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Abstract In this paper, an enriched reproducing ker-

nel particle method combined with stabilized conform-

ing nodal integration (SCNI) is proposed to tackle ma-

terial interface problems. Regarding the domain inte-

gration, the use of SCNI offers an effective NI technique

and eliminates the zero-energy modes which occurs to

direct NI. To model material interfaces, the method en-

riches the approximation by adding special functions

constructed based on the level set function to represent

weak discontinuities. Numerical examples with simple

and complicated geometries of interface problems in

two-dimensional linear elasticity are presented to test

the performance of the proposed method, and results

show that it considerably reduces strain oscillations and

yields optimal convergence rates.

Keywords Meshfree method, Nodal integration,
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1 Introduction

Meshfree methods (MFs) have been extensively devel-

oped over the past two decades since the seminal works
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of Belytschko and coworkers [1] on the element-free

Galerkin (EFG) method, and then a great number of

other MFs were proposed such as reproducing kernel

particle method (RKPM) [2], h-p cloud method [3],

meshless local Petrov-Galerkin method [4], method of

finite spheres [5], local maximum-entropy method [6],

among others.

The common feature of MFs is that their approxi-

mation is constructed based on only scattered nodes in

the domain, so it bypasses the need for obtaining high-

quality mesh. Consequently, the drawbacks of mesh-

based methods such as finite element method (FEM)

can be circumvented, and there have existed a large

body of literature in MFs about large deformation [7,8],

fracture [9–12], plates and shells [13–15] and others.

Furthermore, the order of continuity and completeness

of MF approximation can be controlled independently

from one another, thus one can be varied while the

other is fixed. As a result, it offers a huge advantage of

solving PDEs involving high-order derivatives. Further-

more, there are additional benefits provided by MFs

such as easy implementation of h- and p- refinement

and straightforward enrichment of approximation by a

priori feature of the solution under consideration.

Possessing all of these attractive properties, MFs

show their potential for the effective solutions to PDEs.

However, similar to other numerical techniques, MFs

also have their inherent disadvantages. One of the ma-

jor difficulties in employing MFs is the problem of do-

main integration. In fact, Dolbow and Belytschko [16]

demonstrated that two primary sources of domain in-

tegration errors in MFs are the rational nature of MF

shape functions and the misalignment between the shape

function supports and integration domains. Both fac-

tors affect the accuracy and convergence of numerical

solutions.
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In early literature such as Belytschko [1], background

cells combined with high-order Gauss quadrature was

proposed for numerical integration, and this technique

offers the stability and convergence of the solutions.

However, the choice of high-order quadrature leads to

an expensive integration scheme. It is worth noting that

low-order quadrature consumes less computational time

but can lead to inaccurate and even non-convergent nu-

merical solutions [17–21]. However, it has been realized

by many studies [18–21] that even high-order quadra-

ture may fail the linear patch test, so it affects the over-

all accuracy and convergence rate of the method.

A viable alternative to the high-order quadrature is

the use of nodal integration (NI). At first, it appears

that node-based integration is a promising option due

to its straightforward implementation and efficiency.

However, it turns out that NI is vulnerable to numeri-

cal instability which was proven in many works of the

early development [17, 18, 22, 23]. After the realization

of instability issues, there are several NI techniques that

have been proposed to correct the problems. Beissel and

Belytschko [17] presented a least-square stabilization in

which the original energy functional is augmented by a

stabilization term containing the square of the residual

of the equilibrium equation. The method successfully

suppresses the numerical oscillation, but because of the

second derivatives of the displacements included in the

formulation, a quadratic basis is required to maintain

the consistency, thus resulting in more expensive com-

putations. In the same paper, it was pointed out that

the reason for spatial stability is that the integrals of the

variational form are only sampled at nodes whose shape

function’s derivatives are nearly zero, leading to the un-

derestimation of contributions of the strain energy term

to the stiffness matrix. Stress point integration was sug-

gested by Dyka et al. [22] to eliminate the oscillations

in smoothed-particle hydrodynamics method by taking

the derivatives at points away from nodes. Bonet and

Kulasegaram [23] introduced a least-square stabiliza-

tion and an integration correction to remove the spatial

stability and pass the linear patch test, hence improving

the accuracy.

Chen et al. [18] derived an integration constraint

for MFs to satisfy the linear patch test and proposed a

stabilized conforming nodal integration method (SCNI)

which utilizes the strain smoothing technique to fulfill

the integration constraint. Specifically, by the applica-

tion of the divergence theorem, the strains at nodes are

smoothed over conforming cells such that the integra-

tion constraint is satisfied, and the derivatives are not

directly computed at nodes, which eliminates the spa-

tial instability. Although SCNI can overcome the zero-

energy mode due to the zero gradients at nodes, the

low-energy modes still exist under certain loading and

boundary conditions (BCs). Therefore, additional sta-

bilization is needed to obtain stable solutions for these

cases.

Puso et al. [24] proposed a modified stabilized con-

forming nodal integration method (MSCNI) in which

a least-square type stabilization term is added into the

stiffness matrix to remove the spurious modes. Wang

and Chen [14] presented a subdomain stabilized con-

forming integration (SSCI) to improve the accuracy

and stabilize the oscillatory modes in the context of

plates and shells. In this approach, each smoothing cell

is further divided into conforming sub-cells, and the

strain smoothing operations are performed on these

sub-cells. Recently, a fast stabilization technique called

naturally stabilized nodal integration (NSNI) was pro-

posed by Hillman [20] to eliminate the spurious modes.

The Taylor series expansion is utilized to circumvent

the instability, and the second-order derivatives are con-

structed by the implicit gradient expansion instead of

being evaluated directly. Thus, the CPU consumption

is significantly reduced, yielding an efficient stabilized

method. It should be noted the all SCNI-based meth-

ods (SCNI, MSCNI, SSCI, and NSNI) were designed to

pass the integration constraint, thus satisfying the lin-

ear patch test. The smoothed particle Garlerkin (SPG)

method [25,26] is another gradient-based NI introduced

to overcome the need of background mesh and pro-

vide parameter-free stabilization for non-linear struc-

tural analysis. In contrast to SCNI [18] which employs

the strain smoothing, the SPG introduces the stabi-

lization effect by means of displacment (or velocity)

smoothing.

Another drawback of MFs lies in the approximation

properties of MF shape functions which are generally

very smooth. It has been known that smooth approx-

imations have difficulty in reproducing functions with

non-smooth characteristics, and they exhibit oscillatory

behaviour at the line of discontinuity. Such oscillations

are the well-known Gibbs phenomenon. In elasticity, an

archetype of problems whose solutions are non-smooth

is material interface problems in which there is a jump

in derivatives of the displacement across the interface.

In the context of MFs, one of the earliest works to

tackle the interface problem was published by Cordes

and Moran [27]. In their approach, the nodal influ-

ence domains that intersect the interface are truncated,

and the interface conditions are weakly imposed in the

variational form by the Lagrange multipliers. However,

the oscillations in stress and strain fields were observed

around the interface, so two filtering methods were also

proposed to reduce the oscillations. Using the extrinsic

enrichment technique, Krongauz and Belytschko [28]
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added a global function containing discontinuities in

derivatives to the approximation space to capture the

jump in strains across the interface, and the jump shape

functions were constructed to have compact support so

that the discrete equations are banded. Consequently, a

considerable improvement in the accuracy of strain so-

lutions is obtained as compared to the standard EFG at

the cost of introducing extra degrees of freedom (DOFs)

associated with the jump strength.

Based on the enriched function given by Krongauz

and Belytschko [28], Wang et al. [29] directly embed-

ded the derivative discontinuities into the basis func-

tions instead of modifying the approximation space to

model material interfaces. By the adoption of intrin-

sic enrichment, this method does not introduce addi-

tional DOFs. Liu and Taciroglu [30] then extended the

work by Wang et al. [29] to the analysis of homoge-

neous piezoelectric structures with arbitrarily shaped

interfaces that are represented by a set of cubic spline

segments. Furthermore, they also studied the effect of

support size when using the intrinsic enrichment on the

results, and they concluded that a larger support size

than the normal one is needed to obtain reasonable so-

lutions. Joyot et al. [31] combined the intrinsic enrich-

ment with the level set method to propose an RK ap-

proximation which is capable of reproducing functions

with discontinuous derivatives. It is worth mentioning

that due to the implicit representation of material in-

terfaces by the level set function, no interface nodes are

required. A basis function with built-in discontinuous

derivative was presented to replace the standard lin-

ear basis function to model the weak discontinuity by

Masuda and Noguchi [32].

More recently, a class of immersed MFs has been

extensively studied for the analysis of inhomogeneous

media by Wu et al. [33], Wang et al. [34], Huang [35],

among others. In these immersed methods, each sub-

domain is independently discretized from one another,

so they provide huge potential for resolving problems

involved with complicated material interfaces. Another

interesting approach is to use the conforming window

presented by Koester and Chen [36], in which the win-

dow functions are constructed to conform to interface

boundaries, enabling a natural reproduction of weak

discontinuities in the approximation.

According to the authors’ knowledge, available en-

riched MFs for the interface problems in the literature

such as [28–32] primarily consider the background cell

with high-order Gauss quadrature as the main inte-

gration method. Therefore, the major objective of the

present paper is to develop an enriched RKPM in the

framework of NI to tackle the interface problems. This

is the main novelty of the current study. Specifically,

we adopt the local enrichment concept in which an abs-

enrichment function [37] is added to the approximation

space to capture the discontinuities in derivatives. Fur-

thermore, the level set method [38] is employed, so it is

unnecessary to place nodes on the interface, bypassing

the discretization effort required for conforming tech-

niques. In this work, we only focus on the linear elastic

analysis. Moreover, we emphasize that our goal is to

enhance the accuracy of the standard RKPM in the

considered problems, so we do not aim at developing

a method that can compete with (extended) FEM in

solving such problems.

The remainder of this paper is organized as fol-

lows. The construction of meshfree approximation is

presented in Section 2 where the RK approximation

is focused. In Section 3, the smoothing operation for

NI is presented, and the foundation of assumed strain

method is introduced in order to cast the smoothed

strain into the variational form in Section 4. An en-

riched RKPM formulated to tackle the interface prob-

lems with an emphasis on the combination with NI is

presented in Section 5. Finally, several benchmark prob-

lems are studied to examine the performance of the pro-

posed methods in Section 6.

2 Reproducing kernel approximation

In MFs, the approximation is constructed based on a set

of scattered nodes, which is different from mesh-based

methods whose approximation relies on elements. Two

popular approaches for constructing approximation in

MFs are moving least square (MLS) [1] and reproduc-

ing kernel (RK) approximation [2]. In this work, we fo-

cus only on the RK approximation to demonstrate the

properties of approximation functions commonly used

in MFs.

We briefly introduce the multi-index notation. A d-

dimensional multi-index is a d-tuple of non-negative

integers α = (α1, α2, ..., αd). For a multi-index α and

x = (x1, · · · , xd) ∈ Rd, we define

– Length of α: |α| = α1 + α2 + · · ·+ αd
– Power: xα = xα1

1 xα2
2 · · ·x

αd
d

– Subscript: bα = bα1α2···αd

Consider an open bounded domain Ω ⊂ Rd which is

discretized by a set of nodes {xI ∈ Ω : 1 ≤ I ≤ NP},
where NP is the number of nodes. Let u : Ω → R
be a real-valued function on Ω. Although a real-valued

function is considered here for simplicity, the extension

to vector-valued functions is straightforward. The RK

approximation of the function u(x) denoted by uh(x) is

constructed by the product of a kernel function φa(x−



4 Computational Particle Mechanics

(a)

(b)

Fig. 1: Cubic B-spline kernel function and correspond-

ing RK shape function with linear basis in one dimen-

sion: (a) Kernel function, (b) RK shape function.

xI) with compact support and a correction function

C(x,x− xI) as follows

uh(x) =

NP∑
I=1

C(x,x− xI)φa(x− xI)uI

=

NP∑
I=1

ψI(x)uI , (1)

where ψI(x) = C(x,x−xI)φa(x−xI) is the RK shape

function, and uI is the nodal parameter associated with

a node I.

The correction function C(x,x−xI) is constructed

such that the RK shape functions satisfy the reproduc-

ing conditions. Particularly, the correction function is

represented by an n-th order polynomial as

C(x,x− xI) =
∑
|α|≤n

bα(x)(x− xI)α, (2)

in which the set of unknown coefficients {bα(x)}|α|≤n
are determined by enforcing the following n-th repro-

(a)

(b)

Fig. 2: RK shape function and its x-derivatives with

linear basis and cubic B-spline in two dimensions: (a)

RK shape function, (b) corresponding x-derivatives.

ducing conditions

NP∑
I=1

ψI(x)xαI = xα, |α| ≤ n. (3)

Then the RK shape function of a node I, ψI(x), is

expressed as

ψI(x) = HT (0)M−1(x)H(x− xI)φa(x− xI), (4)

where

M(x) =

NP∑
I=1

H(x− xI)HT (x− xI)φa(x− xI). (5)

In the preceding equation,M(x) is the moment ma-

trix, and H(x − xI) is the basis vector defined as the

column vector of {(x−xI)α}|α|≤n. For example, in one

dimension with linear basis

H(x− xI) = [1, x1 − x1I ]T , (6)

in two dimensions with linear basis

H(x− xI) = [1, x1 − x1I , x2 − x2I ]T , (7)



Material interface modeling by the enriched RKPM with stabilized nodal integration 5

and in three dimensions with linear basis

H(x− xI) = [1, x1 − x1I , x2 − x2I , x3 − x3I ]T . (8)

Note that when the RK shape functions meet the

reproducing condition for n = 0, they satisfy a cru-

cial property called the partition of unity. For shape

functions with linear completeness, this property is au-

tomatically fulfilled.

Fig. 3: An example of a square domain discretized by a

Voronoi diagram.

A commonly used kernel function is the cubic B-

spline function giving C2 continuity, and it has the fol-

lowing form

φa(x−xI) =


2
3 − 4z2I + 4z3I for 0 ≤ zI ≤ 1

2
4
3 − 4zI + 4z2I − 4

3z
3
I for 1

2 ≤ zI ≤ 1

0 for zI > 1

,

(9)

where zI = ‖x− xI‖/aI , and aI is the support size of

the kernel function φa(x − xI) centered at xI . In this

work, we select aI as follows

aI = chI , (10)

where we have used 1.5 ≤ c ≤ 2.5 and

hI = max
J∈SJ

‖xJ − xI‖, (11)

where SJ is the set of four nodes closest to xI and

different from xI .

Fig. 1 illustrates cubic B-spline function and cor-

responding RK shape function with linear basis for 11

equispaced nodes in the one-dimensional case.

Fig. 2 shows two-dimensional RK shape function

and its x-derivatives with linear basis and cubic B-

spline. It is obvious that both shape function and deriva-

tives are smooth because the C2 kernel function is used.

3 Stabilized conforming nodal integration

In this section, we discuss the smoothed strains used

in SCNI proposed by Chen et al. [18]. Basically, the

smoothed strains are formulated to meet the following

integration constraint [18, 19], which also implies the

first-order Galerkin exactness:

∧∫
Ω

∇ψI dV =

∧∫
Γ

ψI n dΓ, (12)

where ∧ over the integral sign denotes the numerical

integration of domain and boundary integrals, and ψI
is a shape function with first-order completeness.

Following the concept of SCNI [18], we define the

smoothed (or assumed) strain field ε̃ as follows. Let

{xL}NPL=1 be the set of nodes used to discretize the do-

main Ω. Then, by the Voronoi diagram, the domain Ω

is discretized into NP subdomains (cells) ΩL with a

boundary ΓL so that Ω =
⋃NP
L=1ΩL, and ΩI ∩ΩJ = ∅,

∀I 6= J , i.e., they do not overlap. Each ΩL is regarded

as the nodal representative domain for the correspond-

ing node xL as illustrated in Fig. 3. In each subdomain

ΩL, we can subdivide it further into NSC conforming

subcells ΩKL , i.e., ΩL =
⋃NSC
K=1 Ω

K
L as shown in Fig. 4.

Note that, in the prsent paper, new subcells are formed

by connecting the centroid of a nodal cell to its vertices.

For other subdivision schemes, please refer to [14, 21].

Given a displacement field u, the assumed strain ε̃ is

constructed on each subcell ΩKL as follows:

ε̃(xKL ) =
1

AKL

∫
ΩKL

ε(u) dV, (13)

where xKL and AKL are the centroid of the K-subcell in

the L-th nodal cell and the area ofΩKL , respectively, and

ε is the infinitesimal strain tensor which is determined

by the strain-displacement relations:

ε(u) =
1

2
(∇u+∇uT ). (14)

Note that the strain ε which is defined in Eq. (14) is

compatible with the displacement field u. In contrast,

the smoothed strain in Eq. (13) is generally incompat-

ible with the displacement field u.

Remark: The assumed strain ε̃(xKL ) given by Eq.

(13) is constant in ΩKL , and it can be regarded as the

smoothing (average) of the compatible strain ε(u) over

the subcell ΩKL . If the cell ΩL is not subdivided, the

strain smoothing at the given cell is carried out as

ε̃(xL) =
1

AL

∫
ΩL

ε(u) dV, (15)
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Fig. 4: Schematic illustration of cell subdivision. New

subcells are created by connecting the centroid of a

nodal cell to its vertices.

where AL is the area of ΩL.

Although SCNI can eliminate zero-energy modes by

avoiding directly sampling gradients at nodes, in some

cases spurious low-energy modes can be excited [20,24].

Therefore, several stabilized techniques for NI were pro-

posed to address the unstable modes such as MSCNI

[24], SSCI [14], and NSNI [20]. In this study, SSCI is

adopted because it naturally fits in with the cell parti-

tioning strategy discussed later in 5.2.

4 Variational formulation

4.1 Strong form

Consider an open and bounded domain Ω ⊂ R2 with a

closed boundary Γ as shown in Fig. 5(a). The boundary

Γ consists of two parts Γu and Γt where Γu ∩ Γt = ∅
and Γu ∪ Γt = Γ . The strong form of a linear elasticity

problem asks to find the displacement field u : Ω → R2

such that the field equations

∇ · σ + b = 0 in Ω, (16)

subjected to the BCs

u = ū on Γu, (17a)

σ · n = t̄ on Γt, (17b)

are satisfied. In Eq. (16) above, σ denotes the Cauchy

stress tensor, and b is the body force. On the right-

hand sides of Eqs. (17a) and (17b), ū and t̄ are the

prescribed values of displacement and traction on Γu
and Γt, respectively, and n = (n1, n2) is the outward

unit normal vector to the boundary Γ . Furthermore,

the constitutive law for linear elasticity states

σ = C : ε, (18)

where C is the elasticity tensor.

If there exists a material interface Γd in the body,

the body is separated into Ω+ and Ω− corresponding

to C+ and C− with Ω = Ω+ ∪ Ω− as depicted in Fig.

5(b). Moreover, additional interface conditions are in-

troduced, i.e., continuity of displacement and traction,

as follows

[[u(x)]] = u+ − u− = 0 on Γd, (19)

[[σ(x) · n(x)]] = σ+ · n− − σ− · n− = 0 on Γd, (20)

where the subscripts + and − indicate quantities cor-

responding to Ω+ and Ω− as shown in Fig. 5(b).

4.2 Weak form

In order to introduce the smoothed strains presented in

Section 3 into the framework of variational formulation,

the assumed strain method [39,40] is adopted to derive

the following weak form∫
Ω

δε̃h : C : ε̃h dV −
∫
Γu

δuh · th dS

−
∫
Γu

δth · (uh − ū) dS + α

∫
Γu

δuh · (uh − ū) dS

=

∫
Ω

δuh · b dV +

∫
Γt

δuh · t̄ dS, (21)

where α is a penalty parameter. A detailed derivation

of the weak form is given in Appendix A. By inspection,

Eq. (21) has a similar form to the Nitsche’s method [41]

except the compatible strains replaced by the smoothed

strains. On the left-hand side of Eq. (21), the second,

third and fourth terms are responsible for imposing the

essential BCs.

5 Enriched RKPM

In this section, an enriched RKPM method combined

with the stabilized NI is proposed to solve material in-

terface problems. To illustrate the difficulties of general

MFs in solving such problems, consider a simple prob-

lem where a bar composed of two different materials

is fixed on one end and is subject to a prescribed unit

displacement in the horizontal direction on the other

end. In this problem, due to the material discontinuity,

there is a jump in strains at the interface.

Fig. 6 depicts the strain solution obtained by the

standard RKPM without any special treatment, and

unsurprisingly the solution is highly oscillatory and con-

siderably differs from the exact one. In addition, the

result given by the proposed method in this section is

presented for comparison, and the weak discontinuity is

accurately represented. Therefore, a special technique
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(a) (b)

Fig. 5: Domain description: (a) Homogeneous body, (b) Inhomogeneous body.

Fig. 6: Strain jump at the material interface located at

x = 5 for the inhomogeneous bar. The ratio of Young’s

modulus of the two materials is set to be 10 in this

example.

is required to reduce the oscillation and to improve the

approximation quality of MF functions in the afore-

mentioned problem. In this paper, we introduce a tech-

nique based on the partition of unity property of MF

functions.

5.1 Formulation

As discussed in Section 2, the MF shape functions fulfill

the partition of unity, so we can enrich the approxima-

tion space by an enrichment function which can capture

a known feature of the solution. In the present discus-

sion, we assume that there is only one material interface

Γd in the domain Ω in order to simplify the formula-

tion. However, the extension to multiple interfaces can

be done in a similar fashion. For the problem of interest,

in addition to the standard MF shape functions, we in-

troduce an enriched function whose derivatives are dis-

continuous at the interface to the approximation space.

As a result, the discrete displacement field, uh, and its

variation, δuh, can be expressed as

uh(x) =
∑
I∈G

ψI(x)dI +
∑
J∈M

ψJ(x)ϕ(x)aJ

= Nd(x)d+Na(x)a, (22a)

δuh(x) =
∑
I∈G

ψI(x)δdI +
∑
J∈M

ψJ(x)ϕ(x)δaJ

= Nd(x)δd+Na(x)δa, (22b)

where G denotes the set of all NP nodes, M is the set

of NE nodes whose supports intersect the interface Γd,

and ϕ(x) is the enrichment function.

Furthermore, d = [d1, · · · ,dNP ]T is the vector of

standard DOFs consisting of the nodal vectors of stan-

dard DOFs dI = [d1I , d2I ]
T and a = [a1, · · · ,aNE ]T

is the vector of enriched DOFs consisting of the nodal

vectors of enriched DOFs aJ = [a1J , a2J ]T ; Nd(x) =

[Nd1(x), · · · ,NdNP (x)] is the standard shape function

matrix composed of the nodal sub-matrix

NdI(x) =

[
ψI(x) 0

0 ψI(x)

]
, (23)

and Na(x) = [Na1(x), · · · ,NaNE(x)] is the enriched

shape function matrix composed of the nodal sub-matrix

NaJ(x) =

[
ψ̂J(x) 0

0 ψ̂J(x)

]
, (24)

where ψ̂J(x) := ψJ(x)ϕ(x).

In this work, the enrichment function ϕ(x) used to

capture weak discontinuities is the abs-enrichment [37]

which is defined as

ϕ(x) = |φ(x)| =

{
−φ(x) if φ(x) < 0

+φ(x) if φ(x) ≥ 0
, (25)
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in which φ(x) : Ω → R is the signed distance function

defined to represent the interface position by

φ(x) = ± min
x∗∈Γd

‖x− x∗‖, (26)

where the sign is different on two sides of the inter-

face Γd. It should be noted that an enriched node has

more DOFs than a standard node. For each interface

cut by the support of a node xL, two additional en-

riched DOFs are added to that node. For example, if a

node xL has its support cut only one interface, it will

have four DOFs instead of two.

With the addition of the enrichment to the displace-

ment approximation, the smoothed strain vector can be

found as follows,

ε̃hij(x
K
L )

=
1

AKL

∫
ΩKL

εij(u
h) dV

=
1

2AKL

∫
ΩKL

[uhi,j(x) + uhj,i(x)] dV

=
1

2AKL

∫
ΓKL

[uhi (x)nj(x) + uhj (x)ni(x)] dS

(by the divergence theorem)

=
∑
I∈G

1

2AKL

∫
ΓKL

[ψI(x)nj(x)diI + ψI(x)ni(x)djI ] dS

+
∑
J∈M

1

2AKL

∫
ΓKL

[ψ̂J(x)nj(x)aiJ + ψ̂J(x)ni(x)ajJ ] dS,

where xKL is the centroid of the K-subcell in the L-th

nodal cell, and AKL is the corresponding area of that

K-th subcell.

The smoothed strain vector, ε̃h(xKL ), and its varia-

tion, δε̃h(xKL ), are given in the matrix form as

ε̃h(xKL ) =
∑
I∈G

B̃d
I (xKL )dI +

∑
J∈M

B̃a
J(xKL )aJ

= B̃d(x
K
L )d+ B̃a(xKL )a, (27a)

δε̃h(xKL ) =
∑
I∈G

B̃d
I (xKL )δdI +

∑
J∈M

B̃a
J(xKL )δaJ

= B̃d(x
K
L )δd+ B̃a(xKL )δa, (27b)

where the standard smoothed gradient matrix B̃d(x
K
L ) =

[B̃d1(xKL ), · · · , B̃dNP (xKL )], and the standard nodal sub-

matrix,

B̃dI(x
K
L ) =

ψ̃I,1(xKL ) 0

0 ψ̃I,2(xKL )

ψ̃I,2(xKL ) ψ̃I,1(xKL )

 , (28)

where

ψ̃I,i(x
K
L ) =

1

AKL

∫
ΓKL

ψI(x)ni(x) dS, (29)

and the enriched smoothed gradient matrix B̃a(xKL ) =

[B̃a1(xKL ), · · · , B̃aNE(xKL )], and the enriched nodal sub-

matrix

B̃aJ(xKL ) =

ψ̃J,1(xKL ) 0

0 ψ̃J,2(xKL )

ψ̃J,2(xKL ) ψ̃J,1(xKL )

 , (30)

where

ψ̃J,i(x
K
L ) =

1

AKL

∫
ΓKL

ψ̂J(x)ni(x) dS. (31)

In order to obtain the discrete equation from the

variational form, plugging Eqs. (22) and (27) into Eq.

(21) yields

δdT (Kddd+Kdaa−F d)+δaT (Kadd+Kaaa−F a) = 0.

By invoking the arbitrariness of variation vectors,

δd and δa, the discrete equations for Eq. (21) are[
Kdd Kda

Kad Kaa

] [
d

a

]
=

[
F d

F a

]
, (32)

where

Kαβ =

∫
Ω

B̃T
αDB̃β dV −

∫
Γu

NT
α S

TGTDB̃β dS

−
∫
Γu

B̃T
αDGSNβ dS + α

∫
Γu

NT
α SNβ dS, (33)

F α =

∫
Ω

NT
α b dV +

∫
Γt

NT
α t̄ dS + α

∫
Γu

NT
α Sū dS

−
∫
Γu

B̃T
αDGSū dS, (34)

where α, β ∈ {d, a} and for plane stress,

D =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 , (35)

and for plane strain,

D =
E

(1 + ν)(1− 2ν)

1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2

 . (36)

G =

n1 0

0 n2
n2 n1

 , (37)

S =

[
sx 0

0 sy

]
, (38)
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and

sx =

{
1, if prescribed ux on Γu

0, if prescribed uy on Γu
, (39)

sy =

{
1, if prescribed uy on Γu

0, if prescribed ux on Γu
, (40)

in which E and ν are Young’s modulus and Poisson’s

ratio, respectively. Note that the coefficient matrix in

Eq. (32) is symmetric.

The stiffness matrix Kαβ and force vector F α are

assembled from 2× 2 sub-matrices Kαβ
IJ and 2× 1 sub-

matrices F αI given by

Kαβ
IJ =

∫
Ω

B̃T
αIDB̃βJ dV −

∫
Γu

NT
αIS

TGTDB̃βJ dS

−
∫
Γu

B̃T
αIDGSNβJ dS + α

∫
Γu

NT
αISNβJ dS,

(41)

F αI =

∫
Ω

NT
αIb dV +

∫
Γt

NT
αI t̄ dS + α

∫
Γu

NT
αISū dS

−
∫
Γu

B̃T
αIDGSū dS. (42)

5.2 Enrichment strategy and numerical integration

We present a strategy to determine enriched nodes and

carry out numerical integration for material interface

problems.

The level set function φ(x) is utilized as a local en-

richment as well as describing the interface location.

We employ the level set function to determine cells in-

tersected by an interface and nodes that need to be

enriched. Firstly we loop over each cell in the domain.

For each cell ΩL, we compute the level set value φI at

each vertex vI of the cell. If there exists two vertices,

vI and vJ , of the cell such that φIφJ < 0, then the cell

ΩL is cut and the corresponding node xL is enriched.

For numerical integration, we need to take into ac-

count the partition of cells cut by the interface to carry

out the first integral in Eq. (41), which involves the elas-

ticity matrix. For cut cells, they must be sub-divided

into subcells that conform to the interface and possess

constant material properties. Assume that the interface

intersects two edges of a cell, each of which contains

vertices whose level set values have opposite signs, as

depicted in Fig. 7(a). On each of the two edges, we

need to locate the intersection between the interface

and the cell edges, i.e. points where φ(x) = 0. Here

we use linear interpolation based on the level set values

at the vertices of the edge to determine these points

(red squares in Fig. 7(b)). Afterwards, we connect two

newly-identified points to create two subcells, and we

further subdivide these subcells into other subcells as

shown in Fig. 7(c).

(a) (b) (c)

Fig. 7: Partitioning scheme for numerical integration:

(a) A cell cut by an interface denoted by a blue curve,

(b) Identification of the intersections between the in-

terface and cell edges denoted by red squares and the

creation of two new subcells, (c) Further subdivision of

newly-created subcells.

By employing SSCI [14], the first term of Eq. (41)

can be discretized as,

∫
Ω

B̃T
αIDB̃βJ dV ≈

NP∑
L=1

NSC∑
K=1

B̃T
αI(x

K
L )DB̃βJ(xKL )AKL ,

(43)

in which NSC denotes the number of sub-cells associ-

ated with the L-th nodal cell, and D is the appropriate

elasticity matrix. Except cut cells, other cells can be

partitioned in the same manner as illustrated in Fig.

4. For evaluation of the contour integrals in Eqs. (29)

and (31), one-point Gauss integration rule [19] is used

per edge of a (sub-)cell. Additionally, the same integral

quadrature rule is employed for the boundary terms in

Eqs. (41) and (42).

6 Numerical examples

Several numerical examples are examined to study the

performance of the proposed method. The RK approx-

imation with linear basis and cubic B-spline kernel is

employed, and the normalized support size c = 2.5 is

chosen. The penalty parameter α in Eqs. (33) and (34)

is chosen as suggested by [41], i.e., α = β(E/h) where

β is the normalized penalty parameter, and h is the

characteristic nodal spacing. Herein, h is the maximum

nodal spacing, and the normalized penalty parameter

β = 100 is used. In the following examples, RKPM
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is used to denote the standard RKPM combined with

SSCI, and ERKPM represents the enriched RKPM with

SSCI. In the above methods, proper cell subdivision in-

troduced in Section 5.2 was performed.

For the error evaluation, the standard error norms,

L2 norm and energy norm, are adopted:

‖uh − ue‖L2
=

√∫
Ω

(uh − ue)T (uh − ue) dV∫
Ω

(ue)T (ue) dV
, (44)

‖uh − eh‖E =

√∫
Ω

(εh − εe)TD(εh − εe) dV∫
Ω

(εe)TD(εe) dV
, (45)

where (uh, εh) and (ue, εe) denote numerical and ex-

act solutions, respectively. The error norm calculations

for Eqs. (44) and (45) are carried out using 37-point

quadrature [42] in each triangular subcell. Moreover,

the convergence rate, R, of each formulation is obtained

by linear regression.

Furthermore, in order to create non-uniform dis-

cretization, we displace nodes in the uniform grid by

a random amount by the below formula:

x′ = x+ (2rc − 1)βirr∆x, (46)

y′ = y + (2rc − 1)βirr∆y, (47)

where (x, y) is the initial coordinates in the uniform

grid, rc is the random number in the interval [0, 1], ∆x

and ∆y are uniform nodal spacing, and βirr is a factor

that controls the irregularity of nodal distribution.

6.1 Bi-material plate

A two-dimensional plate is composed of two linear elas-

tic materials with Young’s moduli of E1 = 10, E2 = 1

and Poisson’s ratios of ν1 = ν2 = 0. The length and

width of the plate are 10 and 2, respectively. The ma-

terial interface is placed at x = 5. The plate is fixed on

one end and subject to a prescribed displacement on

the other end, see Fig. 8.

Fig. 8: Bi-material plate subject to body force.

Two cases are considered:

– A linear body force b(x) = x is applied.

– A nonlinear body force b(x) = 25x− 7.5x2 + 0.5x3

is applied.

Since the Poisson’s ratio is set to 0, the exact so-

lution to this problem is the same as one for one di-

mension. The analytical solution to the one-dimensional

case can be found in [27].

(a)

(b)

Fig. 9: A 36× 7 discretization for the bi-material plate:

(a) Nodal distribution, (b) Corresponding Voronoi dia-

gram.

For the convergence study, we consider different uni-

form discretization: 36×7, 46×9, 56×11, 66×13, and

76×15. Fig. 9 shows 36×7 discretization and the corre-

sponding Voronoi diagram. Here there are no nodes re-

quired on the material interface. For the first case where

the linear body force is applied, the convergence in L2

norm and energy norm is illustrated in Fig. 10. Obvi-

ously, not only accuracy but also convergence behaviour

is considerably improved by ERKPM as compared with

the standard RKPM. With the added enrichment, the

convergence rates obtained by ERKPM in L2 and en-

ergy norms are close to the optimal ones (2 in L2 norm

and 1 in energy norm), whereas the convergence rates

of RKPM are reduced by half in both norms because of

non-smooth behaviour of solutions.

The comparison of displacement and strain com-

puted by ERKPM and RKPM for 36× 7 grid are given

in Figs. 11 and 12. While ERKPM can capture well

the jump in strains at the interface, the strains ob-

tained by pure RKPM are highly oscillatory around

the discontinuity, hence degrading the overall accuracy.

Furthermore, the same problem is solved for a homoge-

neous plate (E1/E2 = 1), and the convergence rates are

shown in Fig. 13. In L2 norm, ERKPM and RKPM pro-

duce identical convergence rate and accuracy, whereas

ERKPM is slightly less accurate than RKPM but hav-

ing similar convergence rate in the energy norm.

For the second case where the non-linear body force

is imposed, the convergence behaviour in L2 norm and

energy norm are shown in Fig. 14. As can be seen

from the figures, the accuracy and convergence rates of
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(a) (b)

Fig. 10: Convergence results for the bi-material plate subject to a linear body force: (a) L2 norm, (b) Energy norm.

(a) (b)

Fig. 11: x-displacement distribution for the bi-material plate subject to a linear body force: (a) ERKPM, (b)

RKPM.

(a) (b)

Fig. 12: x-strain distribution for the bi-material plate subject to a linear body force: (a) ERKPM, (b) RKPM.

ERKPM are superior to those of RKPM. Moreover, op-

timal convergence is achieved by ERKPM, whereas the

convergence rates of RKPM are decreased by half as ex-

pected in both norms. Figs. 15 and 16 demonstrate the

strain and displacement for the non-linear body force.

It is clear that the RKPM solution smears the disconti-

nuity in strain in contrast to ERKPM giving very accu-

rate results. Once again, the same problem for a homo-

geneous plate is considered. In this case, both ERKPM

and RKPM yield convergence rates higher than the op-
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(a) (b)

Fig. 13: Convergence results for the homogeneous plate subject to a linear body force: (a) L2 norm, (b) Energy

norm.

(a) (b)

Fig. 14: Convergence results for the bi-material plate subject to a non-linear body force: (a) L2 norm, (b) Energy

norm.

(a) (b)

Fig. 15: x-displacement distribution for the bi-material plate subject to a non-linear body force: (a) ERKPM, (b)

RKPM.

timal ones in L2 norm and energy norm as shown in

Fig. 17.

6.2 Two-dimensional bi-material problem

In this problem, a circular plate of radius b, whose ma-

terial constants are E1 = 1 and ν1 = 0.25, contains a
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(a) (b)

Fig. 16: x-strain distribution for the bi-material plate subject to a non-linear body force: (a) ERKPM, (b) RKPM.

(a) (b)

Fig. 17: Convergence results for the homogeneous plate subject to a non-linear body force: (a) L2 norm, (b) Energy

norm.

circular inclusion of radius a, whose material is defined

as E2 = 10 and ν2 = 0.3, as shown in Fig. 18. A linear
displacement field is imposed on the outer boundary:

ur(b, θ) = r and uθ(b, θ) = 0. The analytical solution

can be found in [37].

In the numerical model, a square domain of size

L× L with L = 2 is considered, and the outer radius b

and inner radius a are chosen to be 2 and 0.4, respec-

tively. The exact solution is applied on the boundary of

the domain as essential BCs. Plane strain condition is

assumed. A convergence study is performed by consid-

ering various uniform discretization: 30 × 30, 40 × 40,

60 × 60, 80 × 80, and 100 × 100. Fig. 19(a) shows a

uniform grid for the problem, and its Voronoi tessella-

tion is given in Fig. 19(b). The rates of convergence for

each formulation in L2 norm and energy norm are il-

lustrated in Fig. 20. On the one hand ERKPM achieves

a convergence rate of 2.03 in L2 norm and 1.28 in en-

ergy norm, which agrees well with the theoretical ones.

On the other hand, RKPM shows poor accuracy and

rates of convergence. Fig. 21 displays the oscillating re-

sponse in radial and hoop strains of RKPM solutions,

and ERKPM significantly reduces such oscillatory be-

haviour at the discontinuity, thus substantially improv-

ing the results.

Next we solve this problem for non-uniform dis-

cretization, and βirr is chosen to be 0.3 herein. Fig.

22 shows a typical non-uniform discretization and the

corresponding Voronoi diagram.

The convergence results in L2 norm and energy norm

are indicated in Figs. 23(a) and 23(b), respectively. The

standard RKPM shows a sub-optimal convergence rates,

whereas ERKPM still gives an optimal ones for the non-

uniform discretization. Moreover, ERKPM solutions for

non-uniform discretization have the same order of accu-

racy as ones for uniform discretization. The radial and

hoop strains for an 80 × 80 grid are illustrated in Fig.

24. There is a good agreement between results predicted

by ERKPM and exact solutions, whereas the strains ob-

tained RKPM still wildly oscillate near the interface. It

demonstrates that ERKPM works effectively for both

regular and irregular distribution.



14 Computational Particle Mechanics

Fig. 18: The two-dimensional bimaterial problem.

6.3 An infinite plate with circular inclusion under

far-field tension

In this problem, a far-field uniaxial tension P is applied

to an infinite plate containing a circular inclusion with

a radius R as shown in Fig. 25. The material properties

of the plate are E1 = 1 and ν1 = 0.3, and those of the

inclusion are E2 = 10 and ν2 = 0.3. The exact solution

to this problem can be found in [43].

For the numerical model, we consider a square do-

main L× L (L = 2) with a circular inclusion of radius
R = 0.4. Plane stress condition is assumed, and the

uniaxial tension P = 1 is chosen. The exact displace-

ment is imposed on the boundary of the square domain.

In order to study the convergence of each formulation

in this problem, we use the same sequences of uniform

and non-uniform discretization given in Section 6.2.

For the uniform discretization, Fig. 26 demonstrates

the rates of convergence in L2 norm and energy norm.

The ERKPM solutions exhibit optimal convergence rates

and outperform the RKPM ones. Specifically, 1.98 and

1.28 are the rates of ERKPM in L2 and energy norms,

and those of RKPM are 0.94 and 0.53, respectively. In

addition, not only is the accuracy of the solution im-

proved, but the oscillation is greatly reduced as clearly

presented in Fig. 27. Due to the symmetry of the solu-

tion, only the strain distributions along positive x are

shown.

Regarding the non-uniform discretization, the op-

timal rates of convergence remain to be obtained by

ERKPM as shown in Fig. 28, whereas the reduction by

half in rates is observed in the RKPM solutions. The

distributions of x-strains along y = 0 and shear strains

along y = x are given in Figs. 29(a) and 29(b), respec-

tively, for 80×80 discretization. The ERKPM solutions

match well with the exact ones, which contrasts with

the oscillatory strains predicted by RKPM.

6.4 Multi-inclusion problem

The use of level set method offers an effective tool to

model multiple material interfaces with less effort re-

quired for model preparation. In this example, we an-

alyze a multi-inclusion unit cell model to demonstrate

the effectiveness of the proposed ERKPM. A unit cell

contains 10 inclusions with radius R = 0.1, whose po-

sitions were randomly generated as illustrated in Fig.

30(a). The cell is fixed on one end and displaced a pre-

scribed amount of 0.1 units in the x-direction on the

other end. Young’s moduli of the cell and inclusions

are E1 = 1 and E2 = 10, respectively, while the Pois-

son’s ratio is set to ν1 = ν2 = 0.3 for both of them. An

overkill FEM mesh is used as a reference solution, and

the elements edges are made to align with the material

interfaces. On the other hand, we use a uniform grid

with 10,201 nodes for the ERKPM model as depicted

in Fig. 30(b). It should be noted that the model does

not require nodes on the interfaces.

Figs. 31(a)-(c) show the variations of strains along

two cut lines AA’ and BB’ as plotted in Fig. 30(b). As

can be seen from these figures, the RKPM with en-

richment can accurately represent multiple jumps in

strains due to the presence of several inclusions. The

displacements in x- and y-direction are given in Figs.

32 and 33, respectively. It is obvious that due to the

effect of inclusions, the displacement field sees a non-

symmetric distribution. More interestingly, the interac-

tions between inclusions can be observed in the distri-

bution of x-strains, which results in chain-like patterns

as seen in Fig. 34. Additionally, the variations of y-

strain and and shear strain are presented in Figs. 35 and

36, respectively. The difference in stiffness between the

matrix and the inclusions produces the complex strain

fields with highly irregular patterns, and the strain con-

centration occurs around the interfaces. In comparison

with FEM, ERKPM yields similar displacement and

strain distributions, which verifies the accuracy of the

proposed method.
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(a) (b)

Fig. 19: A uniform 30× 30 discretization for the two-dimensional bi-material problem: (a) Nodal distribution, (b)

Corresponding Voronoi diagram.

(a) (b)

Fig. 20: Convergence results for uniform discretization in the two-dimensional bi-material problem: (a) L2 norm,

(b) Energy norm.

(a) (b)

Fig. 21: Strain distribution for uniform discretization in the two-dimensional bi-material problem: (a) Radial strain,

(b) Hoop strain.

6.5 Complex interface

In this problem, we aim to investigate the capability

of ERKPM to model a more complex-shaped interface.

The geometry and BCs are shown in Fig. 37.

The boundary of the inclusion is described by the

following function in the polar coordinates:

r(θ) = ro +Asin(Bθ), (48)

where (r,θ) are the polar coordinates, ro is the reference

radius, B is the number of oscillations, and A denotes
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(a) (b)

Fig. 22: A non-uniform 30× 30 discretization for the two-dimensional bi-material problem: (a) Nodal distribution,

(b) Corresponding Voronoi diagram.

(a) (b)

Fig. 23: Convergence results for non-uniform discretization in the two-dimensional bi-material problem: (a) L2

norm, (b) Energy norm.

(a) (b)

Fig. 24: Strain distribution for non-uniform discretization in the two-dimensional bi-material problem: (a) Radial

strain, (b) Hoop strain.

the amplitude of oscillations. In this example, ro = 0.5,

A = 0.125, and B = 2 were chosen.

A conforming FEM model with very fine mesh is

considered as a reference solution, whereas an 80 × 80

uniform discretization is used to solve this problem. We

emphasize that for this complicated geometry of the in-

terface, the time devoted to preparing the FEM model

is much more than that for the ERKPM model because

it is required to align the interface with the element

edges. By contrast, the model preparation for ERKPM

only takes a fraction of the overall analysis time. Fig.

38 shows a good agreement in the displacement varia-
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Fig. 25: An infinite inhomogeneous plate under far-field tension.

(a) (b)

Fig. 26: Convergence results for uniform discretization in the inhomogeneous subject to uniaxial tension: (a) L2

norm, (b) Energy norm.

(a) (b)

Fig. 27: Strain distribution for uniform discretization in the inhomogeneous subject to uniaxial tension: (a) εxx
along y = 0, (b) γxy along y = x.

tion along x = 0 between ERKPM and FEM solutions.

Moreover, ERKPM captures well the discontinuity in

strain as compared to FEM as illustrated in Fig. 39.

The x- and y-displacement fields are illustrated in

Fig. 40 and Fig. 41. Because of the incline of the in-

clusion as well as its geometry, the displacement fields

varies in an irregular manner. Figs. 34, 35, and 36 show
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(a) (b)

Fig. 28: Convergence results for non-uniform discretization in the inhomogeneous subject to uniaxial tension: (a)

L2 norm, (b) Energy norm.

(a) (b)

Fig. 29: Strain distribution for non-uniform discretization in the inhomogeneous subject to uniaxial tension: (a)

εxx along y = 0, (b) γxy along y = x.

(a) (b)

Fig. 30: Setting of the multi-inclusion problem: (a) Geometry and BCs, (b) Uniform discretization of the unit cell.

the distributions of x-, y-, and shear strains, respec-

tively. Discontinuties in strains are well-represented by

ERKPM as observed in these figures. Furthermore, a

comparison between ERKPM and FEM results shows

a reasonable agreement.
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(a) (b)

(c)

Fig. 31: Distributions of strains along AA’ (top) and BB’ (bottom) for the multi-inclusion problem: (a) x-strain, (b)

y-strain, and (c) shear strain where s denotes x and y coordinates for the top and bottom subfigures, respectively.

(a) (b)

Fig. 32: x-displacement distribution for the multi-inclusion problem: (a) ERKPM, (b) FEM.

7 Conclusions

An enriched RKPM has been described to solve ma-

terial interface problems in two-dimensional problems.

The method is based on adding enriched functions to

the approximation space. The level set function is used

to implicitly represent the interfaces, and the signed dis-

tance function is used to build the local enrichment for

material interfaces. Regarding the domain integration,

SCNI is used as the main technique. The smoothing

operation in SCNI leads to the smoothed strains con-

sisting of the standard part and the enriched one. Fur-

thermore, the variational formulation based on the as-

sumed strain method was revisited to cast the smoothed

strains into the weak form. Several numerical exam-

ples were given and show the accuracy of the proposed
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(a) (b)

Fig. 33: y-displacement distribution for the multi-inclusion problem: (a) ERKPM, (b) FEM.

(a) (b)

Fig. 34: x-strain distribution for the multi-inclusion problem: (a) ERKPM, (b) FEM.

(a) (b)

Fig. 35: y-strain distribution for the multi-inclusion problem: (a) ERKPM, (b) FEM.

method. A comparison of the enriched RKPM with ei-

ther the analytical solutions or FEM demonstrates an

excellent agreement and the capability to model prob-

lems with complex interface and multiple inclusions.

The proposed method effectively reproduces the weak

discontinuities and significantly reduces the oscillations
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(a) (b)

Fig. 36: Shear strain distribution for the multi-inclusion problem: (a) ERKPM, (b) FEM.

Fig. 37: The geometry and loading of the complex interface problem.

(a) (b)

Fig. 38: Displacement distribution along x = 0 for the complex interface problem: (a) ux, (b) uy.
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(a) (b)

Fig. 39: Strain distribution along x = 0 for the complex interface problem: (a) εxx, (b) εyy.

(a) (b)

Fig. 40: x-displacement distribution for the complex interface problem: (a) ERKPM, (b) FEM.

(a) (b)

Fig. 41: y-displacement distribution for the complex interface problem: (a) ERKPM, (b) FEM.

as compared with standard RKPM. Moreover, the use

of level set method to implicitly represent interface ge-

ometries enables less effort for model preparation be-

cause interface nodes are not required and the intro-

duction of additional interfaces can be done with little
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(a) (b)

Fig. 42: x-strain distribution for the complex interface problem: (a) ERKPM, (b) FEM.

(a) (b)

Fig. 43: y-strain distribution for the complex interface problem: (a) ERKPM, (b) FEM.

(a) (b)

Fig. 44: Shear strain distribution for the complex interface problem: (a) ERKPM, (b) FEM.
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extra cost, and this is particularly useful for composite

analysis in which multiple interfaces are present.

The enrichment technique for the NI scheme pre-

sented in this paper can be extended to deal with strong

discontinuity problems such as fracture or interface fail-

ure where the strong discontinuities can be described

by the sign-enrichment function [44]. Since SCNI de-

mands a construction of the conforming Voronoi cells

to perform smoothing operations, it becomes tedious if

the Voronoi diagram is required to regenerate. In fact,

this is the case for fracture problems in which crack

extension changes the topology of smoothing cells, so

regeneration of the whole Voronoi cell is a must, adding

more expense to the overall computational procedure.

As a result, the enrichment method along with the level

set method is well-suited to this problem because the

need for explicit description of the crack geometry in

the model can be circumvented, bypassing conforming

cell regeneration. It is worth noting that the require-

ment of conforming cells can be relaxed by considering

stabilized non-conforming nodal integration [45]. How-

ever, this method, in many cases, gives unstable solu-

tions and sub-optimal convergence rates, so a correction

method [19,20] or a smoothing cell update scheme [46]

is required to enhance the solution accuracy of RKPM

with non-conforming nodal integration. In addition, it

leads to the use of Petrov-Galerkin method, so the dis-

crete system becomes non-symmetric. In the future, the

extension of the current work shall be used to tackle this

difficulty.

The extension of the proposed method to three-

dimensional modeling is possible. Here we briefly men-

tion some challenges that can be expected when doing

so. Firstly, the computer implementation of SCNI and

enrichment is more involved in the three-dimensional

modeling than in the two-dimensional case. Secondly,

it is known that using enrichment functions can lead

to a higher condition number of the stiffness matrix

[44]. The ill-conditioning becomes more severe in three-

dimensional modeling, leading to the loss of accuracy

of solutions and slow convergence if one uses iterative

solvers. Fortunately, this problem was well-studied in

the context of extended FEM, so the available tech-

niques can be utilized to handle such difficulties.
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Appendix A: Derivation of the weak form

The basis for the assumed strain method [39, 40] is specified
by the Hu-Washizu variational principle, which incorporates
all field equations from Eqs. (14) and (16)-(18) into the func-
tional and fulfills them in the weak sense. The admissible
function spaces for the displacement u, stress σ, assumed
strain ε̃ and Lagrange multiplier λ are defined as

V = {u(x) ∈ [L2(Ω)]2 : ui,j ∈ L2(Ω), i, j = 1, 2}, (A.1a)

S = {σ(x) ∈ [L2(Ω)]2×2 : σ = σT }, (A.1b)

E = {γ(x) ∈ [L2(Ω)]2×2 : γ = γT }, (A.1c)

Λ = {λ(x) ∈ [L2(Γu)]2}, (A.1d)

respectively, and L2 is the space of square integrable func-
tions. Note that the satisfaction of the essential BCs is not
required for elements of V. Let ΠHW : V× S×E×Λ→ R be
the Hu-Washizu functional which is defined as follows,

ΠHW (u,σ, ε̃,λ)

=

∫
Ω

{
1

2
ε̃ : C : ε̃− b · u− σ : [ε̃−

1

2
(∇u+∇uT )]

}
dV

−
∫
Γt

t̄ · u dS −
∫
Γu

λ · (u− ū) dS. (A.2)

By taking the first variation of the functional ΠHW in
the standard manner, it yields

δΠHW (u,σ, ε̃,λ)

=

∫
Ω

δε̃ : (C : ε̃− σ) dV −
∫
Ω

δσ : (ε− ε̃) dV

+

∫
Ω

δε : σ dV −
∫
Γu

δλ · (u− ū) dS

−
∫
Γu

δu · λ dS −
∫
Ω

δu · b dV −
∫
Γt

δu · t̄ dS, (A.3)

where δu ∈ V, δσ ∈ S, δε̃ ∈ E, and δλ ∈ Λ are the admissible
variations of the displacement u, stress σ, assumed strain ε̃
and Lagrange multiplier λ, respectively, and δε = (∇δu +
∇δuT )/2. Then, we pose the following variational problem:

Find (u,σ, ε̃,λ) ∈ V× S× E× Λ such that,∫
Ω

δε̃ : (C : ε̃− σ) dV = 0, (A.4a)∫
Ω

δσ : (ε− ε̃) dV = 0, (A.4b)∫
Ω

δε : σ dV −
∫
Ω

δu · b dV −
∫
Γt

δu · t̄ dS

−
∫
Γu

δu · λ dS = 0, (A.4c)∫
Γu

δλ · (u− ū) dS = 0, (A.4d)

for all (δu, δσ, δε̃, δλ) ∈ V×S×E×Λ. By the standard argu-
ment, it can be shown that Eqs. (A.4a)-(A.4d) are equivalent
to Eqs. (14) and (16)-(18). Furthermore, carrying out inte-
gration by part on the first term of Eq. (A.4c) gives,

∫
Ω

δu · (∇ · σ − b) dV −
∫
Γt

δu · (σn− t̄) dS

−
∫
Γu

δu · (σn− λ) dS = 0. (A.5)
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From Eq. (A.5), it illustrates that the physical signifi-
cance of the Lagrangian term λ is the traction on the essential
boundary Γu. Hence, λ can be replaced by σ · n.

Let Vh, Sh, Eh, and Λh be the finite-dimensional sub-
spaces of V, S, E, and Λ, respectively, i.e., Vh ⊆ V, Sh ⊆ S,
Eh ⊆ E, and Λh ⊆ Λ. Additionally, let εh := ε(uh). We have
the discrete version of the foregoing variational problem: Find
(uh,σh, ε̃h,λh) ∈ Vh × Sh × Eh × Λh such that,∫

Ω

δε̃h : (C : ε̃h − σh) dV = 0, (A.6a)∫
Ω

δσh : (εh − ε̃h) dV = 0, (A.6b)∫
Ω

δεh : σh dV −
∫
Ω

δuh · b dV

−
∫
Γt

δuh · t̄ dS −
∫
Γu

δuh · λh dS = 0, (A.6c)∫
Γu

δλh · (uh − ū) dS = 0, (A.6d)

for all (δuh, δσh, δε̃h, δλh) ∈ Vh × Sh × Eh × Λh.
The key step in deriving an assumed strain method is to

construct an assumed strain field to satisfy the orthogonal-
ity condition [39, 40].∫
Ω

τ : γ dV = 0, for all τ ∈ Sh and γ ∈ Ehe , (A.7)

where Ehe = {γ ∈ [L2(Ω)]2×2 : γ = εh − ε̃h}. The orthog-
onality condition states that the space of admissible stress
field is orthogonal to the space of the enhanced strain field,
i.e., the difference between the compatible strain field and
the assumed strain field. Furthermore, the fulfillment of the
orthogonality condition allows expressing Eq. (A.6c) in terms
of the assumed strains only by observing that∫
Ω

δεh : σh dV

=

∫
Ω

(δεh − δε̃h) : σh dV +

∫
Ω

δε̃h : σh dV

=

∫
Ω

δε̃h : σh dV,

and by (A.6a),∫
Ω

δεh : σh dV =

∫
Ω

δε̃h : C : ε̃h dV. (A.8)

Now, we consider whether or not the variational problem
Eq. (A.6) with the assumed strain given a priori in Eq. (13)
is variationally consistent. Firstly, assume that the discrete
stresses σh are computed by the relation

σh = C : ε̃h. (A.9)

Consequently, Eq. (A.6a) is fulfilled exactly. Next, we
need to verify the orthogonality condition Eq. (A.7) satisfied
by the given assumed strain.

Recall that the problem domain Ω is decomposed into
conforming and non-overlapping cells {ΩL}NPL=1, and each
cell ΩL is further subdivided into several conforming subcells
{ΩKL }NSCK=1 where NSC is the number of subcells contained in
ΩL. The discrete counterpart of the assumed strain presented
in Eq. (13) is given by

ε̃h(xKL ) =
1

AKL

∫
ΩK
L

ε(uh) dV. (A.10)

Remark:

– If a cell ΩL is not subdivided, the discrete form of Eq.
(15) is used instead.

– The assumed strain is defined to be constant over each
subcell ΩKL or a cell ΩL if it is not subdivided.

– The assumed strains ε̃(uh) only depend on the discrete
displacement field uh.

Now, we prove that the orthogonality condition Eq. (A.7)
is satisfied for the given assumed strain. By assuming the
material properties are constant in ΩKL and using the fact
that ε̃h(xKL ) is constant in ΩKL ,∫
Ω

σh : εh dV

=

∫
Ω

ε̃h : C : εh dV

=

NP∑
L=1

∫
ΩL

ε̃h : C : εh dV

=

NP∑
L=1

NSC∑
K=1

∫
ΩK
L

ε̃h(xKL ) : C : ε(uh) dV

=

NP∑
L=1

NSC∑
K=1

ε̃h(xKL ) : C :

∫
ΩK
L

ε(uh) dV

=
NP∑
L=1

NSC∑
K=1

ε̃h(xKL ) : C : ε̃h(xKL )AKL

=
NP∑
L=1

NSC∑
K=1

∫
ΩK
L

ε̃h(xKL ) : C : ε̃h(xKL ) dV

=

∫
Ω

ε̃h : C : ε̃h dV

=

∫
Ω

σh : ε̃h dV,

where Eq. (A.10) is used in the fifth equality.
Therefore, the orthogonality condition is achieved with

the use of the given assumed strain. Finally, using the fact
that λh = σhn on Γu and Eq. (A.8) allows rewriting Eq.
(A.6) into a single equation∫
Ω

δε̃h : C : ε̃h dV −
∫
Ω

δuh · b dV −
∫
Γt

δuh · t̄ dS

−
∫
Γu

δuh · th dS −
∫
Γu

δth · (uh − ū) dS = 0, (A.11)

where th = σhn = (C : ε̃h) · n. To improve the coercivity of
the variational formulation in Eq. (A.11), adding a penalty-
like term to it yields [47]∫
Ω

δε̃h : C : ε̃h dV −
∫
Γu

δuh · th dS

−
∫
Γu

δth · (uh − ū) dS + α

∫
Γu

δuh · (uh − ū) dS

=

∫
Ω

δuh · b dV +

∫
Γt

δuh · t̄ dS. (A.12)
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