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Abstract A novel technique to evaluate fracture me-

chanics parameters is investigated employing the equiv-

alent domain integral (EDI) method and nodal integra-

tion (NI) techniques. Galerkin-based meshfree method

is adopted. Reproducing kernel (RK) is chosen for the

meshfree interpolant. Stabilized conforming nodal in-

tegration (SCNI) and sub-domain stabilized conform-

ing integration (SSCI) are adopted for numerically in-

tegrating the stiffness matrix. Voronoi diagram is em-

ployed to compute volume of each NI domain. The EDI

method is addressed to evaluate the fracture mechan-

ics parameters, i.e., energy release rate and stress in-

tensity factors (SIFs). Because the displacement and

its derivatives are computed based on SCNI/SSCI, the

EDI can be discretized by summing up the physical

quantities and volume of each cell/sub-cell. No special

quadrature rule is required. To separate the energy re-

lease rate into the mixed-mode SIFs, interaction inte-

gral method is chosen. Efficient and accurate fracture

parameter computation is achieved. Some numerical ex-
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amples are demonstrated for mixed-mode fracture pa-

rameter evaluation and crack propagation analysis. Ac-

curacy and effectiveness of the presented approach is

studied.

Keywords Domain integral method · Nodal inte-

gration · Reproducing kernel · Fracture mechanics

parameters

1 Introduction

Marine safety, as one of subjects with the most con-

cern in maritime communities and industries, is under

extensively investigation during past decades. Marine

structures may encounter unexpected accidents, such as

buckling, collision and grounding [1-5]. Moreover, cor-
rosion and fatigue [6-11] can also be gradually accumu-

lated during normal operation of the structures. Crack

may occur occasionally and inevitably during these pro-

cesses, and unstable crack propagation (CP) will lead

to the damage of local and global structural integrity

eventually. Therefore, fracture analysis is of vital sig-
nificance in marine design and life prediction.

Stress intensity factor (SIF), introduced by Irwin

[12], is usually recognized as one of the effective criteria

in fracture mechanics. It is applied to represent the ex-

tent of stress concentration on the vicinity of crack tips.

However, the geometrical singularity around crack tips

will bring mathematical difficulties in the computation

of stress and strain field straightforwardly. Therefore,

a path independent method, named J-integral method,

was introduced by Rice [13]. By appropriately selecting

the integral contour, energy release rate can be calcu-

lated and the SIFs can also be determined.

Many efforts have been devoted to investigate SIFs

employing several numerical methods. Chen [14] evalu-
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ated mode-I dynamic SIF of a two-dimensional (2D)

central cracked strip by using Lagrangian finite dif-
ference method. Lin et al. [15] had constructed a hy-

brid crack element to finite element method (FEM) in

the calculation of SIFs for bi-material interface cracks.

Kishimoto et al. [16] modified the J-integral method

to compute mixed-mode dynamic SIFs using FEM by

considering the inertia effect. Li et al. [17] and Raju

and Shivakumar [18] proposed an equivalent domain

integral (EDI) form and its discretization technique for

analyzing the J value and mixed-mode SIFs employ-

ing FEM. Yau and Wang [19] solved bi-material frac-

ture problem by the interaction integral method (IIM).

Belytschko and Black [20] proposed extended finite el-

ement method (X-FEM) and the fracture mechanics

parameters are evaluated by IIM. Dolbow et al. [21]

applied X-FEM in the research of mixed-mode SIFs on

functionally graded materials. Nagashima et al. [22] had

applied X-FEM to model the crack and evaluated the

mode-I and -II SIFs on bi-material fractures. Tanaka

et al. [23,24] analyzed several fracture problems by IIM

based on X-FEM and wavelet Galerkin method [25].

These numerical methods have proved accuracy and re-

liability of the J-integral method and its discretization

techniques in the SIFs evaluation on both homogeneous

and non-homogeneous materials.

Meshfree and particle methods are an alternative

methodologies to solve fracture problems. Based on lo-

cal weighted least squares, Nayroles et al. [26] developed

the diffuse element method (DEM). Comparing with

FEM, DEM has stronger capability in solving PDEs

and determining the derivatives of unknown functions.

Belytschko et al. [27] further investigated the DEM and

proposed the element free Galerkin method (EFGM).

Based on EFGM, Pant et al. [28] evaluated mixed-mode

SIFs by using IIM for bi-material interface problem.

Pathak et al. [29] had further expanded researches on

the bi-material interfacial cracks. Meanwhile, Jameel

et al. [30] also employed EFGM in fatigue crack growth

on different material discontinuous situations. Moham-

madi Anaei et al. [31] analyzed fatigue crack growth of

moderately thick plates using an meshfree method.

By considering properties of an window function,

Liu et al. [32] had proposed the reproducing kernel par-

ticle method (RKPM), which is suitable for problems

with large deformations and high gradients. It also has

various applications in the analysis of elastic-plastic de-

formation, hyper-elasticity, and computational fluid dy-

namics [33]. Chen et al. [34,35] and Wang and Chen

[36,37] proposed stabilized conforming nodal integra-

tion (SCNI) technique. Wang and Chen [38] developed

sub-domain stabilized conforming integration (SSCI)

technique. Recently, numerical integration methods in

the meshfree framework have been proposed in [39-

47]. The SCNI and SSCI work well for the meshfree
Galerkin formulation and its discretization technique

to derive a smoothed displacement-strain relationship

through Gauss divergence theorem. Silling et al. [48]

also proposed a novel meshfree method, named peridy-

namics (PD). Based on state-based PD, Imachi et al.

[49-51] solved the DSIFs on 2D plane by using the IIM.

Moreover, fracture parameters were evaluated based on

the EDI method and IIM [52,53] in PD framework.

Overviews of meshfree methods could also be found in

many literatures, such as [54,55].

Recently, Tanaka et al. [56] solved mixed-mode SIFs

of 2D plane employing Galerkin-based RKPM meshfree

method by the J-integral method [13]. The contour in-

tegral was discretized by SCNI and SSCI. Mixed-mode

SIFs are extracted from the energy release rate by de-

composing the displacement and stress fields into sym-
metric and antisymmetric components [57]. The frac-

ture analysis method was applied to plate bending prob-

lems [58,59], folded structures [60] and curved shells

[61].

In the present study, a discretization method to

evaluate fracture mechanics parameters employing the

EDI method and nodal integration (NI) techniques is

newly proposed. SCNI and SSCI are employed and a

Voronoi diagram is chosen to evaluate volume of each

NI domain. Additionally, IIM is discretized by the NI

techniques to handle mixed-mode fracture problems.

Because the displacement, strain and stress components

are computed on each cell/sub-cell by SCNI/SSCI, the

EDI and IIM can be discretized by summing up the

physical quantities and volume of the cells/sub-cells.

No special quadrature rule is required. By employing

this, stable and highly accurate results are obtained.

As far as the authors’ knowledge, there is no such kind

of the NI discretization approach to the EDI method

and IIM.

The outline of this paper can be shown as follow.

In the second section, basic knowledge about Galerkin-

based RKPM and NI techniques, i.e., SCNI and SSCI,

will be presented for analyzing fracture mechanics prob-

lems. In the third section, the EDI discretization and

mode splitting techniques with IIM by the NI methods

will be discussed in detail. Then, in the fourth section,

benchmark numerical examples for single and mixed-

mode SIFs will be examined and validated. Addition-

ally, application to CP simulation for a root crack in a

welded joint is demonstrated. A brief summary will be

provided in the final section.
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2 Reproducing Kernel Particle Method

2.1 Governing equation

A boundary value problem (BVP) for a 2D cracked solid

is considered. An elastic body including a crack and

a hole is illustrated in Fig. 1(a). A global coordinate

system (x1, x2) is defined. x (={x1, x2}T ) is a position

vector and u (={u1, u2}T ) is a displacement vector.

The analysis domain is Ω and its boundary is Γ . The

traction boundary is Γt and essential boundary is Γu. t̄

is a traction vector and ū is a prescribed displacement

vector. The hole and crack is assumed as an external

boundary. The upper/lower boundary of the crack are

Γc+ and Γc− , respectively.

Without the body force term, the BVP can be for-

mulated, as:

∇ · σ = 0 in Ω,

σT · n = t̄ on Γt,

σT · n = 0 on Γc+ ,

σT · n = 0 on Γc− ,

(1)

where ∇ is a gradient operator, σ is a Cauchy stress

tensor. n is a unit vector normal to Γ . On the crack seg-

ment Γc+ and Γc− , a traction free condition is imposed.

The displacement-strain relationship can be written, as:

ε = ∇su. (2)

∇s is the symmetric part of the gradient operator. The

stress-strain relation is assigned with an elastic constant

tensor C considering plane strain/stress conditions, as:

σ = C : ε. (3)

Finally, the principle of virtual work is written, as:∫
Ω

ε(δu) : C : ε(u)dΩ −
∫
Γt

δu · t̄ dΓt = 0, (4)

with u=ū on Γu. δu and ε(δu) are virtual displacement

and virtual strain, respectively.

2.2 Reproducing kernel

The BVP is discretized by RKs. A schematic of the

RK discretization method is shown in Fig. 1(b). The

nodes are distributed in the body entirely. Volume of

each node is evaluated by Voronoi diagram. RK is as-

signed for each node and it has a function support to

interpolate physical values surrounding the node. The

external boundaries including a hole edge as well as the

crack segment of Γc+ and Γc− are represented by set of

the nodes.

The displacement vector u(x) is interpolated, as:

u(x) =

np∑
I=1

ΨI(x)uI . (5)

ΨI(x) and uI are RK and its coefficient vector for I-

th node. np is total number of nodes in the analysis

domain. The RK is written, as:

ΨI(x) = HT (xI − x)b(x)ϕI(xI − x), (6)

where H(xI−x) is a basis vector of the RK and b(x) is

the coefficient vector. ϕI(xI−x) is an original kernel to

generate the RK. A cubic B-spline function is adopted.

Quadratic basis: H(x)={1 x1 x2 x2
1 x1x2 x2

2} is chosen

as the basis vector. Derivation of b(x) has included in

previous literatures [34,36,62].

The standard RK in Eq. (6) does not possess so-

called Kronecker delta property. When imposing the es-

sential boundary conditions (BCs), singular kernel (SK)

[63] is chosen. A one-dimensional (1D) arrangement of a

SK and standard RKs is shown in Fig. 1(c). If SK is as-

signed to node Isk to impose Kronecker delta property,

standard RKs surrounding the node Isk is modified. By

choosing this, essential BC can be enforced accurately

at the node position to the limit of machine precision.

Crack modeling is shown in Fig. 1(d). Double nodes

are arranged along the crack segment. Visibility crite-

rion and diffraction method [64,65] are utilized to rep-

resent displacement discontinuity of the crack. The vis-

ibility criterion is employed to cut the function support

along the segment, and the diffraction method is uti-

lized to represent crack tip position accurately by mod-

ifying the function support to wrap around the crack

tip.

A sub-cell approach is chosen to accurately repre-

sent displacement discontinuity along the crack segment

by dividing a Voronoi cell into a number of triangular

domains. Moreover, an enriched basis vector [66,67] is

employed to accurately represent near crack tip stress

field, i.e., H(x)={1 x1 x2 x2
1 x1x2 x2

2

√
r′ sin(θ′/2)}.

(r′,θ′) are a local polar coordinate system from the

crack tip. The enriched basis vector is adopted if the

crack tip is located within the function support of RKs.

For further detail of the fracture mechanics analysis by

RKPM, please see [56].

2.3 Nodal integration techniques

In a straightforward manner, the partial derivative of

the displacement in Eq. (5) is evaluated in x1- and x2-
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Fig. 1 BVP and meshfree discretization technique for a 2D cracked elastic solid [(a) 2D BVP to be analyzed, (b) Meshfree
discretization technique, (c) 1D arrangement of a SK and standard RKs, (d) Crack modeling, (e) SCNI, (f) SSCI].

directions, i.e.,

ε(xG) =

np∑
I=1

B̄IuI , B̄I =

ΨI,1 0

0 ΨI,2

ΨI,2 ΨI,1

 , (7)

where ε(xG)={ε11 ε22 2ε12}T is the strain vector at

the evaluation point xG, e.g., a gauss quadrature point.

B̄I is the displacement-strain matrix. ΨI,i (i=1,2) is

the partial derivative of the RKs for I-th node to i-th

direction.

Voronoi diagram is adopted to define volume of each

NI domain. Two kinds of NI techniques are employed.

One is SCNI [34,35] and the other is SSCI [38]. SCNI

to the K-th Voronoi cell is schematically illustrated in

Fig. 1(e). For the SCNI, strain smoothing is carried out

and the strain vector ε̃(xK) is written, as:

ε̃(xK) =

np∑
I=1

B̃IuI , B̃I =

 b̃I1 0

0 b̃I2
b̃I2 b̃I1

 , (8)

where,

b̃Ij(xK) =
1

AK

∫
ΓK

ΨI ñjdΓK . (9)

np is number of Voronoi cells. xK is a position vector of

K-th node. AK and ΓK are area and edge of the K-th

cell. ñj is normal to the edge of the cell. A five point

Gauss quadrature rule is employed for the line inte-

gration along ΓK . In the SCNI technique, displacement

and strain/stress components are evaluated at xK . The

physical values are smoothed for each cell.

While for SSCI, a Voronoi cell is divided by a num-

ber of triangular sub-cells as shown in Fig. 1(f). The

strain vector ε̂ is evaluated for each, as:

ε̂(xKl
) =

np∑
I=1

ntri∑
l=1

B̂l
IuI , B̂l

I =

 b̂lI1 0

0 b̃lI2
b̂lI2 b̃lI1

 , (10)

and where,

b̂lIj(xKl
) =

1

AKl

∫
ΓKl

ΨI n̂jdΓKl
. (11)

ntri is number of the sub-cells in a Voronoi cell. xKl

is a position vector of a gravity center of l-th sub-cell.

AKl
is an volume of the sub-cell. ΓKl

is a segment of the

sub-cell and n̂j is normal to the segment. A five point

Gauss quadrature rule is also employed to numerically

integrate Eq. (11) as described in Fig. 1(f). In the SSCI

technique, the displacement and strain/stress compo-

nents are evaluated at xKl
and are smoothed in each

sub-cell.

2.4 Discretization

By introducing the stress-strain relationship in Eq. (3)

and the displacement-strain relationship in Eqs. (7), (8)

and (10) into the principle of virtual work in Eq. (4), a
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following linear simultaneous equation can be derived,

as:

KU = f , (12)

where U is an unknown vector in terms of the displace-

ment vector u. K and f are a global stiffness matrix

and a traction vector, they are respectively written, as:

K =

∫
Ω

BTCB dΩ, f =

∫
Γt

ΨT t̄ dΓt. (13)

B is a displacement-strain relationship in terms of Eqs.

(7), (8) and (10), respectively. Ψ is a vector of the

RKs. To numerically integrate the traction vector, a

five point Gauss quadrature rule is employed along each

edge of cell/sub-cells on Γt. After analyzing Eq. (12),

the stress and strain components are evaluated based

on the solution vector U for each cell and sub-cells em-

ploying relation of Eqs. (7), (8) and (10).

3 Fracture Parameter Evaluation Methods

3.1 J-integral and equivalent domain integral methods

Rice [13] proposed J-integral method to evaluate frac-

ture mechanics parameters. The parameters can be eval-

uated by a contour integral surrounding the crack tip,

and the method has a path independent property. More-

over, researchers [17] proposed an EDI method by trans-

forming the contour integral to the area integral. This

approach fit well with numerical discretization meth-

ods to analyze fracture mechanics parameters. Here, we

briefly review the methodologies.

A schematic of the J-integral method for a 2D elas-

tic solid is shown in Fig. 2(a). A straight crack is as-

sumed and a local cartesian coordinate system (x′
1, x

′
2)

is defined from the crack tip. A contour s is taken by

surrounding the crack tip from bottom to top crack sur-

face. n′ (={n′
1, n

′
2}T ) is a normal vector to the contour.

Considering traction free condition on the crack faces,

the J value is defined, as:

J =

∫
s

(
W ′n′

1 − σ′
ij

∂u′
i

∂x′
1

n′
j

)
ds. (14)

σ′
ij and u′

i are the stress and displacement components

defined by the local coordinate system. ds is a segment

of the contour. W ′ is a strain energy density, as:

W ′ =

∫
σ′
ij dε

′
ij . (15)

where ε′ij is the strain components in local coordinates.

The EDI method is schematically illustrated in Fig.

2(b). The two contours s1 and s2 are considered. s+

(a)

Crack

(b)

Crack

Fig. 2 Schematic illustrations of the J-integral and EDI
methods [(a) J-integral method, (b) EDI method].

and s− are segments along top to bottom crack sur-

faces. Area A enclosed by a contour s1+s+−s2+s− is

considered. A smooth and continuous function q(x) is

introduced that satisfy q(x)=0 on s1 and q(x)=1 on s2
within domain A. The contour integral in Eq. (14) can

be rewritten through the divergence theorem, as:

J =

∫
A

(
σ′
ij

∂u′
j

∂x′
1

−W ′δ1i

)
∂q(x)

∂x′
i

dA. (16)

3.2 Interaction integral method

To extract mixed-mode SIFsKI andKII from J value in

Eq. (16), the IIM [19,20] is chosen. We consider two in-

dependent equilibrium states, i.e., an actual state (State

α) Jα(u′α
i , ε′αij , σ

′α
ij ) and an auxiliary state (State β)

Jβ(u′β
i , ε′βij , σ

′β
ij ). A near crack tip asymptotic solution

for linear fracture mechanics is chosen for the State β.

The two states are superposed and the J value can be

represented, as:

Jα+β = Jα + Jβ + Iα+β , (17)

where Jα and Jβ are J values in terms of States α and

β. Iα+β is an interaction term of the two states. The
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term can be expressed by an integral form, as:

Iα+β =∫
A

(
σ′α
ij

∂u′β
i

∂x′
1

+ σ′β
ij

∂u′α
i

∂x′
1

−W ′α+βδ1j

)
∂q(x)

∂x′
j

dA.

(18)

W ′α+β (=σ′α
ij ε

′β
ij=σ′β

ij ε
′α
ij ) is the interaction strain en-

ergy density. Also, the term can be written, as:

Iα+β =
2

Ē
(Kα

I K
β
I +Kα

IIK
β
II), (19)

where Km
I and Km

II (m=α, β) are the SIFs of the two

states. In addition, Ē=E for the plane stress condition

and Ē=E/(1− ν2) for the plane strain condition. E is

Young’s modulus and ν is Poisson’s ratio.

When the auxiliary state is chosen as mode-I (Kβ
I =1,

Kβ
II=0) or mode-II (Kβ

I =0,Kβ
II=1), we obtain the mode-

I or -II SIFs of the actual state, as:

Kα
I =

Ē

2
Iα+β , Kα

II =
Ē

2
Iα+β . (20)

3.3 Discretization technique for the equivalent domain

integral method

The EDI method and IIM are discretized by the NI

techniques. These operations can be carried out as a

post process of the solution procedure. Schematics of

the discretization method employing the NI techniques

are shown in Fig. 3(a) and (b) for SCNI and SSCI, re-

spectively. Equally spaced node distribution is arranged

surrounding the crack tip and a rectangular domain is

chosen for discretization of the EDI method.

When employing SCNI, the EDI can be discretized,

as:

J =

npA∑
K=1

(
σ′K
ij

∂u′K
j

∂x′
1

−W ′
Kδ1i

)
∂q(x)

∂x′
1

AK , (21)

where the physical values associated with the index

“K” are evaluated at xK . npA is number of Voronoi

cells within domain A. While, when SSCI is employed,

the EDI is expanded, as:

J =

npA∑
K=1

ntri∑
l=1

(
σ′K,l
ij

∂u′K,l
j

∂x′
1

−W ′
K,lδ1i

)
∂q(x)

∂x′
1

AKl
, (22)

where the values associated with the indexes “K” and

“l” are evaluated at l-th sub-cell of K-th node. It is

noted that Voronoi cells across the crack segment as

presented in Fig. 3(a). SSCI is employed for numerically

integrate the stiffness matrix and the fracture parame-

ter evaluations to introduce displacement discontinuity

across the crack. q(x) function is also schematically il-

lustrated in Fig. 3(a) and (b). The function is linearly
increasing/decreasing in the EDI domain along x′

1- and

x′
2-directions.

The J value can be evaluated by superposing the

physical values and volume of the cells/sub-cells as the

post process. Very simple discretization can be achieved

employing the Galerkin-based RKPM discretization and

the NI techniques. No numerical integration table, e.g.,

Gauss quadrature rule, is required for the fracture pa-

rameter evaluation.

Generally, circular/rectangular EDI domain with reg-

ular mesh is adopted for accurate evaluation of the frac-

ture mechanics parameters in FEM [17,18]. A general

EDI domain with irregular tetrahedral mesh have been

proposed [68,69]. However, researches on EDI with ir-

regular mesh discretization are still few. Setting of the

q(x) function will affect the accuracy of the fracture

parameters. Careful examination is needed. Therefore,

as the first attempt for the meshfree discretization, the

EDI with regular node distribution is investigated.

(b)(a)

Fig. 3 EDI discretization method by NI techniques [(a)
SCNI, (b) SSCI].

3.4 Discretization technique of the interaction integral
method

In the similar manner, IIM is discretized by adopting

the NI techniques to the integral form of the IIM in Eq.

(18). For SCNI case, it is discretized, as:

Iα+β =

npA∑
K=1

(FK)
∂q(x)

∂x′
j

dA,

FK = σ′α,K
ij

∂u′β,K
i

∂x′
1

+ σ′β,K
ij

∂u′α,K
i

∂x′
1

−W ′α+β
K δ1j , (23)

where u′ m,K
i and σ′ m,K

ij (m=α, β) are displacement

and stress components. W ′α+β
K is strain energy density
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of the superimposed state. And, for SSCI case:

Iα+β =

npA∑
K=1

ntri∑
l=1

(FK,l)
∂q(x)

∂x′
j

dA,

FK,l = σ′α,K,l
ij

∂u′β,K,l
i

∂x′
1

+ σ′β,K,l
ij

∂u′α,K,l
i

∂x′
1

−W ′α+β
K,l δ1j .

(24)

The physical values associated with “K” and “l” are

evaluated in l-th sub-cell of K-th node as well as the

EDI case in Eq. (22).

As for the q(x) in Eqs. (21)-(24), a plateau (square)

typle linear function is chosen as presented in Fig. 3(a)

and (b).

4 Numerical Examples

Four numerical examples are shown. To investigate ac-

curacy in J value solved by the EDI discretization tech-

niques for Eqs. (21) and (22), a cracked plate under

mode-I problem is chosen as the first example. For the

second example, a cracked plate under mixed-mode prob-

lem is analyzed to study accuracy in KI and KII eval-

uated by the IIM discretization technique for Eqs. (23)

and (24). A path independency in the fracture mechan-

ics parameters are also carefully examined. As the third

example, a cantilever beam including a crack for various

inclined angles are solved to demonstrate effectiveness

of the present approach. As the final example, CP sim-

ulation for a root crack in a welded joint is carried out.

All numerical results are compared with the reference

solutions. The function support of the RKs set as 2.5

of a characteristic length between a node and its neigh-

boring nodes.

Plane stress linear elastic analyses are carried out

and the material parameters are E=206,000 (MPa) and

ν=0.3 for all numerical examples. Error between the

computed results Ki and the reference results KRef
i are

defined as: ei={|KRef
i -Ki|/KRef

i }×100% (i=I, II).

4.1 Mode-I problem

A cracked rectangular plate is subjected to a tensile

load as shown in Fig. 4(a). The width W and height

H are 10 (mm), respectively. The crack length a is 5.0

(mm). Uniform tensile stress σ=1.0 (MPa) is applied

to top and bottom of the plate. This is pure mode-I

case and the reference solution is KRef
I =11.93 (MPa

mm1/2) [70]. Accuracy in J value solved by the EDI

discretization techniques are examined. The J value is

transformed to the KI value through J=K2
I /E.

(a) (b)

Fig. 4 Cracked rectangular plates to be analyzed [(a) Mode-
I case, (b) Mixed-mode case].

(a) (b)

Fig. 5 Definition of domain A for the EDI method and IIM
[(a) Type-A, (b) Type-B].

The nodes are uniformly distributed to the cracked

model in Fig. 4(a). 21×21, 41×41 and 81×81 nodes

models are arranged. Two kinds of EDI domains for the

NI techniques, i.e., Type-A and Type-B are examined.

It is schematically drawn in Fig. 5(a) and (b), respec-

tively. Parameters rin and rout are introduced to define

the EDI and IIM rectangular domain A. They are inside

and outside radii of the domain from the crack tip. To

check the path independent property, both parameters

rin and rout are increased by keeping distance between

rout and rin, i.e., one cell for Type-A and two cells for

Type-B, respectively. For both cases, rin ≥ 1.5 cell.

The computed KI values are shown in Fig. 6(a) and

(b). Fig. 6(a) is results by Type-A and SCNI case. The

vertical axis is KI values, and the horizontal axis is the

distance parameter (rin+rout)/2 (mm). As number of

nodes are increased, the results converge to the refer-

ence solution. However, a periodic oscillation can be

seen in KI even for the node density is increased. Also

the path independency cannot be found. For the ref-

erence, the result evaluated by a contour integral (CI)
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0 1 2 3 4 5

(a)

(b)

Fig. 6 KI for mode-I case evaluated by the EDI employing
SCNI [(a) Type-A, (b) Type-B].

method with the NI integration techniques [56] is shown

in Fig. 6(a) for 81×81 nodes model. SCNI is employed

for this calculation. Oscillation in the KI values can be

found and almost same results are obtained both the

EDI and the contour integral discretization techniques.

For Type-B and SCNI case is examined. The re-

sults are shown in Fig. 6(b). The results converge the

reference solution as number of nodes are increased.

Surprisingly, a periodic oscillation cannot be seen and

it has a path independency. When SCNI is employed,

the physical values are smoothed within each cell. How-

ever, non-smooth values are sometimes obtained for the

adjacent cells in analyzing steep gradients, e.g., stress

concentration near the crack tip. Because only one cell

is employed for width of the EDI domain for Type-

A case, the oscillation occurs. While, by taking two

cells for width of the EDI domain for Type-B case, the

adjacent nodal values are averaged and the oscillation

is canceled. Even more than two cells cases are stud-

ied, it is confirmed that J values evaluated by the EDI

discretization technique satisfy the path independent

property. Therefore, compared with the contour inte-

gral discretization technique by SCNI [56], effectiveness

can be proved for the EDI case.

Additionally, SSCI is adopted for Type-A and Type-

B cases. The results are shown in Fig. 7(a) and (b),

respectively. For Type-A case, a small periodical oscil-

lation can be seen but the amplitude is smaller than the

(a)

(b)

Fig. 7 KI for mode-I case evaluated by the EDI employing
SSCI [(a) Type-A, (b) Type-B].

SCNI cases as depicted in Fig. 6(a) and (b). Moreover,

the oscillation cannot be found even a coarse model is

employed for Type-B case. For the SSCI case, the phys-

ical values are smoothed within each sub-cell and accu-

racy is improved further compared to the SCNI case.

Results in KI and their path independent properties

are improved for both Type-A and Type-B cases.

The error eI between the computed results and the

reference solutions is studied. Type-B case is only ex-

amined and the results evaluated by SCNI and SSCI

are shown in Table 1. The nodal spaces 0.5, 0.25 and

0.125 (mm) corresponding to 21×21, 41×41 and 81×81

node models, respectively. The KI values are evaluated

for the EDI domain defined by (rin+rout)/2 from the

crack tip. rin=a/2 is set for all cases. The error is de-

creased as finer models is employed. Results with SSCI

cases are highly accurate than those of SCNI cases.

Through the investigation of the EDI discretization

method by the NI techniques, it is confirmed that the

approach is effective for the evaluation of J value. It

is noted that Type-B and SSCI case is highly accurate

and possess the path independent property for mode-I

case.

4.2 Mixed-mode problem

To study accuracy in the proposed IIM discretization

technique, a mixed-mode problem is analyzed. The anal-
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Table 1 Convergence studies of KI for mode-I case (Type-B).

Type-B SCNI SSCI
Nodal space (rin+rout)/2 KI eI KI eI

(mm) (mm) (MPa mm1/2) (%) (MPa mm1/2) (%)
0.5 2.75 12.069 1.166 11.962 0.272
0.25 2.625 12.037 0.894 11.943 0.108
0.125 2.5625 11.985 0.463 11.934 0.030

(a) (b)

(c) (d)

Fig. 8 SIFs for mixed-mode case evaluated by the IIM for Type-B case [(a) KI (SCNI), (b) KII (SCNI), (c) KI (SSCI), (d)
KII (SSCI)].

Fig. 9 Convergence of KI and KII for mixed-mode case
(Type-B).

ysis model is shown in Fig. 4(b). W is 7.0 (mm) and H

is 16.0 (mm). a is 3.5 (mm). The reference solutions are

KRef
I =34.0 and KRef

II =4.55 (MPa mm1/2) [71]. 15×33,

29×65 and 57×129 uniformly distributed nodes models

are employed. Type-B model is only employed based on

the previous investigation.

KI and KII results for SCNI cases are shown in Fig.

8(a) and (b), respectively. As well as the EDI discretiza-

tion technique, a typical oscillation behavior in SIFs

cannot be found and the results converge as the node

density increases for both KI and KII cases. Addition-

ally, the mixed-mode SIFs evaluated by SSCI is shown

in Fig. 8(c) and (d), respectively. Reasonable results are
obtained and the path independency can be found for

both cases.

Convergence studies are carried out. The results are

shown in Fig. 9. The vertical axis is error values ei
(i=I, II) in the SIFs. The horizontal axis is the nodal

spaces, i.e., 0.5, 0.25 and 0.125 (mm) correspond to

15×33, 29×65 and 57×129 nodes models, respectively.

The values are taken the distance parameter for the EDI

domain (rin+rout)/2. For all cases, rin=a/2 is chosen.

As the node density increases, the results are monoton-

ically converged. Convergence rate is better for the re-

sults with SSCI case than those with SCNI case. eII for

SSCI is much smaller than other three cases for coarse

models, but it tends to be the same as other methods
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for the finest model. For the mixed-mode problem, ex-

act solution cannot be available. It is supposed that fur-
ther refined reference solution is required for the precise

examination. It is confirmed that the EDI and IIM dis-

cretization technique by the NI techniques are effective

and highly accurate computations are carried out. The

error values less than 1.0% in KI and KII are achieved

for the nodal space 0.25 (mm) in Type-B and SSCI case.

4.3 A cantilever beam including an inclined crack

To validate effectiveness of the present approach, a can-

tilever beam including a crack for various inclined an-

gles are examined. The target problem is shown in Fig.

10(a). 2a=3.75 and 5.0 (mm) are respectively investi-

gated for W=H=13 (mm). The applied stress σ=1.0

(MPa). The inclined angle ω is varied from 0 to 180

(deg.). A meshfree model is presented in Fig. 10(b).

Nodal distance of external region is 0.2 (mm) and in-

ternal region is 0.125 (mm). Total number of nodes are

8,842. A 10×10 rectangular domain is arranged to sur-

rounding crack tip for the evaluation of mixed-mode

SIFs. SSCI and Type-B case is chosen. It is noted that

no crack face contact treatment is introduced.

(a) (b)

Fig. 10 A cantilever beam including an inclined crack to
be analyzed [(a) Analysis model and dimension of the tar-
get problem, (b) Meshfree model for 2a=3.75 (mm), ω=40
(deg.)].

(a) (b)

Fig. 11 Modeling around the crack tip A for 2a=3.75 (mm),
ω=40 (deg.) [(a) Meshfree model and the IIM domain, (b)
FEM model].

(a)

(b)

Fig. 12 Mixed-mode SIFs for various crack angles ω [(a)
2a=3.75 (mm), (b) 2a=5.0 (mm)].

A close-up view of the rectangular domain around

crack tip A is shown in Fig. 11(a). A half crack length

is a. For all computations, rin=a/2 is taken for all the

cases, e.g., the blue colored region is the domain for the

IIM discretization in the figure. For the reference so-

lution, finite element (FE) computation is carried out.

Fracture mechanics option of ANSYS APDL 19.2 [72] is

applied. The FEs around the crack tip A is also shown

in Fig. 11(b). Linear quadrilateral/triangular FEs are

employed. The edges of the plate are uniformly dis-

cretized by 100 elements, and the skew mesh scheme is

applied on the crack tips. PLANE183 is chosen. Around

0.0325 (mm) FEs are adopted near the crack tip. The

smallest size of the element is 1/16 of that on the edges.

Therefore, for different inclined angles, the total num-

ber of elements varies between 10,533 to 11,845. As for

the evaluation of SIFs, the CINT command is employed

directly. Total ten paths are taken. Except for the first

path nearest the crack tip, the averaged values are em-

ployed as the reference solutions.

The results are shown in Fig. 12(a) and (b) for

2a=3.75 and 5.0 (mm), respectively. The meshfree re-

sults are good agreement with the reference solutions

for both cases. Some of the KI values take negative

because the crack closure do not take into account. Ad-

ditionally, numerical data of SIFs for 2a=3.75 and 5.0
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Table 2 Tip A and Tip B mixed-mode SIFs (MPa
√
mm) for various crack angles ω of 2a=3.75 (mm).

Tip A (Mfree) Tip A (FEM) Tip B (Mfree) Tip B (FEM)
ω (deg.) KI KII KI KII KI KII KI KII

0 -1.166 2.108 -1.168 2.114 -1.283 1.677 -1.285 1.681
30 -2.745 0.372 -2.748 0.374 -2.420 0.374 -2.423 0.376
60 -1.791 -1.774 -1.793 -1.775 -1.965 -1.273 -1.967 -1.272
90 0.412 -1.845 0.412 -1.845 -0.260 -1.856 -0.261 -1.856
120 1.417 -0.128 1.418 -0.125 1.276 -0.676 1.277 -0.675
150 0.515 1.503 0.515 1.508 0.976 1.408 0.977 1.413

Table 3 Tip A and Tip B mixed-mode SIFs (MPa
√
mm) for various crack angles ω of 2a=5.0 (mm).

Tip A (Mfree) Tip A (FEM) Tip B (Mfree) Tip B (FEM)
ω (deg.) KI KII KI KII KI KII KI KII

0 -1.369 2.565 -1.371 2.573 -1.571 1.935 -1.574 1.940
30 -3.361 0.447 -3.366 0.449 -2.897 0.426 -2.902 0.429
60 -2.216 -2.112 -2.218 -2.115 -2.378 -1.462 -2.381 -1.461
90 0.596 -2.165 0.596 -2.165 -0.424 -2.182 -0.425 -2.182
120 1.675 -0.075 1.677 -0.071 1.446 -0.899 1.447 -0.899
150 0.538 1.778 0.538 1.783 1.204 1.616 1.205 1.621

(mm) are shown in Tables 2 and 3 for every 30 (deg.).

The meshfree results are almost same with the reference

solutions and the error in the SIFs are less than 1.0%.

It is confirmed that the present approach is highly ac-

curate and the path independent property is kept for

fracture mechanics parameters.

4.4 CP simulation for a root crack in a welded joint

To further validate the present approach, a CP simula-

tion is carried out. When constructing a steel cruciform

welded joint, a fillet welding is adopted to join the verti-

cal and horizontal plates. Unwelded part is remained in

the connection. Fatigue crack sometimes generates from

the unwelded part (root part). The fracture behaviors

are important for the engineering application. The CP

behaviors are studied based on the present approach.

The 2D welded joint model is shown in Fig. 13.

A quarter model is taken assuming symmetric BCs.

The plate thickness of the horizontal and vertical plates

are T1=T2=15 (mm), respectively. The length of the

analysis domain is H=25 (mm) and W=25 (mm). The

welded leg length is S=10 (mm). A slit (a root crack)

is introduced as the unwelded part, CP simulation is

carried out. The slit has no gap to y-direction.

Based on Paris law CP simulation [73], the cyclic

load is assumed to the welded joint for x- and y-direction.

The stress amplitude is σ̄xx and σ̄yy, respectively. A

stress ratio R=σ̄xx/σ̄yy is defined and three loading

conditions R=-1, 0 and 1 are investigated. The initial

root crack length is a=5.0 (mm).

CP simulation is carried out. The meshfree model

is presented in Fig. 14. The whole view is Fig. 14(a).

Analysis domain

A cruciform welded joint

Root crack

Weld

Unwelded part

Vertical plate

Horizontal plate

Fig. 13 A cruciform welded joint model and its BCs to be
analyzed (Quarter model).

The joint is discretized by uniformly distributed nodes

and Voronoi cells are placed for the NI. The average

nodal distance is 0.125 (mm). SSCI is employed. IIM is

adopted for the mixed-mode SIFs evaluation. The CP

simulation is carried out until the crack penetrates the

joint. The propagating crack is shown in Fig. 14(b).

To predict crack propagation direction θ′′, Erdogan-Sih

criterion [74] is adopted, as:

θ′′ = 2tan−1
[1
4

{ KI

KII
− sign(KII)

√( KI

KII

)2
+ 8
}]

. (25)

After evaluating the direction, the crack is extended.

The J-integral in Eq. (14) is formulated for a straight

crack and the EDI domain should be defined for the

straight crack region. In the CP simulation, 5×5 nodes

rectangular contours are adopted surrounding the crack
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Table 4 Mixed-mode SIFs for the initial crack a=5.0 (mm) for different R values.

KI (MPa
√
mm) KII (MPa

√
mm)

R Mfree MSC.Marc Code Aster Mfree MSC.Marc Code Aster
-1 334.1 334.8 334.9 -13.10 -13.30 -13.10
0 287.1 287.8 287.7 -25.00 -25.20 -25.20
1 240.0 240.7 240.7 -36.90 -37.20 -37.20

(a)

(b)

Fig. 14 Meshfree model for the welded joint [(a) Whole view,
(b) Close-up view around the crack].

tip. A distance for six nodes is taken as the crack ex-

tension length for every step, i.e., ∆a=0.75 (mm).

Mixed-mode SIFs for the initial crack is examined

first. Different R at σ̄yy=100 (MPa) is investigated. For

the reference solutions, fracture mechanics option of

MSC.Marc [75] and Code Aster [76-78] are employed.

Very fine mesh and well converged results are adopted

to evaluate the reference solutions. Linear quadrilateral

FEs are employed in the MSC.Marc case. The element

type is Element 3 (A four-node, isoparametric element).

Whole structure is discretized by 0.1 (mm) mesh and

0.025 (mm) mesh chosen around the crack tip. The total

number of nodes and elements are 42,903 and 42,169,

respectively. LORENZI J-integral option is employed

for the SIFs evaluation. While quadratic triangular FEs

and X-FEM option are employed for Code Aster case.

The element type is TR6. Whole structure is discretized

0.5 (mm) mesh and the mesh is refined at the crack tip.

The mesh around the crack tip is about 0.0625 (mm).

The total number of nodes and elements are 7,329 and

3,570, respectively. G-theta method is employed for the

SIFs evaluation [78]. ∆a=0.05 (mm) for the CP simu-

lation.

The SIFs results for the initial crack are shown in

Table 4 for R=-1, 0 and 1, respectively. Type-B is cho-

sen. The SIFs are evaluated with two domains, i.e.,

rin=2.5 cell and rin=3.5 cell, respectively. And, the SIFs

evaluated by the two domains are averaged. Among

them, reasonable results are obtained for both KI and

KII. When tensile stress is applied to y-direction (R=0),

the initial crack is under mixed-mode condition. Ad-

ditionally, compressive stress is applied to x-direction,

i.e., R=-1, KI is increased and KII is decreased com-

pared with R=0 case. While, tensile stress is added to

x-direction (R=1),KI is decreased and KII is increased.

The crack paths are shown in Fig. 15 for different

R values. The results are compared with Code Aster

X-FEM results. It is found that reasonable crack paths

can be obtained for all cases. Based on Erdogan-Sih

criterion, if ratio of |KI/KII| is smaller, the angle θ′′ is

larger. The inclination angle of the propagating crack

to R=1/-1 is larger/smaller compared to R=0 case.

Fig. 15 Crack paths for different R values employing the
meshfree method and Code Aster X-FEM.

5 Conclusion

A novel fracture parameter evaluation technique is pro-

posed. A Galerkin-based RKPM meshfree method is

adopted. Highly accurate and stable solid mechanics

analysis can be carried out by employing the meshfree
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method not only intact but cracked problems. Contin-

uous displacement and stress/strain fields can be ob-
tained by the RK interpolants with quadratic basis.

Accurate approximation is also carried out for steep

gradients such as crack tip stress/strain fields by the en-

riched basis. Diffraction and visibility criterion are cho-

sen to represent displacement discontinuity across the

crack. The SCNI and SSCI are very suitable for numeri-

cally integrate the stiffness matrix of the intact/cracked

problems.

The EDI method and IIM are discretized by the NI

techniques. In the meshfree framework, the displace-

ment, stress and strains can be evaluated by nodes. The

physical values are averaged by each Voronoi cell and

sub-cells. The EDI method and IIM are evaluated by

the sum of the physical quantities and volume of the

nodes. Mixed-mode fracture problems and CP simula-

tion are analyzed. Through the careful examinations,

it is confirmed that the proposed technique is effective
and highly accurate.
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