knee joints flexed at 90° and their
152	arms in front of their chests [6,11]. Three measurements were recorded,
153	and the average was calculated in Newton meters divided by body
154	weight (Nm/kg).
155	The CSA of the plumpest parts of selected IFMs were
156	measured using B-mode ultrasonography (HI Vision Avius; Hitachi
157	Aloka Medical, Tokyo, Japan) with an 8-MHz linear array probe.
158	These measurements were performed based on previous studies
159	[12,13]. Morphometric evaluations of the IFMs using ultrasound
160	have been shown to be reliable in previous studies [14,15]. The IFMs

161	selected for this study were the abductor hallucis, flexor hallucis brevis,
162	and flexor digitorum brevis, as they are the main supporting muscles
163	of the medial longitudinal arch that support the foot structure [16,17].
164	The point on the skin at which the probe was to be placed was marked
165	with semi-permanent ink. When performing the measurements, the
166	probe was placed on the skin with minimal pressure. Subsequently,
167	participants were instructed to maintain a prone position with their
168	knees flexed at 90° and their ankles maintained in a neutral position.
169	The probe was placed anterior to the medial malleolus in a line
170	perpendicular to the long axis of the foot, and the CSA image of the
171	abductor hallucis muscle was recorded. Next, the probe was placed
172	perpendicular to a line parallel to the flexor hallucis brevis muscle, to
173	record its CSA image. Finally, for recording the CSA image of the
174	flexor digitorum brevis muscle, the probe was placed perpendicular to
175	a line connecting the third toe and medial calcaneal tuberosity. This
176	assessment was made by one physical therapist with at least 5 years of
177	experience of using ultrasound.
178	A one-leg jump with forward landing was performed to
179	assess the dynamic postural stability index (DPSI) score of the

180	participants. The starting position of the participants was at a distance
181	of 40% of their height away from the force platform (AccuGait; AMTI,
182	Hiratsuka, Kanagawa, Japan, 49.5 cm × 49.5 cm). A 30-cm high hurdle
183	was set at the midpoint of the line connecting the starting position and
184	edge of the force plate. Participants were asked to jump (forward) over
185	hurdles with both feet, and land on the force plate with their right foot,
186	and were instructed to stabilize as soon as possible after landing, place
187	their hands on their pelvis, and remain still for 10 s. Movement of the
188	upper limbs during the jump was not restricted; however, it was limited
189	to placing the hands on the pelvis after stabilization. The landing task
190	was practiced three times, and a 1-min rest was provided after each
191	test. The trial was discarded if the jump was unsuccessful, for instance,
192	if the participant touched the hurdle, fell when landing, landed on the
193	ground outside the force plate, or had their right limb touch the left.
194	This method was previously reported to have high inter-session
195	reliability, with an intra-class correlation coefficient $(3,k)$ of 0.86 [18].
196	(3,k) represents the inter-rater reliability of using the mean of multiple
197	measurements with relative agreement.

198 The participants' repetitive rebound jump performance was

199	evaluated using the Optojump TM system (Microgate, Bolzano, Italy).
200	This system uses two parallel infrared photocell bars; one bar was
201	placed 0.3 cm above the surface as a transmitter unit with 96 light-
202	emitting diodes, whereas the other was placed as a receiver. To prevent
203	the jump performance from being affected, participants were asked to
204	place their hands on their pelvis and repeat jumping and landing with
205	their dominant foot five times. The dominant foot was defined as the
206	ball kicking foot. Participants were further instructed to stand with
207	their knees initially extended and then flexed as they jumped up and
208	landed in the same spot at all times, while looking ahead. Participants
209	were required to jump as high as possible with the shortest possible
210	contact time between the floor and their feet, so that they could
211	immediately start the next jumping motion. When the participant's
212	foot contacted the floor, the light between the two infrared bars was
213	interrupted, and the monitoring system sensor recorded at a sampling
214	frequency of 1000 Hz. Two sets of five rebound jumps were used, and
215	a 5-min rest was provided between sets. Of the five rebound jumps,
216	the third through fifth jumps were used for analysis to obtain a stable
217	value; this method exhibited good inter-day reliability [19].

219 2.2. Data collection

220	Foot arch dynamics refers to the relative change in the FAH
221	in the sitting position without weight applied to the feet, and in the
222	standing position with approximately 50% of the body weight applied
223	to each foot [7]. The equation for calculating foot arch dynamics is as
224	follows:
225	
226	Foot arch dynamics (%) = $\frac{(FAH \text{ sitting}-FAH \text{ standing})}{FAH \text{ sitting}} \times 100$
227	
228	If the foot arch dynamics is within ± 1 standard deviation (SD) of the
229	mean, the foot is classified as normal. If the foot arch dynamics is <1
230	SD from the mean, the foot is classified as stiff, and if the LAA is >1
231	SD from the mean, the foot is classified as flexible. [20].
232	The DPSI values were calculated using the ground reaction force
233	(GRF) within 3 s of the first contact, and the vertical GRF more than
234	5% of the body weight. The force plate values were normalized to the
235	participant's body weight, following which the GRF data were
236	filtered using a zero-lag, second-order, low-pass Butterworth filter

256	calculated using the Optojump ^{TM} software (Optojump ^{TM} Next
257	software, version 1.9.9.0). The strength of reactivity was assessed
258	using the reactive jump index, which is a measure of an athlete's ability
259	to efficiently absorb force (eccentrically) and generate propulsion
260	(concentrically) within a specific time [19,22]. Higher reactive jump
261	index values indicate better rebound jump performance. The average
262	of the data from the three successful trials was used for additional
263	analyses. Jump height was calculated as follows:
264	
265	Jump height = $(1/2 \times \text{Tair} \times g)^2 \times (2 g) - 1$
266	
267	where "Tair" is the time of flight (s) between the recorded force on the
268	force plate and "g" is the acceleration due to gravity (9.81 m/s ²). The
269	reactive jump index was calculated as follows:
270	
271	Reactive jump index = $\frac{1}{8} \times g \times \frac{\text{Tair}^2}{\text{contact time}}$
271 272	Reactive jump index = $\frac{1}{8} \times g \times \frac{\text{Tair}^2}{\text{contact time}}$

repeated jumps.

276 2.3 Statistical analysis

277	All measurement values were analyzed using SPSS software
278	(version 27.0; IBM Japan, Tokyo, Japan). Normality was confirmed
279	using the Shapiro-Wilk test, and normally distributed variables are
280	presented as the mean \pm SD. Participants were stratified into three
281	groups (flexible, normal, and stiff) according to the mean and SD
282	values of their foot arch dynamics. Chi-square tests were used to check
283	for differences in the male-female ratios between the three groups. A
284	one-factor analysis of variance was used to investigate differences in
285	the morphological characteristics of the foot, CSA of the IFMs, DPSI
286	values, and repetitive rebound jump values. The relationship between
287	the foot arch dynamics and DPSI was examined using multiple linear
288	regression with the stepwise method. Foot arch dynamics was defined
289	as the dependent variable, and DPSI was defined as an independent
290	variable. The significance level was set at 5%. The post hoc power
291	analysis was performed as previously described [22]. This procedure
292	estimated the power of the omnibus F-test by considering the
293	population effect size (f ²), probability of error (α), sample size, and

294 number of predictors included in the regression model [23].

295

3. Results

297	There were no significant differences in the physical
298	characteristics of the participants among all the groups (Table 1). Table
299	2 shows the foot characteristics of participants in the stiff, normal, and
300	flexible groups. Overall, there were no significant differences in the
301	CSA of the abductor hallucis, flexor hallucis brevis, and flexor
302	digitorum brevis muscles among the groups ($p=0.863$, $p=0.913$, and
303	p=0.983, respectively). Table 3 shows the DPSI values and rebound
304	jump performance of the stiff, normal, and flexible groups. The stiff
305	group had significantly higher DPSI and VSI values than the normal
306	group ($p=0.026$, $p=0.044$, respectively), as well as a significantly
307	higher APSI value than the flexible group ($p=0.005$). There were no
308	differences in DPSI or VSI values between the stiff and flexible groups,
309	or between the normal and flexible groups. Additionally, there were no
310	significant differences in the jump heights and reactive jump indices
311	among the groups. Finally, only APSI was correlated with foot arch
312	dynamics. In the post hoc power analysis, the multivariate regression

313 models for the association between the APSI and foot arch dynamics 314 showed adequate power (β =-0.45; *p*=0.001; 95% confidence interval, 315 -50.175 to -13.502; R²=0.127; probability of error = 0.912) (Table 4). 316

317 4. Discussion

318	This is the first experimental study to explain the integration
319	of the force perception of the foot and mechanical function of the foot
320	arch after jump-landing performed by adolescent competitive athletes.
321	The main finding of this study was that adolescent competitive athletes
322	with stiff foot arches had considerably low postural control after jump-
323	landing. In addition, the APSI, which is a measure of dynamic postural
324	balance, was associated with foot arch dynamics. Our findings indicate
325	that the mechanism of postural control after jump-landing was
320	contraction of the foot muscle_tendon complex
521	contraction of the foot muscle-tendon complex.

328

329 Overall, the relationship between foot arch stiffness and 330 balancing ability remains controversial. The height of the medial 331 longitudinal arch positively correlates with rebound jump ability [2].

332	Additionally, the stiffness of the intrinsic plantar muscles that make up
333	the foot arch increase the sensitivity of the muscle spindles, which
334	improves a balance ability, through improved kinesthesia in athletes
335	[26 \rightarrow 24]. Notably, a previous study by Simkin et al. [27 \rightarrow 25] reported
336	that a low-arch foot was better at absorbing shock than a high-arch foot.
337	In the present study, the association between the dynamic function of
338	the foot arch and postural control after jump-landing in adolescent
339	competitive athletes was clarified. Increased foot arch stiffness leads
340	to the deterioration of the dynamic postural control in the anterior and
341	posterior directions in adolescent athletes. Previous studies of arch
342	structure and injury patterns have demonstrated that ankle and foot
343	injuries occur more frequently in those with a high arch than in those
344	with a low arch [5]. Therefore, adequate foot flexibility may play an
345	important role in postural control and injury prevention.
346	The foot arch acts as a spring that stores and releases elastic
347	energy as the load on the foot increases. This function is accomplished
348	by achieving changes in the foot arch, which comprises extrinsic and
349	intrinsic foot muscles. In particular, the IFMs and tendons maintain the
350	foot arch and help it to adapt during standing and while changing

351	walking speed $[23 \rightarrow 26]$. Therefore, the entire foot may become
352	unstable if the intrinsic foot muscles and tendons are not functioning
353	properly during movement. This may reduce the ability of the foot to
354	adapt to dynamic movement, leading to static and dynamic imbalances
355	[24 \rightarrow 27]. Furthermore, the relationship between foot arch dynamics
356	and the performance of jump-landing may be associated with the
357	sensorimotor interaction among the components of the foot,
358	contributing to the consolidation of the sensory information necessary
359	for dynamic postural control [17,25 \rightarrow 27].
360	This study has some limitations. First, our sample size was
361	too small to allow for a comparison of athletes who performed
362	different types of sports. Future research involving large-scale,
363	targeted recruitment of participants involved in different types of
364	sports is necessary. Second, sex differences in participants were not
365	examined. A previous study reported that women had lower arches
366	than men and that there was a gender difference [28]. Therefore, we
367	intend to increase the number of subjects and examine the relationship
368	between foot arch dynamics and dynamic postural control from the
369	perspective of gender differences. Finally, the present study has a

370	strength to investigate the association between the foot arch dynamics
371	and dynamic postural stability in adolescent competitive athletes,
372	however it is only a cross-sectional study. Future studies should
373	prospectively examine how the actual incidence of sports injuries
374	relates to the foot arch dynamics and dynamic postural control of the
375	present study and should also be linked to the prevention of injury
376	occurrence during adolescence.
377	
378	5. Conclusions
379	In conclusion, the foot arch dynamics play an important role
380	in the dynamic postural control of adolescent competitive athletes.
381	From the viewpoint of daily clinical practice, identifying and screening
382	adolescent athletes with foot arch stiffness is important to improve
383	physical performance and prevent sports injuries
384	
385	Acknowledgements
386	The authors have no acknowledgments.
387	
388	Conflict of interest

389 The authors declare that they have no conflict of interest.

390

391 Funding

- 392 The authors report no funding.
- 393

394 **References**

- 395 [1] Ker RF, Bennett MB, Bibby SR, Kester RC, Alexander RM. The
- spring in the arch of the human foot. Nature. 1987;325(7000):147-9.
- doi: <u>10.1038/325147a0</u>, PMID <u>3808070</u>.
- 398 [2] Morita N, Yamauchi J, Kurihara T, Fukuoka R, Otsuka M, Okuda
- 399 T, et al. Toe flexor strength and foot arch height in children. Med Sci
- 400 Sports Exerc. 2015;47(2):350-6. doi:
- 401 <u>10.1249/MSS.00000000000402</u>, PMID <u>24895943</u>.
- 402 [3] Taddei UT, Matias AB, Ribeiro FIA, Bus SA, Sacco ICN. Effects
- 403 of a foot strengthening program on foot muscle morphology and
- 404 running mechanics: a proof-of-concept, single-blind randomized
- 405 controlled trial. Phys Ther Sport. 2020;42:107-15. doi:
- 406 <u>10.1016/j.ptsp.2020.01.007</u>, PMID <u>31962191</u>.

- 407 [4] Wallace JW, Rasman BG, Dalton BH. Vestibular-evoked
- 408 responses indicate a functional role for intrinsic foot muscles during
- 409 standing balance. Neuroscience. 2018;377:150-60. doi:
- 410 <u>10.1016/j.neuroscience.2018.02.036</u>, PMID <u>29524635</u>.
- 411 [5] Williams DS, McClay IS 3rd, Hamill J. Arch structure and injury
- 412 patterns in runners. Clin Biomech. 2001;16(4):341-7. doi:
- 413 <u>10.1016/S0268-0033(01)00005-5</u>.
- 414 [6] Yamauchi J, Koyama K. Force-generating capacity of the toe
- 415 flexor muscles and dynamic function of the foot arch in upright
- 416 standing. J Anat. 2019;234(4):515-22. doi: <u>10.1111/joa.12937</u>, PMID
- 417 <u>30707457</u>.
- 418 [7] Koyama K, Hirokawa M, Yoshitaka Y, Yamauchi J. Toe flexor
- 419 muscle strength and morphological characteristics of the foot in judo
- 420 athletes. Int J Sports Med. 2019;40(4):263-8. doi: <u>10.1055/a-0796-</u>
- 421 <u>6679</u>, PMID <u>30836392</u>.
- 422 [8] Pedley JS, Lloyd RS, Read PJ, Moore IS, De Ste Croix M, Myer
- 423 GD, et al. Utility of kinetic and kinematic jumping and landing
- 424 variables as predictors of injury risk: a systematic review. J of SCI IN

- 425 SPORT AND EXERCISE. 2020;2(4):287-304. doi: 10.1007/s42978-
- 426 <u>020-00090-1</u>.
- 427 [9] Redmond AC, Crosbie J, Ouvrier RA. Development and
- 428 validation of a novel rating system for scoring standing foot posture:
- 429 the Foot Posture Index. Clin Biomech (Bristol, Avon).
- 430 2006;21(1):89-98. doi: <u>10.1016/j.clinbiomech.2005.08.002</u>, PMID
- 431 <u>16182419</u>.
- 432 [10] Terada M, Wittwer AM, Gribble PA. Intra-rater and inter-rater
- 433 reliability of the five image-based criteria of the foot posture index-6.
- 434 Int J Sports Phys Ther 2014; 9(2):187-194. PMID 24790780.
- 435 [11] Kurihara T, Yamauchi J, Otsuka M, Tottori N, Hashimoto T,
- 436 Isaka T. Maximum toe flexor muscle strength and quantitative
- 437 analysis of human plantar intrinsic and extrinsic muscles by a
- 438 magnetic resonance imaging technique. J Foot Ankle Res. 2014;7:26.
- 439 doi: <u>10.1186/1757-1146-7-26</u>, PMID <u>24955128</u>.
- 440 [12] Taş S, Ünlüer NÖ, Çetin A. Thickness, cross-sectional area, and
- 441 stiffness of intrinsic foot muscles affect performance in single-leg
- stance balance tests in healthy sedentary young females. J Biomech.

- 443 2020;99:109530. doi: <u>10.1016/j.jbiomech.2019.109530</u>, PMID
- 444 <u>31785820</u>.
- 445 [13] Maeda N, Hirota A, Komiya M, Morikawa M, Mizuta R,
- 446 Fujishita H, et al. Intrinsic foot muscle hardness is related to dynamic
- 447 postural stability after landing in healthy young men. Gait Posture.
- 448 2021;86:192-8. doi: <u>10.1016/j.gaitpost.2021.03.005</u>, PMID
- <u>449</u> <u>33756408</u>.
- 450 [14] Fraser JJ, Mangum LC, Hertel J. Test-retest reliability of
- 451 ultrasound measures of intrinsic foot motor function. Phys Ther
- 452 Sport. 2018;30:39-47. doi: <u>10.1016/j.ptsp.2017.11.032</u>, PMID
- 453 <u>29413632</u>.
- 454 [15] Crofts G, Angin S, Mickle KJ, Hill S, Nester CJ. Reliability of
- 455 ultrasound for measurement of selected foot structures. Gait Posture.
- 456 2014;39(1):35-9. doi: <u>10.1016/j.gaitpost.2013.05.022</u>, PMID
- 457 <u>23791782</u>.
- 458 [16] Ramesh RT, Rao RS. Variation in the origin of flexor digitorum
- 459 brevis A case report. J Appl Life Sci Int. 2017;11:1-4.

- al. Does the weakening of intrinsic foot muscles cause the decrease
- 462 of medial longitudinal arch height? J Phys Ther Sci.
- 463 2017;29(6):1001-5. doi: <u>10.1589/jpts.29.1001</u>, PMID <u>28626309</u>.
- 464 [18] Wikstrom EA, Arrigenna MA, Tillman MD, Borsa PA. Dynamic
- 465 postural stability in subjects with braced, functionally unstable
- 466 ankles. J Athl Train. 2006;41(3):245-50. PMID <u>17043691</u>.
- 467 [19] Comyns TM, Flanagan EP, Fleming S, Fitzgerald E, Harper DJ.
- 468 Interday reliability and usefulness of a reactive strength index
- derived from 2 maximal rebound jump tests. Int J Sports Physiol
- 470 Perform. 2019;14:1200-4. doi: <u>10.1123/ijspp.2018-0829</u>, PMID
- 471 <u>30840515</u>.
- 472 [20] McPoil TG, Cornwall MW. Use of the longitudinal arch angle to
- 473 predict dynamic foot posture in walking. J Am Podiatr Med Assoc.
- 474 2005;95(2):114-20. doi: <u>10.7547/0950114</u>, PMID <u>15778468</u>.
- 475 [21] Sell TC, Pederson JJ, Abt JP, Nagai T, Deluzio J, Wirt MD, et al.
- 476 The addition of body armor diminishes dynamic postural stability in

- 477 military soldiers. Mil Med. 2013;178(1):76-81. doi: <u>10.7205/milmed-</u>
- 478 <u>d-12-00185</u>, PMID <u>23356123</u>.
- 479 [22] Morikawa M, Maeda N, Komiya M, Hirota A, Mizuta R,
- 480 Kobayashi T, et al. Contribution of plantar fascia and intrinsic foot
- 481 muscles in a single-leg drop landing and repetitive rebound jumps: an
- 482 ultrasound-based study. Int J Environ Res Public Health.
- 483 2021;18(9):4511. doi: <u>10.3390/ijerph18094511</u>, PMID <u>33922807</u>.
- 484 [23] Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power
- 485 analyses using G*Power 3.1: tests for correlation and regression
- 486 analyses. Behav Res Methods. 2009;41(4):1149-60. doi:
- 487 <u>10.3758/BRM.41.4.1149</u>, PMID <u>19897823</u>.
- 488 [24] Macefield VG, Knellwolf TP. Functional properties of human
- 489 muscle spindles. J Neurophysiol. 2018;120(2):452-67. doi:
- 490 <u>10.1152/jn.00071.2018</u>, PMID <u>29668385</u>.
- 491 [25] Simkin A, Leichter I, Giladi M, Stein M, Milgrom C. Combined
- 492 effect of foot arch structure and an orthotic device on stress fractures.
- 493 Foot Ankle. 1989;10(1):25-9. doi: <u>10.1177/107110078901000105</u>,
- 494 PMID <u>2788605</u>.

- 495 [26] McKeon PO, Hertel J, Bramble D, Davis I. The foot core
- 496 system: a new paradigm for understanding intrinsic foot muscle
- 497 function. Br J Sports Med. 2015;49(5):290. doi: <u>10.1136/bjsports-</u>
- 498 <u>2013-092690</u>, PMID <u>24659509</u>.
- 499 [27] Mulligan EP, Cook PG. Effect of plantar intrinsic muscle
- 500 training on medial longitudinal arch morphology and dynamic
- 501 function. Man Ther. 2013;18(5):425-30. doi:
- 502 <u>10.1016/j.math.2013.02.007</u>, PMID <u>23632367</u>.
- 503 [28] Ferrari E, Cooper G, Reeves ND, Hodson-Tole EF. Intrinsic foot
- 504 muscles act to stabilise the foot when greater fluctuations in centre of
- 505 pressure movement result from increased postural balance challenge.
- 506 Gait Posture. 2020;79:229-33. doi: <u>10.1016/j.gaitpost.2020.03.011</u>,
- 507 PMID <u>32446178</u>.
- 508 [29] Zhao, X., Gu, Y., Yu, J., Ma, Y., & Zhou, Z. The influence of
- 509 gender, age, and body mass index on arch height and arch stiffness. J
- 510 Foot Ankle Surg. 2020; 59(2): 298-302. doi:
- 511 10.1053/j.jfas.2019.08.022, PMID: 32130994.

515 Tables

	Stiff group	Normal group	Flexible group			
	(n=10)	(n=30)	(n=10)	F	<i>p</i> -value	η²
Sex (Male: Female)	6:4	19:11	3:7	-	0.17 ^a	-
Age (years)	13.6 ± 0.8	12.9 ± 1.3	13.1 ± 1.1	1.13	0.33 ^b	0.05
Height (cm)	161.1 ± 8.8	159.0 ± 11.5	159.2 ± 10.0	0.14	0.87 ^b	0.01
Weight (kg)	48.2 ± 7.4	52.2 ± 12.0	54.2 ± 15.5	0.67	0.52 ^b	0.03
BMI (kg/m ²)	18.6 ± 2.1	20.5 ± 3.3	21.0 ± 3.8	1.76	0.18 ^b	0.07

516 **Table 1.** Physical characteristics of the study participants

517 All variables are presented as mean \pm standard deviation. BMI, body mass

518 index; aResults of the Chi-Square test, bResults of the one-way analysis of

519 variance; F, F-Value; η^2 , partial eta-squared.

520

521

		Normal	Flexible			
	Stiff group	group	group	F	<i>p</i> -value	η^2
	(n=10)	(n=30)	(n=10)			
Foot length (cm)	23.64 ± 1.53	23.87 ± 1.55	23.75 ± 1.87	0.08	0.92	0.00
FPI	$3.40\pm2.55^{\dagger\$}$	4.07 ± 2.10	6.20 ± 1.69	5.06	0.01*	0.18
FAH (cm)						
Sitting	4.67 ± 0.57	4.67 ± 0.53	4.43 ± 0.53	0.78	0.47	0.03
Standing	$4.46\pm0.51^{\dagger\$}$	3.95 ± 0.48	3.22 ± 0.40	17.63	<0.001*	0.43
Differences	$0.21\pm0.12^{\dagger\$}$	0.71 ± 0.25	1.21 ± 1.80	53.11	<0.001*	0.69
rFAH						
Sitting	2.90 ± 0.28	2.95 ± 0.36	2.78 ± 0.23	1.01	0.37	0.04
Standing	$2.77\pm0.24^{\dagger\$}$	2.49 ± 0.31	2.02 ± 0.18	19.27	<0.001*	0.45
Differences	$0.13\pm0.73^{\dagger\S}$	0.45 ± 0.16	0.76 ± 0.88	51.68	<0.001*	0.69
Foot arch dynamics (%)	4.41 ± 2.34	15.23 ± 4.72	27.32 ± 2.27	83.25	<0.001*	0.78
CSA of the intrinsic foot						
muscles (mm ²)						
	197.23 ±	207.23 ±	207.42 ±			
Abductor hallucis	49.79	50.67	59.18	0.148	0.863	0.006

Table 2. Foot characteristics of the participants

All variables are presented as mean \pm standard deviation. FPI, foot posture index; FAH, foot arch height; rFAH, relative foot arch height; CSA, crosssectional area. **p*<0.05, Bonferroni test; [†]*p*<0.05 (vs normal); [§]*p*<0.05 (vs flexible); ^aResults of the chi-Square test; ^bResults of the one-way analysis of variance; F, F-Value; η^2 , partial eta-squared.

	Stiff group	Normal group	Flexible group			,
	(n=10)	(n=30)	(n=10)	F	<i>p</i> -value	η²
Scores						
DPSI	$0.311\pm0.029^{\dagger}$	0.283 ± 0.021	0.283 ± 0.044	3.965	0.026*	0.136
MLSI	0.024 ± 0.006	0.028 ± 0.006	0.026 ± 0.004	2.043	0.141	0.000
APSI	$0.137 \pm 0.009^{\$}$	0.131 ± 0.006	0.124 ± 0.012	6.030	0.005*	0.250
VSI	$0.278\pm0.029^\dagger$	0.248 ± 0.025	0.251 ± 0.049	3.350	0.044*	0.130
Repetitive rebound jump						
Jump height (cm)	12.68 ± 3.50	11.38 ± 3.26	11.52 ± 1.61	0.685	0.509	0.028
Reactive jump index (cm/s)	0.396 ± 0.129	0.345 ± 0.065	0.345 ± 0.065	0.607	0.549	0.026

531 **Table 3**. DPSI and RJ performance of the stiff, normal, and flexible groups

532 All variables are presented as mean \pm standard deviation. DPSI, dynamic

533 postural stability index; MLSI, medial lateral stability index; APSI, anterior

534 posterior stability index; RJ, rebound jump; VSI, vertical stability index.

535 *p < 0.05, Bonferroni test; †p < 0.05 (vs normal); §p < 0.05 (vs flexible); F, F-

536 Value; η^2 , partial eta-squared.

537

539 Table 4. Multiple regression analysis of the associations between dynamic

		Foot arch d	ynamics (%)		
DPSI	0	95%	95% CI		D2
	р	Lower	Upper	<i>p</i> -value	K ²
APSI	-0.45	-50.175	-13.502	0.001	0.127

540 posture stability index and foot arch dynamics

541 The explanatory variable was APSI. β , standardized partial regression

542 coefficient; DPSI, dynamic postural stability index; CI, confidential interval;

543 APSI, anterior posterior stability index

545 Figure captions

- 546 Fig 1. Measurement of the foot arch height (in the sitting and standing
- 547 positions) and dynamics
- 548

549 Figures

550

Weight bearing o: