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Abstract

Abstract

This thesis studies several opportunity-based age replacement models and their

applications. In reliability theory, replacement opportunities often refer to deliv-

ering of spare parts with low cost, special service durations, or specific replace-

ment time points. Overall, preventive maintenance can be performed flexibly

and conveniently when the replacement opportunities arise.

In Chapter 2, we consider two classical age-based replacement models within

a discrete time framework: a standard age replacement (AR) model and an op-

portunistic age replacement (DD) model. More specifically, we introduce the

concept of replacement priority in situations where failure replacement and pre-

ventive replacement occur at a given age or opportunity. We explore two priority

cases in each replacement model. First, we formulate the optimal preventive re-

placement policies minimizing the associated expected cost rates by the familiar

renewal reward argument. Next, we extend the modellings taking account of

net present value (NPV) method. We develop the expected total discounted

costs over an infinite time horizon and obtain the optimal preventive replace-

ment policies by minimizing these total expected costs. Also, we introduce

unified stochastic models incorporating the probabilistic priority of replacement

options. Besides, we propose a general framework for optimizing replacement

policies in discrete time. The discrete time AR and DD models with/without

discounting are reformulated under this framework. To provide practical in-

sights, we present numerical illustrations using real failure data for pole air

switches, comparing the performance of these optimal preventive policies.

In Chapter 3, we focus on discrete time opportunity-based age replacement

models with replacement first (RF) and replacement last (RL) disciplines, where
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the expected cost model under each discipline can be further classified into six

cases by taking account of the priority of multiple replacement options. We

characterize several optimal opportunity-based age replacement policies mini-

mizing the relevant expected costs. We also apply the NPV method to formulate

the expected total costs under RF and RL disciplines. In addition, we unify six

discrete time opportunity-based age replacement models with deterministic pri-

orities for each model. In numerical illustrations, we obtain and compare all the

optimal scheduled preventive replacement times with RF and RL disciplines.

In Chapter 4, we concern about two opportunity-based age replacement

problems in continuous/discrete time. Firstly, we formulate the opportunity-

based age replacement models with RF and RL disciplines in continuous time.

We also consider a restricted duration for the opportunity arrivals which obey a

homogeneous Poisson process. Next, we reconsider these opportunity-based age

replacement models in discrete time, where the inter-arrival times of replacement

opportunities obey an independent and identical geometric distribution. The

optimal two-phase opportunity-based age replacement policies are characterized

by minimizing the long-run average costs. The numerical examples are presented

to compare two replacement policies with RF and RL disciplines. The results

indicates that RL policies could be better than RF policies in a few limited cases

where the impact of failure replacement is relatively small.

In Chapter 5, we generalize the opportunity-based age replacement policies

by introducing the NPV of expected total costs, where two cases are consid-

ered. First, we reformulate two basic opportunity-based age replacement mod-

els with RF and RL disciplines, in which the failure time and the arrival time

of a replacement opportunity are statistically independent. Next, we take place

the NPV analysis for the failure-correlated opportunity-based age replacement

models with RF and RL disciplines. Since the NPV approach is useful to esti-

mate more accurate replacement costs over a long-time planning in an unstable

economic environment, we obtain the expected total discounted costs over an

infinite time horizon, and derive the optimal preventive replacement policies by

minimizing them in both cases. Numerical examples with the Farlie-Gumbel-

Morgenstern bivariate copula are presented to investigate the dependence of

correlation between the failure time and the opportunistic replacement time on
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the age opportunity-based replacement policies.

Finally, Chapter 6 concludes the thesis and give some remarks on the future

studies.

The organization of this dissertation is as follows. Chapter 1 is introduction.

We mainly introduce the background from three streams: opportunity in pre-

ventive maintenance, the discrete time replacement models and NPV approach

in Section 1.1. In Section 1.2, we discuss the literature review from opportunity-

based replacement models, discrete time replacement models and NPV method

in replacement models. Chapter 2 studies the discrete time AR and DD models.

Section 2.1 introduces some notations and assumptions about this thesis. Sec-

tion 2.2 formulates the AR and DD models by minimizing the expected costs in

steady state. Section 2.3 considers AR and DD models with discounting. In Sec-

tion 2.4, AR and DD models are unified with probabilistic priority. Section 2.5

proposes a general optimizing framework for discrete time models. AR and

DD models with/ without discounting are reformulated under this framework.

Chapter 3 studies RF and RL models in discrete time. We formulate RF and

RL models with renewal reward approach and propose the optimal preventive

replacement polices in Section 3.1. Next, we discuss RF and RL models with

NPV method in Section 3.2. Besides, we study the unified models with prob-

abilistic priority under RF and RL disciplines in Section 3.3. A study on pole

air switches is presented to obtain the optimal preventive replacement times

in Section 3.4. Chapter 4 studies two-phase RF and RL models in continuous

time and discrete time. Section 4.1 describes the continuous time RL model and

gives the optimal preventive replacement policies. Section 4.2 and Section 4.3

consider two-phase RF and RL models in discrete time and obtain the existence

of optimal preventive replacement policies. We also study the unified models

with two-phase RF and RL disciplines in Section 4.4. Chapter 5 analyzes the

failure-correlated- opportunity RF and RL models. Section 5.1 formulates the

continuous time failure-correlated-opportunity RF and RL models with renewal

reward approach. We further study the failure-correlated-opportunity RF and

RL models with NPV method in Section 5.2. In Section 5.3, we analyze the

correlation between lifetime and the arrival of opportunity in RF and RL models

by numerical examples. Chapter 6 gives the conclusions and the future work.
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The general framework of this study is shown in Figure 1.

Figure 1: General framework of this study.
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Chapter 1

Introduction

1.1 Background

Opportunity-based age replacement models have been paid much attention in

reliability theory. Preventive maintenance activities can be carried out flexibly

and conveniently at an opportunity. A lot of opportunity-based age replacement

policies have studied by related works. In reliability theory, the opportunity usu-

ally presents the space parts with low cost, the special service duration or the

replacement time point [1]. The most opportunity-based age replacement mod-

els were discussed when the process of opportunity arrival obeys a continuous

stochastic distribution.

As a significant expansion, Zhao and Nakagawa [2, 3], along with Zhao et

al [4], proposed slightly different opportunity-based age replacement models:

the replacement first (RF) and replacement last (RL) disciplines. Essentially,

these models amalgamate the standard age replacement and random age re-

placement. In context, the RF discipline is described as a preventive replace-

ment which is performed at an opportunity arrival time or a prescheduled re-

placement time, whichever occurs first. Conversely, the RL discipline is that a

preventive replacement is performed at an arrival time of opportunity or a pre-

scheduled replacement time, whichever occurs last. In other words, it can be

seen that these replacement policies at random timing are essentially regarded

as opportunistic replacement policies.

In fact, the RF and RL disciplines were applied to the minimal repair mod-

els [5], generalized models [6] and cumulative damage models [7] and among

1



2 CHAPTER 1. INTRODUCTION

others. Especially, Iskandar and Sandoh [8] extended the seminal opportunity-

based age replacement (DD) model in Dekker and Dijkstra [9] by introducing

the opportunities in restricted duration, and dealt with the replacement first

policies. In Chapter 4, we formulate the replacement last policies for Iskan-

dar and Sandoh model [8] in the sense of Zhao and Nakagawa [2]. Chapter

4 also considers RF and RL models with the opportunities in restricted dura-

tion in discrete time. Another important extension in recent years, Dohi and

Okamura [10] firstly found correlation between lifetime of the system and the

occurrence of replacement opportunity. They studied RF and RL models in

continuous time, where lifetime of the system and occurrence of replacement

opportunity are correlated.

From the perspective of maintenance strategies, most opportunity-based age

replacement policies in continuous time have been derived in the literature.

However, less attention has been given to discrete time models. In certain

real industrial scenarios, when the system or unit’s lifetime is represented in

cycles, discrete time models become effective [11]. For example, the lifetimes

of jet tires are measured in terms of the number of flights [12]. Besides, the

most early models [13–16] assumed that failure replacement should be selected

with priority. However, this assumption may not hold true, as the cost of

failure replacement is higher than that of preventive replacement. To tackle

this problem, Chapter 2 primarily introduces the concept of replacement priority

and formulates RF and RL models in discrete time. Except the extension in

modelling, Chapter 2 explores new optimizing method to formulate the discrete

time models. Many classic preventive replacement models, such as AR and DD

models are reformulated under this optimizing method in discrete time.

Most studies on opportunity-based age replacement models implicitly as-

sumed that the global economic environment remains stable during the main-

tenance plan, i.e., money does not have a time component and its value does

not decrease over time. In many replacement models, the optimal preventive

replacement policies were derived by minimizing the long-run average cost in the

steady state. Indeed, in today’s rapidly changing economic environment among

countries, the net present value (NPV) method is more accurate in formulating

preventive maintenance models.
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Some new findings on opportunity-based models are studied in this thesis.

In Chapter 2, the discrete time standard age replacement (AR) model and

DD models are computed by priority of multiple replacement options. NPV

method is applied to formulate these models. Besides, a general optimizing

framework is proposed in discrete time. The discrete time AR and DD models

with/without discounting are reformulated under this framework. In Chapter

3, two important opportunity-based models, RF and RL models, are considered

under renewal reward theory and NPV method. The optimal opportunity-based

age replacement policies minimizing the relevant expected costs are obtained.

The unified model with deterministic priorities under renewal reward theory and

NPV method is studied. In Chapter 4, two opportunity-based age replacement

problems with RF and RF disciplines are studied in continuous/discrete time.

In continuous time setting, two-phase RF and RF models are calculated, where

the opportunity arrivals obey a homogeneous Poisson process. In discrete time

models, the optimal preventive replacement policies are derived, where inter-

arrival times of replacement opportunities obey an independent and identical

geometric distribution. Chapter 5, we concern about the correlation between

failure time and the arrival time of a replacement opportunity in RF and RL

models. The optimal preventive replacement policies are formulated by NPV

method. We summary the main contributions of this thesis as follows:

(1) The opportunity-based models are formulated in discrete time;

(2) NPV method is applied to the replacement first and last models;

(3) A general framework is proposed for the discrete time models.

(4) Two-phase opportunity-based age replacement models are discussed with

RF and RL disciplines;

(5) Correlation between failure and the arrival of opportunity are analyzed in

RF and RL models;

(6) The performance of RF and RL models is compared comprehensively.
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1.2 Literature Review

We discuss three closely related streams of research: opportunity-based replace-

ment models, discrete time replacement models and NPV method in replace-

ment models. While reviewing the previous works, we also point out their main

distinctions within this paper.

1.2.1 Opportunity-Based Replacement Models

Opportunity-based replacement models have been studied for over five decades

(see a methodical survey in [17]). Most of the research on opportunity-based

replacement models suppose that the arrival of opportunity obeys stochastic

process, such as Poisson process. Radner and Jorgenson [18] firstly studied the

opportunity arrival in age replacement policies for one-unit system. Berg [19]

considered the opportunity arrival in two-units system. Dekker and Dijkstra [9]

studied the opportunity-based age replacement model and proposed the well-

known control limit policy. Jhang and Sheu [20] extended the model in [9] and

formulated the opportunity-based age replacement policy with minimal repair.

Dekker and Smeitink [21, 22] also studied the restricted duration in arrival of

opportunity in preventive replacement model and the opportunity-based block

replacement model. In recent years, Wang et al. [23] proposed a novel imper-

fect opportunistic maintenance model for a two-unit series system considering

random repair time and two types of failures, where unit 1 and unit 2 are re-

spectively subject to soft failure and hard failure. Si et al. [24] studied an agile

framework which can quickly respond to organizational scheduling requirements

while controlling service costs and not compromising.

For RF and RL models, Chen et al. [6] studied some modified age and block

models with RF and RL disciplines, Dohi and Okamura [10] considered failure-

correlated opportunity-based age replacement models with RF and RL disci-

plines using the bivariate copula of failure time and opportunity-arrival time

distributions. Zheng et al. [1] generalized opportunity-based age replacement

policies with RF and RL disciplines by introducing Markovian opportunity-

arrival process. Mizutani et al. [25] took account of two failure modes in general

replacement models under RF and RL disciplines. In addition, the mission

duration was widely discussed in replacement models with RF and RL dis-
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ciplines [5, 26, 27]. Chapter 4, we formulate the replacement last policies for

Iskandar and Sandoh model [8] in the sense of Zhao and Nakagawa [2].

1.2.2 Discrete Time Replacement Models

Since the seminal work by Nakagawa and Osaki [13], various discrete time re-

placement models have been considered in the mid-1980s [13–16]. For example,

Nakagawa [16] considered combined continuous and discrete replacement with

minimal repair at failure, in which a unit is replaced at time T or at number

N of uses. Recently, the discrete-time replacement models were studied from

somewhat different viewpoint. Cha and Limnios [28] reformulated minimal re-

pair models in discrete time under random environments. Eryilmaz [12] studied

discrete-time age replacement policy when the lifetime of the system is mod-

eled by a discrete phase-type distribution. Eryilmaz [29] investigated age-based

preventive replacement policy for an arbitrary coherent system that consists

of components which are independent and have common discrete lifetime dis-

tribution. Wei et al. [30] proposed an optimal opportunistic maintenance plan-

ning integrating discrete-and continuous-state information. These works mainly

studied age-based replacement models. A methodical book was finished by Nair

et al. [31]. This thesis generalizes more complex opportunity-based models in

discrete time. More concretely, Chapter 2 introduces the replacement priority

to deal with the case the simultaneous events of two distinct replacement ac-

tivities come at same time point. The discrete time AR and DD models are

computed with renewal reward and NPV methods. Chapter 3 formulates RF

and RL models in discrete time. Chapter 4 cares about two-phase RF and RL

models [8] in discrete time. What is more, we develop a general framework for

discrete time models and purpose the optimal criterion for optimal preventive

replacement times in Chapter 2.

1.2.3 NPV Method in Replacement Models

Early studies on NPV method focused on formulating and comparing classical

maintenance models [13,32–34]. Fox [32] firstly formulated the age replacement

model with discounting and proposed the optimal preventive replacement poli-

cies. Nakagawa and Osaki [13] reformulated age replacement model with NPV
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method in discrete time. Nakagawa [33] also formulated several block type

replacement models with discounting. Recently, from the similar motivation,

Boomen et al. [35] developed a new life cycle costing approach for discounting in

two classes of maintenance optimization models, the age replacement model, and

the interval replacement model. Zhang et al. [36] considered mission-oriented

systems with discounting. In this thesis, we also analyze the NPV in the RF

and RL models [2] and failure-correlated opportunity RF and RL models [10]

in Chapter 4.



Chapter 2

Discrete Time AR and DD
Models

2.1 Preliminaries

Consider a single-unit system with a non-repairable item in discrete time setting.

We suppose that the interval-arrival times between consecutive opportunities for

replacements, X, are independent and identically distributed (i.i.d.) integer-

valued random variables, having the probability mass function (p.m.f.) Pr{X =

x} = gX(x) (x = 1, 2, · · · ). The failure times (lifetimes) of the item, Y , follow

i.i.d. integer-valued random variables with the common p.m.f. Pr{Y = y} =

fY (y) (y = 1, 2, · · · ). It is general that we assume that gX(0) = fY (0) = 0,

where in general ḠX(·) = 1−GX(·) and F̄Y (·) = 1− FY (·).

The cost components in this study are given as follows:

cF : Corrective (failure) replacement cost for per failure;

cT : Preventive replacement cost at prescheduled replacement time;

cY : Preventive replacement cost at a random opportunity.

Based on above notations, we make the following assumption:

Assumption 1: cF > cT ≥ cY .

It would be reasonable to assume that the cost of failure replacement is the

highest, while the cost of opportunistic replacement is lower than that of preven-

tive replacement. This is because opportunistic replacement involves acquiring

a spare part for an item at a cheaper cost, albeit at an unscheduled time. It

is important to mention that the discrete time models should be considered

7
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carefully, because it has probability that one of three replacement options may

arrive simultaneously: corrective (failure) replacement (Ca), scheduled preven-

tive replacement (Sc), and opportunistic replacement (Op). To clearly order the

priority of three options, the following priority relationship is introduced:

Definition 1: The replacement option P has a priority to the replacement

option Q, if P ≻ Q.

2.2 Renewal Reward Approach

2.2.1 AR Model

First, we revisit the discrete time AR model [13]. Nakagawa and Osaki [13]

implicitly assumed that failure replacement has priority to preventive replace-

ment. As pointed out in Section 1.1, this opinion may not be right. Here we

suppose that there are two options for replacement. If a system breaks down at

time, then the unit is replaced by new one immediately, otherwise, the system

is replaced preventively at a prescheduled preventive replacement time. The

discrete-time AR model is illustrated in Figure 2.1. According to definition 1,

one has possibility that two different models should be formulated in discrete

time AR model:

(1) Model 1: Sc ≻ Ca,

(2) Model 2: Ca ≻ Sc.

Figure 2.1: AR model.

For Model 1 and Model 2, we can calculate the probability that a system is
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replaced at time n (= 0, 1, · · · ):

haj(n) =


fY (n) 0 ≤ n ≤ N − 1

F̄Y (n− 1) n = N

0 n ≥ N + 1,

(2.1)

where
∑∞

n=0 haj(n) = 1 for Model j (= 1, 2).

From Eq. (2.1), we compute the expected lengths of one cycle, Aa(N), which is

the same in both models. We have

Aa(N) =

N−1∑
n=1

nfY (n) +NF̄Y (N − 1)

=

N∑
n=1

F̄Y (n− 1). (2.2)

We compute the expected costs of one cycle:

Ba1(N) = cF

N−1∑
n=1

fY (n) + cT F̄Y (N − 1), (2.3)

Ba2(N) = cF

N∑
n=1

fY (n) + cT F̄Y (N). (2.4)

Then, the long-run costs per unit time in the steady state are denoted as

ECaj(N) for Model j (= 1, 2), from the renewal reward theory [37],

ECaj(N) =
Baj(N)

Aa(N)
, (2.5)

and our interest is to find the optimal N∗ minimizing ECaj(N).

We give the following the non-linear functions:

wa1(N) = RY (N)

N∑
n=1

F̄Y (n− 1)− FY (N − 1), (2.6)

wa2(N) = rY (N + 1)

N∑
n=1

F̄Y (n− 1)− FY (N), (2.7)

where RY (n) = fY (n)/F̄Y (n) and rY (n) = fY (n)/F̄Y (n − 1) are failure rate

and shifted failure rate functions, respectively.

For more detailed relationship between RY (n) and rY (n), see Lemma 7.1 in

Appendix.
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Theorem 2.1. (I) Suppose that the lifetime Y is strictly increasing failure rate

(IFR) under Assumption 1.

(i) If waj(∞) > cT /(cF − cT ), then there exists at least one (at most two) op-

timal scheduled preventive replacement time N∗ which satisfies waj(N
∗ −

1) < cT /(cF − cT ) and waj(N
∗) ≥ cT /(cF − cT ).

(ii) If waj(∞) ≤ cT /(cF − cT ), then the optimal scheduled preventive replace-

ment time is N∗ → ∞, and it is optimal to carry out only the failure

replacement.

(II) Suppose that the lifetime Y is strictly decreasing failure rate (DFR) under

Assumption 1. Then the optimal scheduled preventive replacement time is given

by N∗ → ∞ or N∗ = 1.

For the proof, consult Appendix 7.4.1.

We can obtain the optimal expected costs per unit time in steady state from

Theorem 2.1 straightforwardly.

Theorem 2.2. For Model j (= 1, 2), suppose that the lifetime Y is strictly IFR,

and waj(∞) > cT /(cF − cT ), under Assumption 1. Then the minimum expected

costs per unit time in the steady state have the lower and upper bounds:

Vaj(N
∗ − 1) < ECaj(N

∗) ≤ Vaj(N
∗), (2.8)

where

Va1(N) = (cF − cT )RY (N), (2.9)

Va2(N) = (cF − cT )rY (N + 1). (2.10)

2.2.2 DD Model

Next, we concern about the discrete time DD model. Dekker and Dijkstra [9]

discussed the continues time DD model where the arrival of opportunities obeys

a Poisson process. In addition, they also proposed a control-limit policy where

the preventive replacement is made at first opportunity after a prescheduled

replacement time. The discrete-time DD model is depicted in Figure 2.2. Here,

it is assumed that the interval-arrival times between two consecutive oppor-

tunities for replacements, X, obey the i.i.d. geometric distribution Pr{X =
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x} = fX(x) = p(1 − p)x−1 (x = 1, 2, · · · ) with survivor function Pr{X ≥ x} =

fX(x) = (1−p)x−1 = ḠX(n−1). According to the definition 1, we may consider

two different models as follows:

(1) Model 1: Op ≻ Ca,

(2) Model 2: Ca ≻ Op.

Figure 2.2: DD model.

For Model 1 and Model 2, we can calculate the probability that the system

is replaced at time n (= 0, 1, · · · ) is given by

hoj(n) =

 fY (n) 0 ≤ n ≤ N

fY (n)(1− p)n−N + p(1− p)n−N−1F̄Y (n− 1) n ≥ N + 1,

(2.11)

where
∑∞

n=0 hoj(n) = 1 for Model j (= 1, 2).

According to Eq. (2.11), we can obtain the expected time lengths of one cycle,

Ao(N), in two cases are exactly same:

Ao(N) =

N∑
n=1

F̄Y (n− 1) +

∞∑
n=N+1

F̄Y (n− 1)(1− p)n−N−1. (2.12)

We also can compute the expected costs of one cycle, Boj(N), for Model

j (= 1, 2):

Bo1(N) = cF

N∑
n=1

fY (n) + cF

∞∑
n=N+1

fY (n)(1− p)n−N

+ cY

∞∑
n=N+1

F̄Y (n− 1)p(1− p)n−N−1, (2.13)
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Bo2(N) = cF

N∑
n=1

fY (n) + cF

∞∑
n=N+1

fY (n)(1− p)n−N−1

+ cY

∞∑
n=N+1

F̄Y (n)p(1− p)n−N−1. (2.14)

Then, the expected costs per unit time in the steady state are formulated as

ECoj(N) for Model j (= 1, 2):

ECoj(N) =
Boj(N)

Ao(N)
, (2.15)

and our objective is to determine the optimal N∗ minimizing ECoj(N).

Similar to AR model in discrete time, we define the following non-linear func-

tions:

wo1(N) = HY (N)Ao(N)−

[
FY (N) +

∞∑
n=N+1

fY (n)(1− p)n−N

]
, (2.16)

wo2(N) = hY (N + 1)Ao(N)−

[
FY (N) +

∞∑
n=N+1

fY (n)(1− p)n−N−1

]
, (2.17)

where

HY (N) =

∑∞
n=N+1 fY (n)(1− p)n−N∑∞
n=N+1 F̄Y (n)(1− p)n−N

, (2.18)

hY (N + 1) =

∑∞
n=N+1 fY (n+ 1)(1− p)n−N∑∞

n=N+1 F̄Y (n)(1− p)n−N
. (2.19)

For more detailed relationship between RY (n) (rY (n)) and HY (n) (hY (n)), see

Lemma 7.2 and 7.3 in Appendix. We characterize the optimal replacement time

limit N∗ that minimizes ECoj(N). The proof can be found in Appendix 7.4.2.

Theorem 2.3. (I) Suppose that the lifetime Y is strictly IFR under Assumption

1.

(i) If woj(∞) > cY /(cF − cY ), then there exists at least one (at most two)

optimal prevetive replacement time limit N∗ satisfying woj(N
∗ − 1) <

cY /(cF − cY ) and woj(N
∗) ≥ cY /(cF − cY ).

(ii) If woj(∞) ≤ cY /(cF − cY ), then the optimal DD time limits are N∗ → ∞,

and it is optimal to carry out only the failure replacement.

(II) Suppose that the lifetime Y is strictly DFR under Assumption 1. Then the

optimal DD time limits are given by N∗ → ∞ or N∗ = 0.
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We also directly get the following theory from Theorem 2.3.

Theorem 2.4. For Model j (= 1, 2), suppose that the lifetime Y is strictly IFR,

and woj(∞) > cY /(cF −cY ), under Assumption 1. Then the minimum expected

costs per unit time in the steady state have the lower and upper bounds:

Voj(N
∗ − 1) < ECoj(N

∗) ≤ Voj(N
∗), (2.20)

in which

Vo1(N) = (cF − cY )HY (N), (2.21)

Vo2(N) = (cF − cY )hY (N + 1). (2.22)

2.3 NPV Method

2.3.1 AR Model

We denote the discounted factor β (0 < β < 1) to represent the expected NPV

of the unit cost. We first derive the preventive replacement policies in the AR

model. In the NPV formulation, the expected total discounted costs over an

infinite time horizon, TCaj(N, β), for Model j (= 1, 2) are given by

TCaj(N, β) = [cF + TCaj(N, β)]

N−1∑
n=1

βnfY (n)

+ [cT + TCaj(N, β)]βN F̄Y (N − 1). (2.23)

From a few algebraic manipulations, we can obtain,

TCaj(N, β) =
Baj(N, β)

1−Aa(N, β)
. (2.24)

In above function, Aa(N, β) is the NPV of one unit cost during the renewal

cycle:

Aa(N, β) = 1− β

1− β

N∑
n=1

βnF̄Y (n− 1). (2.25)

Baj(N, β) for Model j (= 1, 2) are the expected total discounted costs during

the renewal cycle :

Ba1(N, β) = cF

N−1∑
n=1

βnfY (n) + cTβ
N F̄Y (N − 1), (2.26)
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Ba2(N, β) = cF

N∑
n=1

βnfY (n) + cTβ
N F̄Y (N). (2.27)

It is evident from the well-known L’Hopital’s theorem that

lim
β→1

(1− β)TCaj(N, β) = ECaj(N). (2.28)

Next, we define the non-linear functions for a fixed β:

wa1(N | β) =
[
(cF − cT )

1− β
RY (N)− cT

]
[1−Aa(N, β)]−Ba1(N, β), (2.29)

wa2(N | β) =
[
β(cF − cT )

1− β
rY (N + 1)− cT

]
[1−Aa(N, β)]−Ba2(N, β). (2.30)

In the NPV formulation, the optimal AR polices can be obtained (refer to

the proof of Theorem 2.1 in Appendix).

Theorem 2.5. (I) Suppose that the lifetime Y is strictly IFR under Assumption

1.

(i) If waj(∞ | β) > 0, then there exists at least one (at most two) optimal

scheduled preventive replacement time N∗ which satisfies waj(N
∗ − 1 |

β) < 0 and waj(N
∗ | β) ≥ 0.

(ii) If waj(∞ | β) ≤ 0, then the optimal scheduled preventive replacement time

is N∗ → ∞, and it is optimal to carry out only the failure replacement.

(II) Suppose that the lifetime Y is strictly DFR under Assumption 1. Then

the optimal scheduled preventive replacement times are given by N∗ → ∞ or

N∗ = 1.

We can obtain the optimal expected costs per unit time in steady state from

Theorem 2.5 straightforwardly.

Theorem 2.6. For Model j (= 1, 2), suppose that the lifetime Y is strictly IFR,

and waj(∞ | β) > 0, under Assumption 1. Then the minimum TC(N | β) have

the lower and upper bounds for a fixed β:

Vaj(N
∗ − 1 | β) < TCaj(N

∗ | β) ≤ Vaj(N
∗ | β), (2.31)

where

Va1(N | β) = (cF − cT )

1− β
RY (N)− cT , (2.32)

Va2(N | β) = β(cF − cT )

1− β
rY (N + 1)− cT . (2.33)
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2.3.2 DD Model

We calculate the DD model with NPV approach. The expected NPV value

of one unit cost during the renewal cycle, Ao(N, β), for Model j (= 1, 2) are

obtained as

Ao(N, β) =

N∑
n=0

βnfY (n) +

∞∑
n=N+1

βn
[
fY (n)(1− p)n−N

+ p(1− p)n−N−1F̄Y (n− 1)
]
. (2.34)

Boj(N, β) for Model j (= 1, 2) are the expected total discounted costs during

the renewal cycle :

Bo1(N, β) = cF

N∑
n=0

βnfY (n) + cF

∞∑
n=N+1

βnfY (n)(1− p)n−N

+ cY

∞∑
n=N+1

βnp(1− p)n−N−1F̄Y (n− 1), (2.35)

Bo2(N, β) = cF

N∑
n=0

βnfY (n) + cF

∞∑
n=N+1

βnfY (n)(1− p)n−N−1

+ cY

∞∑
n=N+1

βnp(1− p)n−N−1F̄Y (n). (2.36)

Then, we obtain the NPV value of expected total costs, TCoj(N, β), for

Model j (= 1, 2):

TCoj(N, β) =
Boj(N, β)

1−Ao(N, β)
. (2.37)

It is evident from the well-known L’Hopital’s theorem that

lim
β→1

(1− β)TCoj(N, β) = ECoj(N). (2.38)

Next, we define the non-linear functions for a fixed β:

wo1(N | β) =
[
(cF − cY )

1− β
HY (N, β)− cY

]
[1−Ao(N, β)]−Bo1(N, β), (2.39)

wo2(N | β) =
[
β(cF − cY )

1− β
hY (N + 1, β)− cY

]
[1−Ao(N, β)]−Bo2(N, β),

(2.40)

where

HY (N, β) =

∑∞
n=N+1 fY (n)β

n(1− p)n−N∑∞
n=N+1 F̄Y (n)βn(1− p)n−N

, (2.41)
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hY (N + 1, β) =

∑∞
n=N+1 fY (n+ 1)βn(1− p)n−N∑∞

n=N+1 F̄Y (n)βn(1− p)n−N
. (2.42)

For additional information regarding the monotonic relationship RY (n) (rY (n))

and HY (n, β) (hY (n, β)), refer to Lemma 7.4 and 7.5. In the NPV formula-

tion, the optimal DD policies can be described as follows (refer to the proof of

Theorem 2.2 in Appendix).

Theorem 2.7. (I) Suppose that the lifetime Y is strictly IFR under Assumption

1.

(i) If woj(∞ | β) > 0, then there exists at least one (at most two) optimal

prevetive replacement time limit N∗ which satisfies woj(N
∗ − 1 | β) < 0

and woj(N
∗ | β) ≥ 0.

(ii) If woj(∞ | β) ≤ 0, then the optimal DD time limit is N∗ → ∞, and it is

optimal to carry out only the failure replacement.

(II) Suppose that the lifetime Y is strictly DFR under Assumption 1. Then the

optimal DD time limit are given by N∗ → ∞ or N∗ = 0.

We can obtain the optimal expected costs per unit time in steady state from

Theorem 2.7 straightforwardly.

Theorem 2.8. For Model j (= 1, 2), suppose that the lifetime Y is strictly IFR,

and woj(∞ | β) > 0, under Assumption 1. Then the minimum TC(N | β) have

the lower and upper bounds for a fixed β:

Voj(N
∗ − 1 | β) < TCoj(N

∗ | β) ≤ Voj(N
∗ | β), (2.43)

where

Vo1(N | β) = (cF − cY )

1− β
HY (N, β)− cY , (2.44)

Vo2(N | β) = β(cF − cY )

1− β
rY (N + 1, β)− cY . (2.45)

2.4 Unification with Probabilistic Priority

2.4.1 Renewal Reward Method

We have discussed AR and DD polices in discrete time. However, it is worth

noting that the priority of replacement is not always deterministic. That is to
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say, the occurrence of priority is probabilistic and may change at each decision

point of replacement. Suppose that each priority corresponding to Model j (=

1, 2) occurs with probability pj (0 ≤ pj ≤ 1), where
∑2

j=1 pj = 1.

First, let’s consider a discrete time AR model. Since the mean time lengths

of one cycle in Model j (= 1, 2) are all exactly the same, the associated mean

time length in our unified model is given by Aa3(N) = Aa(N) in Eq. (2.2).

Instead, the expected total cost during one cycle, Ba3(N), with probabilis-

tic priority is given by Ba3(N) = p1Ba1(N) + p2Ba2(N) with Eqs. (2.3) and

(2.4). The underlying problem is simply formulated as minN ECa3(N), where

ECa3(N) = Ba3(N)/Aa(N). Define wa3(N) =
∑2

j=1 pjVaj(N)Aa(N)−Ba3(N)

with Eqs. (2.9) and (2.10). Then it can be seen that wa3(N + 1) − wa3(N) =∑2
j=1 pj{waj(N + 1)−waj(N)}Aa(N + 1). Hence, for pj > 0, necessary condi-

tions of strictly increasing waj(N) are to hold all conditions in Theorem 2.1.

Theorem 2.9. Suppose that the lifetime Y is strictly increasing, and wa3(∞) >

0 under Assumption 1. Then the minimum expected cost per unit time in the

steady state has the lower and upper bounds:

Va3(N
∗ − 1) < ECa3(N

∗) ≤ Va3(N
∗), (2.46)

where

Va3(N) =

2∑
j=1

pjVaj(N). (2.47)

Next, let’s consider the discrete-time DD model. Since the mean time length

of one cycle and the expected total cost during one cycle are given by Ao3(N) =

Ao(N) in Eq. (2.12) and Bo3(N) = p1Bo1(N) + p2Bo2(N) with Eqs. (2.13)

and (2.14). The underlying problem is simply formulated as minN ECo3(N),

where ECo3(N) = Bo3(N)/Ao(N). Define wo3(N) =
∑2

j=1 pjVoj(N)Ao(N) −

Bo3(N) with Eqs. (2.21) and (2.22). Then, one has wo3(N + 1) − wo3(N) =∑2
j=1 pj{woj(N + 1)−woj(N)}Ao(N + 1), and finds that necessary conditions

of strictly increasing wo3(N) are to hold all conditions in Theorem 2.3.

Theorem 2.10. Suppose that wo3(n) is strictly increasing, wo3(∞) > 0, under

Assumption 1. Then the minimum expected cost per unit time in the steady

state has the lower and upper bounds:

Vo3(N
∗ − 1) < ECo3(N

∗) ≤ Vo3(N
∗), (2.48)
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where

Vo3(N) =

2∑
j=1

pjVoj(N). (2.49)

2.4.2 NPV Method

Here we calculate the unified AR and DD with discounting. First, let’s consider

a discrete time AR model. Since the mean time lengths of one cycle in Model

j (= 1, 2) are all exactly the same, the associated mean time length in our unified

model is given by Aa3(N, β) = Aa(N, β) in Eq. (2.25). Instead, the expected

total cost during one cycle, Ba3(N, β), with probabilistic priority is given by

Ba3(N, β) = p1Ba1(N, β)+p2Ba2(N, β) with Eqs. (2.26) and (2.27). The under-

lying problem is simply formulated as minN TCa3(N, β), where TCa3(N, β) =

Ba3(N, β)/ [1−Aa(N, β)]. Define wa3(N | β) =
∑2

j=1 pjVaj(N, β)Aa(N, β) −

Ba3(N, β) with Eqs. (2.32) and (2.33). Then it can be seen that wa3(N + 1 |

β)−wa3(N | β) =
∑2

j=1 pj{waj(N + 1 | β)−waj(N | β)}Aa(N + 1, β). Hence,

for pj > 0, necessary conditions of strictly increasing waj(N | β) are to hold all

conditions in Theorem 2.5.

Theorem 2.11. Suppose that the lifetime Y is strictly increasing, and wa3(∞ |

β) > 0 under Assumption 1. Then the minimum TCa3(N | β) has the lower

and upper bounds:

Va3(N
∗ − 1 | β) < TCa3(N

∗ | β) ≤ Va3(N
∗ | β), (2.50)

where

Va3(N | β) =
2∑

j=1

pjVaj(N | β). (2.51)

Next, let’s consider the discrete time DD model. Since the mean time

length of one cycle and the expected total cost during one cycle are given by

Ao3(N, β) = Ao(N, β) in Eq. (2.34) and Bo3(N, β) = p1Bo1(N, β)+p2Bo2(N, β)

with Eqs. (3.26) and (2.36). The underlying problem is simply formulated

as minN TCo3(N, β), where TCo3(N, β) = Bo3(N, β)/ [1−Ao(N, β)]. Define

wo3(N | β) =
∑2

j=1 pjVoj(N, β)Ao(N | β) − Bo3(N | β) with Eqs. (2.44)

and (2.45). Then, one has wo3(N + 1, β) − wo3(N, β) =
∑2

j=1 pj{woj(N + 1 |

β) − woj(N | β)}Ao(N + 1, β), and finds that necessary conditions of strictly

increasing wo3(N | β) are to hold all conditions in Theorem 2.7.
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Theorem 2.12. Suppose that wo3(n | β) is strictly increasing, wo3(∞ | β) > 0,

under Assumption 1. Then the minimum expected cost per unit time in the

steady state has the lower and upper bounds:

Vo3(N
∗ − 1 | β) < TCo3(N

∗ | β) ≤ Vo3(N
∗ | β), (2.52)

where

Vo3(N | β) =
2∑

j=1

pjVoj(N | β). (2.53)

2.5 A General Optimizing Framework

2.5.1 Introduction

Consider a system and a decision variable N (> 0), which affects the timing of

maintenance action(s) renewing the system. In the simplest case of the frame-

work, N represents the time at which the system is replaced preventively. Al-

ternatively, N may also be a critical time after which the first suitable moment

(opportunity) is awaited to renew the system. The problem is to determine the

value of N that optimizes a given objective function. We consider both average

and discounted costs. As the execution of the action(s) implies a renewal of the

system, we can apply renewal theory and obtain for the long-term average costs

for Model j

ECj(N) =
Bj(N)

A(N)
(2.54)

where Bj(N) and A(N) denote the expected cycle costs and length, respectively.

We make the following definitions:

Definition 2: Both Bj(N) and A(N) are absolute discrete time functions of

N , i.e., Bj(N) = Bj(0) +
∑N

n=1 bj(n) and A(N) = A(0) +
∑N

n=1 a(n) for some

functions bj(n) and a(n).

Definition 3: A(0) ≥ 0, a(n) ≥ 0 for all n > 0 and bj(n) = 0 if a(n) = 0.

From above assumptions, it follows that there exists a function mj(n) such that

bj(n) = a(n)mj(n), n > 0. To simplify notation, we rewrite bj for Bj(0) and a

for A(0). Accordingly, we can rewrite ECj(N) as

ECj(N) =
bj +

∑N
n=1 a(n)mj(n)

a+
∑N

n=1 a(n)
. (2.55)
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The above equation is put central in this paper. Notice that for N = 0, the

expected cycle cost is bj , and typically this represents the cost of a preventive

replacement cT . The quantity mj(n) can be interpreted as the expected deteri-

oration cost rate and a(n) common denotes a survival function. The examples

and the link to the marginal cost analysis given below. The framework covers

quite some models.

The analysis of the framework follows similar the continuous time model.

First, taking the difference of ECj(N) with respect to N , we have

ECj(N + 1)− ECj(N) =
[mj(N + 1)− ECj(N)] a(N + 1)

A(N + 1)

=
[Ψj(N)− bj ] a(N + 1)

A(N + 1)A(N)
, (2.56)

where Ψj(N) = mj(N + 1)A(N) −
∑N

n=1 mj(n)a(n). Hence, if mj(N + 1) −

ECj(N) ≥ 0, then ECj(N+1)−ECj(N) ≥ 0. Alternatively, if Ψj(N)−bj ≥ 0,

then ECj(N + 1)− ECj(N) ≥ 0. We give the following theorem.

Theorem 2.13. Suppose a(N + 1) > 0 for all N > 0,

(i) If mj(N +1) is non-increasing on
[
N,N

]
and Ψj(N) < bj, then ECj(N) is

decreasing on
[
N,N

]
.

(ii) If mj(N+1) increases strictly for N > N , where Ψj(N) < bj, and Ψj(N) >

bj, then ECj(N) has at least one (at most two) minimum, say ECj(N
∗) in N∗.

Moreover, the optimal preventive replacement time N∗ satifies

Ψj(N
∗ − 1) < bj and Ψj(N

∗) ≥ bj. Further, we can obtain the following

inequalities:

mj(N
∗)− ECj(N

∗ − 1) < 0 & mj(N
∗ + 1)− ECj(N

∗) ≥ 0. (2.57)

mj(N)− ECj(N − 1) < 0, for N < N ≤ N∗ − 1

&

mj(N + 1)− ECj(N) ≥ 0, for N∗ < N ≤ N. (2.58)

mj(N)− ECj(N
∗ − 1) < 0, for N < N ≤ N∗ − 1

&

mj(N + 1)− ECj(N
∗) ≥ 0, for N∗ < N ≤ N. (2.59)
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(iii) If Ψj(N) < bj for all N > N , then ECj(N) is decreasing for N > N .

(iv) Suppose that mj(N) is increasing for N > N and that Ψj(N) < bj and

Ψj(N) > bj, if one of the following conditions hold

1. limN→∞ mj(N) = ∞.

2. limN→∞ mj(N) > limN→∞ ECj(N).

3. limN→∞ Bj(N) = ∞, limN→∞ mj(N) = m, for m > 0,

and limN→∞
∑N

n=0 [m−mj(n)] bj(n) > bj − am.

For the proof, see the Appendix 7.4.3. Theorem 1 implies that for opti-

mization one only needs to consider those regions where mj(N) is increasing.

Furthermore, it says that a basic criterion in which at every moment we con-

sider whether to delay the replacement or not, is average optimal. That is, the

expected cost of delay the replacement to level N+1, being mj(N+1)a(N+1),

should be compared to the minimal average costs over an interval of the same

length, being ECj(N
∗)a(N + 1). Hence, if mj(N + 1) is larger than or equals

ECj(N
∗), the deferment costs are larger and we should replace. This result

gives a structuring of the optimal policy and it gives an explanation of why

a policy is optimal. Next, we take the discrete time AR and DD models as

example.

2.5.2 Examples

Example 2.1 (AR Model). According to Theorem 2.13, the parameters bj

are both preventive replacement cT in Model 1 and 2. The functions mj(n) is

(cF − cT )RY (n) in Model 1 and (cF − cT ) rY (n+ 1) in Model 2. The function

a(n) is the survival function F̄Y (n− 1) with a = 0.

Here, we take Model 1 as an example. If RY (n) is strictly IFR, m1(∞) =

(cF − cT )RY (∞). In addition, EC1(∞) = cT /
∑∞

n=1 F̄Y (n− 1). Hence, we can

see that the condition m1(∞) > EC1(∞) equals

RY (∞)

∞∑
n=1

F̄Y (n− 1) > cF / (cF − cT ) . (2.60)

It is clear that the analysis process above is exactly the same as Theorem 2.1.
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Example 2.2 (AR Model with NPV). According to Theorem 2.13, the parame-

ters bj are 0 in Model 1 and preventive replacement cT in Model 2. The functions

mj(n) is [(cF − cT )RY (n)/(1− β)]−cT in Model 1 and [β (cF − cT ) rY (n+ 1)/(1− β)]−

cT in Model 2. The function a(n) is (1− β)βnF̄Y (n− 1) with a = 0.

Example 2.3 (DD Model). In general framework, the parameters bj are cY +

(cF − cY )
∑∞

n=1 fY (n)(1− p)n in Model 1 and cY + (cF − cY )
∑∞

n=1 fY (n)(1−

p)n−1 in Model 2. The functions bj(n) are (cF−cY )
∑∞

n=1 F̄Y (n)(1−p)n−N−1 in

Model 1 and p(cF −cY )
∑∞

n=1 F̄Y (n+1)(1−p)n−N−1 in Model 2. The functions

mj(n) is (cF − cY )HY (n) in Model 1 and (cF − cY )hY (n+1) in Model 2. The

function a(n) is
∑∞

n=N+1 F̄Y (n−1)(1−p)n−N−1 with a =
∑∞

n=1 F̄Y (n−1)(1−

p)n−1.

Example 2.4 (DD Model with NPV). In general framework, the parame-

ters bj are cF
∑∞

n=1 β
nfY (n)(1 − p)n + cY

∑∞
n=1 β

nF̄Y (n − 1)p(1 − p)n−1 in

Model 1 and cF
∑∞

n=1 β
nfY (n)(1 − p)n−1 + cY

∑∞
n=1 β

nF̄Y (n)p(1 − p)n−1 in

Model 2. The functions mj(n) is [(cF − cY )HY (n, β)/(1− β)]− cY in Model 1

and [β (cF − cY )hY (n+ 1, β)/(1− β)] − cY in Model 2. The function a(n) is∑∞
n=N+1 β

nF̄Y (n− 1)(1− p)n−N−1 with a =
∑∞

n=1 β
nF̄Y (n− 1)(1− p)n−1.

2.6 Numerical Experiments

In this section we present a case study for the preventive replacement of long-life

products. A pole air switch is a kind of section switches to distribute the power

to several regions and is equipped on a pole (see Figure 2.3). The continuous-

time replacement model for the similar electrical devices was reported in Holland

and McLean [39]. In our example, the features of the product are summarized

as follows.

(A) The pole air switch is a non-repairable item and is highly reliable with

relatively long lifetime.

(B) If it fails, the power is down in the covered regions until the failed item is

replaced by a new one.

(C) The preventive replacement is planned with the time unit of year and can

be described as a discrete-time model.
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(D) In addition to the scheduled preventive replacement, a certain amount of

spare switches are ready in on-hand inventory, and the non-failed switches

in the area are randomly selected for opportunistic replacement.

Figure 2.3: Pole air switch.

The 112 failure data of pole air switches are recorded during twenty-five

years in Hiroshima City, Japan. Figure 2.4 illustrates the relative frequency of

the failure data. Suppose that the (discrete) failure time obeys the following

discrete Weibull distribution:

fY (n) = (1− r)(n−1)α − (1− r)n
α

, (2.61)

where 0 < r < 1, α > 0, and n = 1, 2 · · · . From the definition above, the

reliability function and its failure rate are given by

FY (n− 1) = (1− r)(n−1)α (2.62)

and

rY (n) = 1− (1− r)n
α−(n−1)α , (2.63)

respectively. When β = 1, then it can be reduced to the geometric distribution

with the failure rate rY (n) = r. The discrete Weibull distribution in Eq. (2.61)

was introduced first by Nakagawa and Osaki [40]. Later, Stein and Datter [41]

defined a different discrete Weibull distribution which is not our case in this

paper. AliKhan et al [42] developed a simple parameter estimation method as

well as the moment method and the maximum likelihood method for the original
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Figure 2.4: Failure time data of pole air switches.

discrete Weibull distribution. In practice, it is common to apply the classical

moment method [42] to understand the mean and variance of the failure time in

the power industry. We also applied the moment method to estimate r and α.

For the failure data in Figure 2.4, we get E[Y ] = 13.4 (year) and Var[Y ] = 24.36

(year2), so that

1− r̂ = 0.9995, α̂ = 2.8547.

In this section, we compare two replacement models: RF policies and RL

policies, under the assumption that the arrival time of opportunity for re-

placement obeys the geometric distribution with hX(x) = h = 0.95 (CaseA).

Throughout the example, we fix cT = 1.0 (K dollar), and change the other

cost parameters cF ∈ [1.5, 10.0] (K dollar), cY = 0.8, 1.0 (K dollar). In unified

models, we set p1 = p2 = 0.5. The discounted factor is β = 0.9.

Tables 2.1–2.3 present the optimal AR time and DD time limit N∗ and

their associated EC(N∗). We also provide the results for the unified models.

From these results, we derive the following lessons learned from the numerical

illustrations.

(1) When cF increases, both the optimal AR time and the optimal DD time
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Table 2.1: Optimal N∗ and EC(N∗) with Model 1 for AR and DD models in
discrete time.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ ECa1(N
∗) N∗ ECo1(N

∗) N∗ ECa1(N
∗) N∗ ECo1(N

∗)

1.5 15 0.1083 8 0.1089 15 0.1083 12 0.1117

2.0 12 0.1296 6 0.1394 12 0.1296 8 0.1439

3.0 10 0.1575 4 0.1974 10 0.1575 5 0.2036

4.0 8 0.1769 3 0.2538 8 0.1769 3 0.2610

5.0 8 0.1926 3 0.3094 8 0.1926 3 0.3172

6.0 7 0.2049 2 0.3648 7 0.2049 2 0.3729

7.0 7 0.2166 1 0.4201 7 0.2166 2 0.4284

8.0 6 0.2264 1 0.4750 6 0.2264 2 0.4838

9.0 6 0.2345 1 0.5298 6 0.2345 1 0.5388

10.0 6 0.2437 1 0.5847 6 0.2437 1 0.5937

Table 2.2: Optimal N∗ and EC(N∗) with Model 2 for AR and DD models in
discrete time.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ ECa2(N
∗) N∗ ECo2(N

∗) N∗ ECa2(N
∗) N∗ ECo2(N

∗)

1.5 16 0.1111 10 0.1106 16 0.1111 14 0.1125

2.0 12 0.1367 7 0.1427 12 0.1376 9 0.1465

3.0 9 0.1716 5 0.2037 9 0.1716 6 0.2093

4.0 8 0.1968 4 0.2631 8 0.1968 5 0.2697

5.0 7 0.2175 3 0.3216 7 0.2175 4 0.3288

6.0 7 0.2352 3 0.3800 7 0.2352 3 0.3874

7.0 6 0.2503 2 0.4380 6 0.2503 3 0.4458

8.0 6 0.2638 2 0.4957 6 0.2638 3 0.5041

9.0 6 0.2773 2 0.5535 6 0.2773 2 0.5619

10.0 5 0.2893 2 0.6113 5 0.2893 2 0.6197
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Table 2.3: Optimal N∗ and EC(N∗) with unified Model for AR and DD models
in discrete time, when p1 = 0.5 = p2 = 0.5.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ ECa3(N
∗) N∗ ECo3(N

∗) N∗ ECa3(N
∗) N∗ ECo3(N

∗)

1.5 16 0.1095 9 0.1098 16 0.1095 12 0.1121

2.0 12 0.1323 6 0.1418 12 0.1323 8 0.1452

3.0 9 0.1623 4 0.2006 9 0.1623 5 0.2065

4.0 8 0.1849 3 0.2584 8 0.1849 3 0.2654

5.0 7 0.2029 2 0.3155 7 0.2029 3 0.3230

6.0 7 0.2170 2 0.3724 7 0.2170 2 0.3802

7.0 6 0.2310 1 0.4290 6 0.2310 2 0.4371

8.0 6 0.2413 1 0.4853 6 0.2413 2 0.4939

9.0 6 0.2517 1 0.5417 6 0.2517 1 0.5504

10.0 6 0.2620 1 0.5980 6 0.2620 1 0.6067

Table 2.4: Optimal N∗ and TC(N∗) with Model 1 for AR and DD models in
discrete time, when β = 0.9.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ TCa1(N
∗) N∗ TCo1(N

∗) N∗ TCa1(N
∗) N∗ TCo1(N

∗)

1.5 18 0.5800 11 0.5782 18 0.5800 15 0.5828

2.0 14 0.7410 8 0.7541 14 0.7410 10 0.7679

3.0 11 0.9802 5 1.0823 10 0.9802 7 1.1100

4.0 9 1.1548 4 1.3931 9 1.1548 5 1.4312

5.0 8 1.2968 3 1.6968 8 1.2968 4 1.7413

6.0 8 1.4195 3 1.9945 8 1.4195 3 2.0464

7.0 7 1.5190 2 2.2907 7 1.5190 3 2.3341

8.0 7 1.6131 2 2.5822 7 1.6131 3 2.6418

9.0 6 1.7028 2 2.8737 6 1.7028 2 2.9361

10.0 6 1.7706 2 3.1651 6 1.7706 2 3.2276
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Table 2.5: Optimal N∗ and TC(N∗) with Model 2 for AR and DD models in
discrete time, when β = 0.9.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ TCa2(N
∗) N∗ TCo2(N

∗) N∗ TCa2(N
∗) N∗ TCo2(N

∗)

1.5 22 0.5834 13 0.5822 22 0.5834 20 0.5835

2.0 15 0.7560 9 0.7665 15 0.7560 12 0.7748

3.0 11 1.0523 6 1.1116 11 1.0523 7 1.1346

4.0 9 1.2736 4 1.4399 9 1.2736 5 1.4732

5.0 8 1.4559 3 1.7596 8 1.4559 4 1.7998

6.0 7 1.6182 3 2.0722 7 1.6182 4 2.1196

7.0 7 1.7511 2 2.3843 7 1.7511 3 2.4339

8.0 7 1.8839 2 2.6908 7 1.8839 3 2.7465

9.0 6 1.9933 2 2.9974 6 1.9933 2 3.0568

10.0 6 2.0973 2 3.3040 6 2.0973 2 3.3634

Table 2.6: Optimal N∗ and TC(N∗) with unified model for AR and DD models
in discrete time, when β = 0.9, p1 = p2 = 0.5.

cY = 0.8 cY = 1.0

AR DD AR DD

cF N∗ TCa3(N
∗) N∗ TCo3(N

∗) N∗ TCa3(N
∗) N∗ TCo3(N

∗)

1.5 19 0.5818 12 0.5804 19 0.5818 17 0.5833

2.0 14 0.7512 9 0.7606 14 0.7512 11 0.7716

3.0 11 1.0090 6 1.0970 11 1.0090 7 1.1224

4.0 9 1.2023 4 1.4165 9 1.2023 5 1.4523

5.0 8 1.3604 3 1.7282 8 1.3604 4 1.7706

6.0 8 1.4991 3 2.0334 8 1.4991 4 2.0831

7.0 7 1.6118 2 2.3375 7 1.6118 3 2.3891

8.0 7 1.7214 2 2.6365 7 1.7214 3 2.6943

9.0 6 1.8190 2 2.9355 6 1.8190 2 2.9966

10.0 6 1.9013 2 3.2346 6 1.9013 2 3.3296
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limitN∗ become smaller. This is because the preventive replacement tends

to be set earlier if the corrective replacement cost cF is higher.

(2) When cT = cY , the AR policy is better than the DD policy. Additionally,

the AR time is larger than the DD time.

(3) When cT < cY , the DD policy is better than the AR policy in some cases

where cF is relatively smaller. For example, when cF = 1.5, it is easy to

confirm that the DD policy is better than the AR policy. In our actual

application, under the assumption of cT = 2cY , if cT < cF < 1.5cT , the

decision-maker should consider the opportunity in the preventive replace-

ment. Otherwise, if cF > 1.5cT , the decision-maker should consider only

the AR policy instead of the DD policy.

(4) In most cases, the optimal preventive replacement times for each prior-

ity model tend to converge to the same values. This phenomenon arises

from the discretization of replacement times into integer values and the

relatively subtle differences in replacement priorities.

(5) Comparing Tables 2.1, 2.2, and Table 2.3, notable discrepancies in the

preventive replacement times are not evident. Moreover, the associated

expected costs tend to converge towards similar values.

Tables 2.4–2.6 present the optimal AR time and DD time limit N∗, and their

expected total discounted costs TC(N∗ | β) for Model 1 and Model 2, given a

discount factor of β = 0.90. By observing the results carefully, we derive the

following findings:

(6) The lessons (1)–(5) always hold in models with discounting.

(7) In terms of the optimal time in AR and DD policies, the optimal re-

placement time with discounting is longer than that without discounting.

This indicates that when the economic environment is unstable, decision-

makers will shorten the replacement times for their equipment.

(8) When the discount factor is relatively small, such as β = 0.90, the optimal

preventive replacement times for each priority model often converge to

similar values in most cases. In this scenario, the discount factor has a

minimal impact on the optimal replacement times.



Chapter 3

Discrete Time RF and RL
Models

3.1 Renewal Reward Approach

3.1.1 RF Model

Based on the notations and assumpations in section 2.1, we reformulat the RF

and RL models in discrete time. Zhao and Nakagawa [2] initially proposed

these models in continuous time. In discrete time RF model, if the system

breaks down before an arrival of opportunity, X, and a scheduled preventive

replacement time N , the failed item is replaced by a new one (see Figure 3.1

(i)). Otherwise, the system is replaced preventively at the time, the opportu-

nity or the prescheduled preventive replacement time, whichever comes first. In

contrast, in RL model, the system is replaced preventively at the time, the op-

portunity or the prescheduled preventive replacement time N , whichever comes

last (see Figure 3.1 (ii)).

29
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Figure 3.1: RF and RL disciplines.

According to definition 1, we may possibly consider six priority models for

RF and RL disciplines:

(1) Model 1: Sc ≻ Ca ≻ Op,

(2) Model 2: Ca ≻ Sc ≻ Op,

(3) Model 3: Sc ≻ Op ≻ Ca,

(4) Model 4: Op ≻ Sc ≻ Ca,

(5) Model 5: Ca ≻ Op ≻ Sc,

(6) Model 6: Op ≻ Ca ≻ Sc.

First of all, the probability that the system is replaced at time n (= 0, 1, 2, . . .)

is given by

hfj(n) =


fY (n)ḠX(n− 1) + gX(n)F̄Y (n) 0 ≤ n ≤ N − 1

ḠX(n− 1)F̄Y (n− 1) n = N

0 n ≥ N + 1,

(3.1)

where
∑∞

n=0 hfj(n) = 1.
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Let Af (N) denote the expected time length of one cycle for Model j. Then,

we have

Af (N) =

N−1∑
n=1

n
{
fY (n)ḠX(n− 1) + gX(n)F̄Y (n)

}
+NḠX(N − 1)F̄Y (N − 1)

=

N∑
n=1

F̄Y (n− 1)ḠX(n− 1). (3.2)

We calculate the expected total costs during one cycle, Bfj(N), as follows:

Bf1(N) = cF

N−1∑
n=1

fY (n)ḠX(n− 1) + cY

N−1∑
n=1

gX(n)F̄Y (n)

+ cT ḠX(N − 1)F̄Y (N − 1), (3.3)

Bf2(N) = cF

N∑
n=1

fY (n)ḠX(n− 1) + cY

N−1∑
n=1

gX(n)F̄Y (n)

+ cT ḠX(N − 1)F̄Y (N), (3.4)

Bf3(N) = cF

N−1∑
n=1

fY (n)ḠX(n) + cY

N−1∑
n=1

gX(n)F̄Y (n− 1)

+ cT ḠX(N − 1)F̄Y (N − 1), (3.5)

Bf4(N) = cF

N−1∑
n=1

fY (n)ḠX(n) + cY

N∑
n=1

gX(n)F̄Y (n− 1)

+ cT ḠX(N)F̄Y (N − 1), (3.6)

Bf5(N) = cF

N∑
n=1

fY (n)ḠX(n− 1) + cY

N∑
n=1

gX(n)F̄Y (n)

+ cT ḠX(N)F̄Y (N), (3.7)

Bf6(N) = cF

N∑
n=1

fY (n)ḠX(n) + cY

N∑
n=1

gX(n)F̄Y (n− 1)

+ cT ḠX(N)F̄Y (N). (3.8)

From renewal reward theory [37], the expected costs per unit time in the

steady state are given by

ECfj(N) =
Bfj(N)

Af (N)
, (3.9)
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for Model j (= 1, 2, . . . , 6). Then, our purpose is to find the optimal scheduled

preventive replacement times N∗ by which minimizes ECfj(N).

Taking the difference of ECfj(N) (j = 1, 2, . . . , 6) with respect to N yields

ECfj(N + 1)− ECfj(N) =
F̄Y (N)ḠX(N)

Af (N + 1)Af (N)
wfj(N), (3.10)

where

wf1(N) =
{
(cF − cT )RY (N) [1 +HX(N)]− (cF − cT )HX(N)

}
Af (N)

−Bf1(N), (3.11)

wf2(N) =
{
(cF − cT )rY (N + 1)− (cF − cT )HX(N)

}
Af (N)−Bf2(N),

(3.12)

wf3(N) =
{
(cF − cT )RY (N)− (cT − cY ) [1 +RY (N)]HX(N)

}
Af (N)

−Bf3(N), (3.13)

wf4(N) =
{
(cF − cT )RY (N)− (cT − cY )hX(N + 1)

}
Af (N)−Bf4(N),

(3.14)

wf5(N) =
{
(cF − cT )rY (N + 1)− (cT − cY ) [1− rY (N + 1)]hX(N + 1)

}
Af (N)

−Bf5(N), (3.15)

wf6(N) =
{
(c1 − c2)rY (N + 1) [1− hX(N + 1)]− (c2 − c3)hX(N + 1)

}
Af (N)

−Bf6(N). (3.16)

Next, we describe the optimal preventive replacement polices for RF model

in discrete time and discuss the necessary conditions for the existence of a unique

optimal policy.

Theorem 3.1. (I) Suppose that wfj(n) (j = 1, 2, . . . , 6) are strictly increasing

functions in n under Assumption 1.

(i) If wfj(∞) > 0, then there exists at least one (at most two) optimal sched-

uled preventive replacement time N∗ which satisfies wfj(N
∗ − 1) < 0 and

wfj(N
∗) ≥ 0.
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(ii) If wfj(∞) ≤ 0, then the optimal scheduled preventive replacement time is

N∗ → ∞.

(II) Suppose wfj(n) are decreasing functions under Assumption 1. Then the

optimal scheduled preventive replacement times are given by N∗ → ∞ or N∗ =

1.

See Appendix 7.4.4 for proof of Theorem 3.1. We care about the necessary

conditions the functions wfj(n) are strictly increasing. If the failure time Y is

strictly IFR and the arrival time of opportunity X is DHR, Model 2 and Model

4 are strictly increasing. However, for other four models, additional monotonic

properties are needed for the product of two hazard rate functions. Here we

take the Model 1 as an example. If wfj(n) are strictly increasing, the additional

condition is RY (n + 1) [1 +HX(n+ 1)] > RY (n) [1 +HX(n)]. More detailed

discussion can also be found in Lemma 7.6.

The following result can be derived from Theorem 3.1 straightforwardly.

Theorem 3.2. For Model j (= 1, 2, . . . , 6), suppose that wfj(n) is strictly in-

creasing in n, and wfj(∞) > 0, under Assumption 1. Then the minimum ex-

pected costs per unit time in the steady state have the lower and upper bounds:

Vfj(N
∗ − 1) < ECfj(N

∗) ≤ Vfj(N
∗), (3.17)

where

Vf1(N) = (cF − cT )RY (N) [1 +HX(N)]− (cT − cY )HX(N), (3.18)

Vf2(N) = (cF − cT )rY (N + 1)− (cT − cY )HX(N), (3.19)

Vf3(N) = (cF − cT )RY (N)− (cT − cY ) [1 +RY (N)]HX(N), (3.20)

Vf4(N) = (cF − cT )RY (N)− (cT − cY )hX(N), (3.21)

Vf5(N) = (cF − cT )rY (N + 1)− (cT − cY ) [1− rY (N + 1)]hX(N + 1), (3.22)

Vf6(N) = (cF − cT )rY (N + 1) [1− hX(N + 1)]− (cT − cY )hX(N + 1). (3.23)

3.1.2 RL Model

Next, we concentrate on RL model in discrete time. Similar to RF discipline,

we have the probability that the system is replaced at time n (= 0, 1, 2, . . .) for
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Model j (= 1, 2, . . . , 6):

hlj(n) =



fY (n) 0 ≤ n ≤ N − 1

fY (n)ḠX(n− 1) + F̄Y (n− 1)GX(n− 1)

+F̄Y (n)gX(n) n = N

fY (n)ḠX(n− 1) + gX(n)F̄Y (n) n ≥ N + 1,

(3.24)

where
∑∞

n=0 hlj(n) = 1.

We confirm that the expected time lengths of one cycle for Model j (=

1, 2, . . . , 6) are given by

Al(N) =

N−1∑
n=1

nfY (n) +NF̄Y (N − 1)GX(N − 1)

+

∞∑
n=N

n

[
fY (n)ḠX(n− 1) + gX(n)F̄Y (n)

]

=

N∑
n=1

F̄Y (n− 1) +

∞∑
n=N+1

F̄Y (n− 1)ḠX(n− 1). (3.25)

We also confirm that the expected total costs during one cycle for each model

become

Bl1(N) = cF

N∑
n=1

fY (n) + cTGX(N − 1)F̄Y (N − 1)

+ cF

∞∑
n=N

fY (n)ḠX(n− 1) + cY

∞∑
n=N

gX(n)F̄Y (n), (3.26)

Bl2(N) = Bl5(N) = cF

N∑
n=1

fY (n) + cTGX(N − 1)F̄Y (N)

+ cF

∞∑
n=N+1

fY (n)ḠX(n− 1) + cY

∞∑
n=N

gX(n)F̄Y (n), (3.27)

Bl3(N) = Bl4(N) = cF

N−1∑
n=1

fY (n) + cT F̄Y (N − 1)GX(N − 1)

+ cF

∞∑
n=N

fY (n)ḠX(n) + cY

∞∑
n=N

gX(n)F̄Y (n− 1), (3.28)

Bl6(N) = cF

N−1∑
n=1

fY (n) + cF fY (N)[1− gX(N)] + cT F̄Y (N)GX(N − 1)

+ cT

∞∑
n=N+1

fY (n)ḠX(n) + cY

∞∑
n=N

gX(n)F̄Y (n− 1). (3.29)
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Then, the expected costs per unit time in the steady state, EClj(N) = Blj(N)/Al(N),

for Model j (= 1, 2, . . . , 6).

Next, we derive the optimal scheduled preventive replacement times N∗

which minimize EClj(N). Taking the difference of EClj(N) (j = 1, 2, . . . , 6)

with respect to N , one obtains

EClj(N + 1)− EClj(N) =
F̄Y (N)GX(N)

Al(N + 1)Al(N)
wlj(N), (3.30)

where

wl1(N) =
{
(cF − cT )RY (N)

[
1− ĤX(N)

]
+ (cT − cY )ĤX(N)

}
Al(N)

−Bl1(N), (3.31)

wl2(N) = wl5(N) =
{
(cF − cT )rY (N + 1) + (cT − cY )ĤX(N)

}
Al(N)

−Bl2(N), (3.32)

wl3(N) = wl4(N) =
{
(cF − cT )RY (N) + (cT − cY ) [1 +RY (N)] ĤX(N)

}
Al(N)

−Bl3(N), (3.33)

wl6(N) =
{
(cF − cT )

[
rY (N + 1) +RY (N)ĤX(N)

]
+ (cT − cY ) [1 +RY (N)] ĤX(N)

}
Al(N)−Bl6(N). (3.34)

We give the optimal scheduled preventive replacement times N∗ for RL

model.

Theorem 3.3. (I) Suppose that wlj(n) (j = 1, 2, . . . , 6) are strictly increasing

functions under Assumption 1.

(i) If wlj(∞) > 0, then there exists at least one (at most two) optimal sched-

uled preventive replacement time N∗ which satisfies wlj(N
∗ − 1) < 0 and

wlj(N
∗) ≥ 0.

(ii) If wlj(∞) ≤ 0, then the optimal scheduled preventive replacement time is

N∗ → ∞.

(II) Suppose that wlj(n) (j = 1, 2, . . . , 6) are strictly increasing functions in n.

Then the optimal scheduled preventive replacement times are given by N∗ → ∞

or N∗ = 0.
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For the proof, refer to Theorem 3.1. We can see that the necessary conditions

of strictly increasing wl1(N), wl2(N), wl5(N) depend on the cost parameter

under Assumption 1. At special case c2 = c3, the necessary conditions of strictly

increasing wlj(N) (j = 2, 3, 4, 5) is rather mild, except in Model 1 and Model 6.

Note that wlj(N) depends on the reversed hazard rate ĤX(N). It is well known

that there does not exist the absolutely continuous distribution with constant

reversed hazard rate on the positive real line [44]. Further detailed discussion

is also available in Lemma 7.7.

We give the upper and lower bounds of the minimum expected cost per unit

time in the steady state from Theorem 3.3.

Theorem 3.4. For Model j (= 1, 2, . . . , 6), suppose that the functions wlj(n) (j =

1, 2, . . . , 6) are strictly increasing in n and wlj(∞) > 0 under Assumption 1.

Then the minimum expected costs per unit time in the steady state have the

lower and upper bounds:

Vlj(N
∗ − 1) < EClj(N

∗) ≤ Vlj(N
∗), (3.35)

where

Vl1(N) = (cF − cT )RY (N)
[
1− ĤX(N)

]
+ (cT − cY )ĤX(N), (3.36)

Vl2(N) = Vl5(N) = (cF − cT )rY (N + 1) + (cT − cY )ĤX(N), (3.37)

Vl3(N) = Vl4(N) = (cF − cT )RY (N) + (cT − cY )
[
1 +RY (N)ĤX(N)

]
,

(3.38)

Vl6(N) = (cF − cT )
[
rY (N + 1) +RY (N)ĤX(N)

]
+ (cT − cY ) [1 +RY (N)] ĤX(N). (3.39)

3.2 NPV Apporach

3.2.1 RF Model

First, we can calculate the NPV of one unit cost during the renewal cycle;

Af (N, β) =

N−1∑
n=1

βn
[
fY (n)Ḡ(n− 1) + gX(n)F̄Y (n)

]
+βN ḠX(N −1)F̄Y (N −1),

(3.40)

where Af (N, β) for Model j are all same.
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We can compute the expected total discounted costs during the renewal

cycle, Bfj(N, β), for Model j (= 1, · · · , 6);

Bf1(N, β) = cF

N−1∑
n=1

βnfY (n)Ḡ(n− 1) + cY

N−1∑
n=1

βngX(n)F̄Y (n)

+ cTβ
N ḠX(N − 1)F̄Y (N − 1), (3.41)

Bf2(N, β) = cF

N∑
n=1

βnfY (n)Ḡ(n− 1) + cY

N−1∑
n=1

βngX(n)F̄Y (n)

+ cTβ
N ḠX(N − 1)F̄Y (N), (3.42)

Bf3(N, β) = cF

N−1∑
n=1

βnfY (n)Ḡ(n) + cY

N−1∑
n=1

βngX(n)F̄Y (n− 1)

+ cTβ
N ḠX(N − 1)F̄Y (N − 1), (3.43)

Bf4(N, β) = cF

N−1∑
n=1

βnfY (n)Ḡ(n) + cY

N∑
n=1

βngX(n)F̄Y (n− 1)

+ cTβ
N ḠX(N)F̄Y (N − 1), (3.44)

Bf5(N, β) = cF

N∑
n=1

βnfY (n)Ḡ(n− 1) + cY

N∑
n=1

βngX(n)F̄Y (n)

+ cTβ
N ḠX(N)F̄Y (N), (3.45)

Bf6(N, β) = cF

N∑
n=1

βnfY (n)Ḡ(n) + cY

N∑
n=1

βngX(n)F̄Y (n− 1)

+ cTβ
N ḠX(N)F̄Y (N), (3.46)

where discount factor β(> 0) represents the NPV of a unit cost component. In

RF discipline, TCfj(N, β) denotes the NPV of the expected total discounted

cost over an infinite time horizon. Then, we have

TCfj(N, β) =
Bfj(N, β)

1−Af (N, β)
, (3.47)

for Model j (= 1, · · · , 6).

Then, the problem is to determine the optimal prescheduled preventive re-

placement times N∗ by minimizing TCfj(N, β).

We determine the optimal prescheduled preventive replacement times N∗

which minimize TCfj(N, β) for Mode j (= 1, · · · , 6) under RF discipline. We
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compute the difference in TCfj(N, β) for a fixed β, we have

TCfj(N + 1, β)− TCfj(N, β) =
F̄Y (N)ḠX(N)

[1−Af (N + 1, β)] [1−Af (N, β)]
wfj(N | β),

(3.48)

in which

wf1(N | β) =

[
(cF − cT )RY (N) [1 +HX(N)]

1− β
− (cT − cY )HX(N)

1− β
− cT

]
× [1−Af (N, β)]−Bf1(N, β), (3.49)

wf2(N | β) =

[
β (cF − cT ) rY (N + 1)

1− β
− (cT − cY )HX(N)

1− β
− cT

]
× [1−Af (N, β)]−Bf2(N, β), (3.50)

wf3(N | β) =

[
(cF − cT )RY (N)

1− β
− (cT − cY )HX(N) [RY (N) + 1]

1− β
− cT

]
× [1−Af (N, β)]−Bf13(N, β), (3.51)

wf4(N | β) =

[
(cF − cT )RY (N)

1− β
− β (cT − cY )hX(N + 1)

1− β
− cT

]
× [1−Af (N, β)]−Bf4(N, β), (3.52)

wf5(N | β) =

[
β (cF − cT ) rY (N + 1)

1− β
− β (cT − cY )hX(N + 1) [1− rY (N + 1)]

1− β

− cT

]
[1−Af (N, β)]−Bf5(N, β),

(3.53)

wf6(N | β) =

[
β (cF − cT ) rY (N + 1) [1− hX(N + 1)]

1− β
− β (cT − cY )hX(N + 1)

1− β

− cT

]
[1−Af (N, β)]−Bf6(N, β).

(3.54)

See Lemma 7.8 for the monotonicity of functions wfj(N | β)(j = 1, · · · , 6).

We determine the optimal prescheduled preventive replacement times N∗

that minimize the expected costs over an infinite time horizon, TCfj(N, β), for

Model j (= 1, · · · , 6).

Theorem 3.5. (I) Suppose that wfj(N | β) is a strictly increasing function of

N for a fixed β.
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(i) If wfj(∞ | β) > 0, then there exists at least one (at most two) optimal

scheduled preventive replacement time N∗ which satisfies wfj(N
∗ − 1 |

β) < 0 and wfj(N
∗ | β) ≥ 0.

(ii) If wfj(∞ | β) ≤ 0, then the optimal prescheduled preventive replacement

time is given by N∗ → ∞, and so the failure replacement or opportunistic

replacement is better than the preventive replacement.

(II) If wfj(N | β) is a decreasing function of N , the optimal prescheduled pre-

ventive replacement time is always N∗ → ∞ or N∗ = 1.

For the proof of Theorem 3.5, see the Appendix 7.4.5.

We can derive the results directly from Theorem 1 as follows:

Theorem 3.6. For Model j (= 1, · · · , 6), suppose that wfj(N | β) is a strictly

increasing function and wfj(N | β) > 0, under Assumption 1. Then the mini-

mum expected total discounted costs over an infinite horizon have the lower and

upper bounds:

Vfj(N
∗ − 1 | β) < TCfj(N

∗ | β) ≤ Vfj(N
∗ | β), (3.55)

where

Vf1(N | β) = (cF − cT )RY (N) [1 +HX(N)]

1− β
− (cT − cY )HX(N)

1− β
− cT , (3.56)

Vf2(N | β) = β (cF − cT ) rX(N + 1)

1− β
− (cT − cY )HX(N)

1− β
− cT , (3.57)

Vf3(N | β) = (cF − cT )RY (N)

1− β
− (cT − cY )HX(N) [1 +RY (N)]

1− β
− cT , (3.58)

Vf4(N | β) = (cF − cT )RY (N)

1− β
− β (cT − cY )hX(N + 1)

1− β
− cT , (3.59)

Vf5(N | β) = β (cF − cT ) rX(N + 1)

1− β
− β (cT − cY )hX(N + 1) [1− rX(N + 1)]

1− β

− cT ,

(3.60)

Vf6(N | β) = β (cF − cT ) rX(N + 1) [1− hX(N + 1)]

1− β
− β (cT − cY )hX(N + 1)

1− β

− cT .

(3.61)
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3.2.2 RL Model

Like RF discipline, Al(N, β) are all same for Model j (= 1, · · · , 6) in RL disci-

pline, so we can obtain

Al(N, β) =

N−1∑
n=1

βnfY (n) + βN F̄Y (N − 1)GX(N − 1)

+

∞∑
n=N

βn
[
fY (n)Ḡ(n− 1) + F̄Y (n)gX(n)

]
. (3.62)

We can obtian the expected total discounted over an infinite horizon, Blj(N, β),

for Model j (= 1, · · · , 6);

Bl1(N, β) = cF

N−1∑
n=1

βnfY (n) + cTβ
NGX(N − 1)F̄Y (N − 1)

+ cF

∞∑
n=N

βnfY (n)ḠX(n− 1) + cY

∞∑
n=N

βngX(n)F̄X(n),(3.63)

Bl2(N, β) = Bl5(N, β) = cF

N∑
n=1

βnfY (n) + cTβ
NGX(N − 1)F̄Y (N)

+ cF

∞∑
n=N+1

βnfY (n)ḠX(n− 1) + cY

∞∑
n=N

βngX(n)F̄X(n), (3.64)

Bl3(N, β) = Bl4(N, β) = cF

N−1∑
n=1

βnfY (n) + cTβ
NGX(N − 1)F̄Y (N − 1)

+ cF

∞∑
n=N

βnfY (n)ḠX(n) + cY

∞∑
n=N

βngX(n)F̄X(n− 1),

(3.65)

Bl6(N, β) = cF

N−1∑
n=1

βnfY (n) + cFβ
NfY (N)[1− gX(N)] + cTβ

NGX(N − 1)F̄Y (N)

+ cF

∞∑
n=N+1

βnfY (n)ḠX(n) + cY

∞∑
n=N

βngX(n)F̄X(n− 1).

(3.66)

Then, the problem is to minimize the expected total costs over an infinite

horizon,

TClj(N, β) =
Blj(N, β)

1−Al(N, β)
. (3.67)
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Our interest is to find the optimal prescheduled preventive replacement times

N∗ which minimizes TClj(N, β).

We formulate the optimal preventive replacement times N∗ which minimize

TClj(N, β) for Model j (= 1, · · · , 6) with RL discipline. Taking the difference

of TClj(N, β) with respect to N , we have

TClj(N, β)−TClj(N, β) =
F̄Y (N)GX(N)

[1−Al(N + 1, β)] [1−Al(N, β)]
wlj(N | β), (3.68)

where

wl1(N | β) =

[
(cF − cT )RY (N)[1− ĤX(N)]

1− β
+

(cT − cY )ĤX(N)

1− β
− cT

]
× [1−Al(N, β)]−Bl1(N, β),

(3.69)

wl2(N | β) = wl5(N | β) =

[
β(cF − cT )rY (N + 1)

1− β
+

(cT − cY )ĤX(N)

1− β
− cT

]
× [1−Al(N, β)]−Bl2(N, β),

(3.70)

wl3(N | β) = wl4(N | β) =

[
(cF − cT )RY (N)

1− β
+

(cT − cY )ĤX(N)[1 +RY (N)]

1− β

− cT

]
[1−Al(N, β)]−Bl3(N, β),

(3.71)

wl6(N | β) =

[
(cF − cT )[RY (N)ĤX(N) + βrY (N + 1)]

1− β

+
(cT − cY )ĤX(N)[1 +RY (N)]

1− β
− cT

]
[1−Al(N, β)]

−Bl6(N, β). (3.72)

Taking the subsequent difference of wlj(N | β) for j = 1, · · · , 6 in Eqs. (3.69)

– (3.72), we can get
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wl1(N + 1 | β)− wl1(N | β) =

{
(cF − cT )

[
RY (N + 1)

(
1− ĤX(N + 1)

)
−

1− β

−
RY (N)

(
1− ĤX(N)

) ]
1− β

+
(cT − cY )

[
ĤX(N + 1)− ĤX(N)

]
1− β

}
× [1−Al(N + 1, β)] ,

(3.73)

wl2(N + 1 | β)− wl2(N | β) = wl5(N + 1 | β)− wl5(N | β)

=

{
β (cF − cT ) [rY (N + 2)−RY (N + 1)]

1− β

+
(cT − cY )

[
ĤX(N + 1)− ĤX(N)

]
1− β

}
× [1−Al(N + 1, β)] , (3.74)

wl3(N + 1 | β)− wl3(N | β) = wl4(N + 1 | β)− wl4(N | β)

=

{
(cF − cT ) [RY (N + 1)−RY (N)]

1− β

+
(cT − cY )

[
ĤX(N + 1) (1 +RY (N + 1))

1− β

−
ĤX(N) (1 +RY (N))

]
1− β

}
× [1−Al(N + 1, β)] , (3.75)
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wl6(N + 1 | β)− wl6(N | β) =

{
(cF − cT )

[
RY (N + 1)ĤX(N + 1)−RY (N)ĤX(N) +

]
1− β

+
βrY (N + 2)− βrY (N + 1)

1− β

+
(cT − cY )

[
ĤX(N + 1) (1 +RY (N + 1))

1− β

−
ĤX(N) (1 +RY (N))

]
1− β

}
[1−Al(N + 1, β)] .

(3.76)

From Eqs. (3.73)–(3.76), the monotone properties of wlj(N | β) (j =

1, · · · , 6) depend on the RY (N) and the cost parameters in our modeling. It was

proved in [43] that if the lifetime X is DFR, then the HX(N) is decreasing in N .

The necessary conditions that wlj(N | β) (j = 1, · · · , 6) is a strictly increasing

functions in N are given in Lemma 7.9.

Theorem 3.7. (I) Suppose that wlj(N | β) is a strictly increasing function of

N for a fixed β.

(i) If wlj(∞ | β) > 0 , then there exists at least one (at most two) optimal

prescheduled preventive replacement time N∗, which satisfies wlj(N
∗ − 1 |

β) < 0 and wlj(N
∗ | β) ≥ 0.

(ii) If wlj(∞ | β) > 0 , then there exists at least one (at most two) optimal

prescheduled preventive replacement time N∗, which satisfies wlj(N
∗ − 1 |

β) < 0 and wlj(N
∗ | β) ≥ 0.

(II) If wlj(N | β) is a decreasing function of N , the optimal prescheduled

preventive replacement time is always N∗ → ∞ or N∗ = 1.

For the proof of Theorem 3.7, see the proof of Theorem 3.5 in Appdenix.

We can directly have the following result from Theorem 3.7 .

Theorem 3.8. For Model j(= 1, · · · , 6), suppose that wlj(N | β) is a strictly

increasing function and wlj(N | β) > 0, unde Assumption 1. Then the minimum

expected total discounted costs over an infinite horizon have the lower and upper

bounds:

Vlj(N
∗ − 1 | β) < TClj(N

∗ | β) ≤ Vlj(N
∗ | β), (3.77)
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where

Vl1(N | β) =
(cF − cT )RY (N)

[
1− ĤX(N)

]
1− β

+
(cT − cY ) ĤX(N)

1− β
− cT , (3.78)

Vl2(N | β) = Vl5(N | β) = β (cF − cT ) rY (N + 1)

1− β
+

(cT − cY ) ĤX(N)

1− β

− cT , (3.79)

Vl3(N | β) = Vl4(N | β) = (cF − cT )RY (N)

1− β
+

(cT − cY ) ĤX(N) [1 +RY (N)]

1− β

− cT ,

(3.80)

Vl6(N | β) =
(cF − cT )

[
RY (N)ĤX(N) + βrY (N + 1)

]
1− β

+
(cT − cY ) ĤX(N) [1 +RX(N)]

1− β
− cT . (3.81)

3.3 Unified Models with Probabilistic Priority

3.3.1 Renewal Reward Approach

In the previous argument on RF and RL policies, we have derived the optimal

scheduled preventive replacement times in respective cases. Suppose that each

priority corresponding to Model j (= 1, 2, . . . , 6) occurs with probability pj (0 ≤

pj ≤ 1), where
∑6

j=1 pj = 1.

First consider RF model. Since the mean time lengths of one cycle in

Model j (= 1, 2, . . . , 6) are all exactly same, the associated mean time length

in our unified model with probability pj is given by Af7(N) = Af (N) in

Eq. (3.2). Instead, the expected total cost during one cycle, Bf7(N), with the

probabilistic priority is given by Bf7(N) =
∑6

j=1 pjBfj(N) with Eqs. (3.3)–

(3.8). The underlying problem is simply formulated as minN ECf7(N), where

ECf7(N) = Bf7(N)/Af (N).

Define wf7(N) =
∑6

j=1 pjVfj(N)Af (N) − Bf7(N) with Eqs. (3.18)–(3.23).

Then it can be seen that wf7(N + 1) − wf7(N) =
∑6

j=1 pj{wfj(N + 1) −

wfj(N)}Af (N + 1). Hence, for pj ̸= 0 (j = 1, 2, . . . , 6), necessary conditions of

strictly increasing wf7(N) are to hold all conditions in Lemma 7.6.
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Theorem 3.9. Suppose that wf7(n) is strictly increasing, and wf7(∞) > 0

under Assumption 1. Then the minimum expected cost per unit time in the

steady state has the lower and upper bounds:

Vf7(N
∗ − 1) < ECf7(N

∗) ≤ Vf7(N
∗), (3.82)

where

Vf7(N) =

6∑
j=1

pjVfj(N). (3.83)

Next consider RL model. Since the mean time length of one cycle and the ex-

pected total cost during one cycle are given by Al7(N) = Al(N) in Eq. (3.25) and

Bl7(N) =
∑6

j=1 pjBlj(N) with Eqs. (3.26)–(3.29), define wl7(N) =
∑6

j=1 pjVlj(N)Al(N)−

Bl7(N) with Eqs. (3.36)–(3.39). Then, one has wl7(N+1)−wl7(N) =
∑6

j=1 pj{wlj(N+

1)−wlj(N)}Al(N+1), and finds that necessary conditions of strictly increasing

wl7(N) are to hold all conditions in Lemma 7.7 with Assumption 1, when the

failure time Y is strictly IFR.

Theorem 3.10. Suppose that wl7(n) is strictly increasing and wl7(∞) > 0,

under Assumption 1. Then the minimum expected cost per unit time in the

steady state has the lower and upper bounds:

Vl7(N
∗ − 1) < ECl7(N

∗) ≤ Vl7(N
∗), (3.84)

where

Vl7(N) =

6∑
j=1

pjVlj(N). (3.85)

3.3.2 NPV Method

First, we calculate the unified model under RF discipline. Since the Af (N)

for Model j (= 1, · · · , 6) are all same, Af (N) in the unified model with prob-

ability pj is given by Af7(N, β) = Af (N, β) in Eq. (3.40). In addition, the

total expected discounted costs during the renewal cycle can be calculated by

TCf7(N, β) =
∑6

j=1 pjBfj(N, β) with Eqs. (3.41)–(3.46). The underlying prob-

lem can be thought asminNTCf7(N, β), where TCf7(N) = Bf7(N, β)/ [1−Af (N, β)].

We define wf7(N | β) =
∑6

j=1 pjVfj(N)Af (N) − Bfj(N, β) with Eqs.

(3.56)–(3.61). Then we can obtain that wf7(N + 1 | β) − wf7(N | β) =
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∑6
j=1 pj {wf7(N + 1 | β)− wf7(N | β)}Af (N, β) − Bfj(N, β). Therefore, for

pj ̸= 0, necessary conditions of strictly increasing wf7(N | β) for a given are

to hold all conditions in Lemma 7.8 under Assumption 1. In unified model,

we in position can have the optimal preventive replacement policies under RF

discipline as follows.

Theorem 3.11. Suppose that wf7(0 | β) < 0 and wf7(∞ | β) > 0 for a given

β, under Assumption 1. Then the expected total discounted cost over an infinite

horizon has the lower and upper bounds:

Vf7(N
∗ − 1 | β) < TCf7(N

∗ | β) ≤ Vf7(N
∗ | β), (3.86)

where

Vf7 =

6∑
j=1

pjVfj(N | β). (3.87)

Next, we examine the unified RL model. Since the net present value (NPV)

of one unit cost during the renewal cycle, denoted as Al(N, β) for Model j (=

1, · · · , 6), remains constant, the expression for Al(N, β) in the unified model,

accounting for probability pj , is equivalent to Al7(N, β) = Al(N, β) as defined

in Eq. (3.62). Consequently, the total expected discounted costs throughout the

renewal cycle can be determined by TCl7(N, β) =
∑6

j=1 pjBlj(N, β) using Eqs.

(3.63)–(3.66). The underlying problem can be thought as minNTCl7(N, β),

where TCl7(N, β) = Bl7(N, β)/ [1−Al(N, β)]. Define wl7(N | β) =
∑6

j=1 pjVlj(N |

β)Al(N, β) − Blj(N, β) with Eqs. (3.78)–(3.81). Then we can obtain that

wl7(N+1 | β)−wl7(N | β) =
∑6

j=1 pj

{
wf7(N+1 | β)−wf7(N | β)

}
Af (N, β)−

Bfj(N, β). The necessary conditions of strictly increasing wl7(N | β) for a given

are to hold all conditions in Lemma 7.9 under Assumption 1. In unified model,

we in position can have the optimal preventive replacement policies under RL

discipline as follows.

Theorem 3.12. Suppose that wl7(0 | β) < 0 and wl7(∞ | β) > 0 for a given β,

under Assumption 1. Then the expected total discounted cost over an infinite

horizon has the lower and upper bounds:

Vl7(N
∗ − 1 | β) < TCl7(N

∗ | β) ≤ Vl7(N
∗ | β), (3.88)
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where

Vl7 =

6∑
j=1

pjVlj(N | β). (3.89)

3.4 Numerical Experiments

The model parameters and cost parameter as set in section 2.6. In unified

model, we suppose that p1 = p2 = p3 = p4 = 0.2 and p5 = p6 = 0.1.

3.4.1 Renewal Reward Method

Table 3.1: Optimal N∗ and EC(N∗) with Model 1 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf1(N
∗) N∗ ECl1(N

∗) N∗ ECf1(N
∗) N∗ ECl1(N

∗)

1.5 16 0.1221 15 0.1107 16 0.1315 16 0.1111

2.0 13 0.1418 12 0.1402 13 0.1511 13 0.1411

3.0 10 0.1688 11 0.1959 10 0.1779 11 0.1973

4.0 9 0.1884 10 0.2504 9 0.1974 10 0.2523

5.0 8 0.2035 9 0.3049 8 0.2124 10 0.3067

6.0 7 0.2162 9 0.3589 7 0.2249 10 0.3612

7.0 7 0.2273 9 0.4130 7 0.2361 9 0.4153

8.0 6 0.2379 9 0.4670 6 0.2464 9 0.4693

9.0 6 0.2458 9 0.5210 6 0.2543 9 0.5234

10.0 6 0.2615 9 0.5750 6 0.2621 9 0.5774

First, we compare two replacement disciplines; RF policies and RL policies,

under the assumption that the arrival time of opportunity for replacement obeys

the geometric distribution with hX(x) = h = 0.95 (CaseA). Throughout the

example, we fix cT = 1.0 (K dollar), and change the other cost parameters

cF ∈ [1.5, 10.0] (K dollar), cY = 0.8, 1.0 (K dollar). In Tables 3.1–3.6, we

compare two disciplines, RF policies and RL policies in Model 1 ∼ Model 6.
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Table 3.2: Optimal N∗ and EC(N∗) with Model 2 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf2(N
∗) N∗ ECl2(N

∗) N∗ ECf2(N
∗) N∗ ECl2(N

∗)

1.5 18 0.1234 16 0.1122 18 0.1328 16 0.1125

2.0 13 0.1468 12 0.1431 13 0.1561 13 0.1441

3.0 10 0.1802 10 0.2004 10 0.1893 10 0.2023

4.0 8 0.2052 9 0.2564 8 0.2141 9 0.2588

5.0 8 0.2254 9 0.3123 8 0.2342 9 0.3147

6.0 7 0.2420 8 0.3677 7 0.2507 9 0.3705

7.0 6 0.2581 8 0.4232 6 0.2666 8 0.4261

8.0 6 0.2707 8 0.4786 6 0.2792 8 0.4816

9.0 6 0.2832 8 0.5341 6 0.2917 8 0.5370

10.0 6 0.2958 8 0.5896 6 0.3043 8 0.5924

Table 3.3: Optimal N∗ and EC(N∗) with Model 3 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf3(N
∗) N∗ ECl3(N

∗) N∗ ECf3(N
∗) N∗ ECl3(N

∗)

1.5 18 0.1234 16 0.1122 17 0.1303 15 0.1108

2.0 13 0.1397 12 0.1389 13 0.1494 12 0.1402

3.0 10 0.1663 10 0.1925 10 0.1757 10 0.1947

4.0 9 0.1854 9 0.2451 9 0.1946 10 0.2476

5.0 8 0.2004 9 0.2974 8 0.2094 9 0.3001

6.0 7 0.2133 9 0.3496 7 0.2222 9 0.3524

7.0 7 0.2239 9 0.4028 7 0.2327 9 0.4046

8.0 7 0.2344 8 0.4541 7 0.2433 9 0.4568

9.0 7 0.2450 8 0.5060 6 0.2511 9 0.5090

10.0 7 0.2555 8 0.5580 6 0.2586 9 0.5613
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Table 3.4: Optimal N∗ and EC(N∗) with Model 4 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf4(N
∗) N∗ ECl4(N

∗) N∗ ECf4(N
∗) N∗ ECl4(N

∗)

1.5 18 0.5800 16 0.1122 18 0.5800 15 0.1108

2.0 14 0.7410 12 0.1389 14 0.1494 12 0.1402

3.0 11 0.9802 10 0.1925 11 0.1757 10 0.1947

4.0 9 1.1548 9 0.2451 9 0.1946 10 0.2476

5.0 8 1.2968 9 0.2974 8 0.2094 9 0.3001

6.0 8 1.4195 9 0.3496 8 0.2222 9 0.3524

7.0 7 1.5190 9 0.4028 7 0.2327 9 0.4046

8.0 7 1.6131 8 0.4541 7 0.2433 9 0.4568

9.0 6 1.7028 8 0.5060 6 0.2511 9 0.5090

10.0 6 1.7706 8 0.5580 6 0.2586 9 0.5613

Table 3.5: Optimal N∗ and EC(N∗) with Model 5 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf5(N
∗) N∗ ECl5(N

∗) N∗ ECf5(N
∗) N∗ ECl5(N

∗)

1.5 18 0.1234 16 0.1122 18 0.1328 16 0.1125

2.0 13 0.1465 12 0.1431 12 0.1561 13 0.1441

3.0 10 0.1797 10 0.2004 10 0.1893 10 0.2023

4.0 8 0.2043 9 0.2564 8 0.2141 9 0.2588

5.0 8 0.2245 9 0.3123 8 0.2343 9 0.3147

6.0 7 0.2409 8 0.3677 7 0.2507 9 0.3705

7.0 6 0.2567 8 0.4232 6 0.2666 8 0.4261

8.0 6 0.2693 8 0.4786 6 0.2792 8 0.4816

9.0 6 0.2818 8 0.5341 6 0.2917 8 0.5370

10.0 6 0.2944 8 0.5896 6 0.3043 8 0.5924



50 CHAPTER 3. DISCRETE TIME RF AND RL MODELS

Table 3.6: Optimal N∗ and EC(N∗) with Model 6 for RF and RL models in
discrete time.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf6(N
∗) N∗ ECl6(N

∗) N∗ ECf6(N
∗∗) N∗ ECl6(N

∗)

1.5 18 0.1234 16 0.1122 18 0.1315 16 0.1123

2.0 13 0.1465 12 0.1431 12 0.1544 12 0.1430

3.0 10 0.1797 10 0.2004 10 0.1865 10 0.1991

4.0 8 0.2043 9 0.2564 8 0.2108 9 0.2543

5.0 8 0.2245 9 0.3123 8 0.2303 8 0.3073

6.0 8 0.2409 8 0.3677 7 0.2466 8 0.3607

7.0 6 0.2567 8 0.4232 7 0.2621 8 0.4141

8.0 6 0.2693 8 0.4786 6 0.2748 8 0.4675

9.0 6 0.2818 8 0.5341 6 0.2867 8 0.5210

10.0 6 0.2986 8 0.5896 6 0.2944 7 0.5744

Table 3.7: Optimal N∗ and EC(N∗) with unifid Model for RF and RL models
in discrete time, when p1 = p2 = p3 = p4 = 0.2 and p5 = p6 = 0.1.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ ECf7(N
∗) N∗ ECl7(N

∗) N∗ ECf7(N
∗) N∗ ECl7(N

∗)

1.5 17 0.1218 15 0.1112 17 0.1315 15 0.1114

2.0 13 0.1426 12 0.1407 13 0.1523 13 0.1419

3.0 10 0.1718 10 0.1961 10 0.1813 10 0.1980

4.0 9 0.1933 9 0.2503 9 0.2028 10 0.2526

5.0 8 0.2102 9 0.3042 7 0.2196 9 0.3067

6.0 7 0.2245 9 0.3580 7 0.2309 9 0.3606

7.0 7 0.2374 8 0.4118 6 0.2467 9 0.4144

8.0 6 0.2514 8 0.4653 6 0.2580 9 0.4683

9.0 6 0.2609 8 0.5189 6 0.2675 8 0.5221

10.0 6 0.2679 8 0.5725 6 0.2770 8 0.5757
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(1) When cF is relatively small (cF = 1.5, 2.0), it can be shown in all priority

models that RL policies are better than RF policies in both Assumption

1. On the other hand, when cF is larger and the impact of system failure

becomes more remarkable, we find that RF policies are better than RL

policies. From the results above, it is confirmed that RL policies can

be motivated even in the plausible case of cF > cY . However, when the

failure impact is remarkable with large cF , as expected, RF policies always

outperform RL policies. In the sensitivity of the cost parameter cF , as cF

increases, the optimal scheduled preventive replacement time N∗
0 and its

associated minimum expected cost decreases and increases, respectively.

As the cost parameter cY increases from 0.8 to 1.0, the optimal scheduled

preventive replacement times N∗ are not sensitive to the change of cY , but

the resulting minimum expected costs increase in almost all cases. A few

exceptions arise in RL policies for Model 3 (cF = 1.5), Model 4 (cF = 1.5)

and Model 6 (cF = 2.0).

(2) In comparison of six priority models, when cF = 1.5 and cY = 0.8, Model

1 provides the minimum expected cost uniquely. When cF = 1.5 and

cY = 0.8, Model 3 and Model 4 give the same minimum expected cost

values. In the other combinations of cF and cY , it can be observed that

Model 3 and Model 4 minimize the expected cost functions per unit time

in the steady state and give the exactly same cost values. Thus, if the

replacement priority is selective, Model 3 (Sc ≻ Op ≻ Ca) and Model 4

(Op ≻ Sc ≻ Ca) show the similar cost performance and are better than

the other priority models in almost all cases. This is because the failure

replacement has the lowest priority, so that Model 3 and Model 4 tend

to select cheaper replacement options even though the cost parameter cF

increases.

Next, we consider the unified model with probabilistic priority, where p1 =

p2 = p3 = p4 = 0.2 and p5 = p6 = 0.1 are assumed. Table 3.7 presents the

optimal scheduled preventive replacement times and their associated minimum

expected costs for probabilistic priority models.

(3) Similar to the deterministic priority models, it is found that RL policies
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are better than RF policies when cF is small (cF = 1.5, 2.0). Also, we can

see the similar monotone properties of the optimal scheduled preventive

replacement times and their associated minimum expected costs, as cF

and cY increase. In both deterministic and probabilistic priority models,

we could find that RL policies can outperform RF policies when the cost

impact of failure replacement is relatively small. Conversely, as cF be-

comes larger, the minimum expected costs with RF discipline are much

smaller than those with RL discipline. For instance, it is seen that the

minimum expected costs with RL policy are almost double of those with

RF policy with cF = 9.0, 10.0.

3.4.2 NPV Method

We calculate the optimal preventive replacement times N∗ and their associated

expected costs TC(N∗ | β) under RF and PL disciplines for each model, when

cT = 1, cY = 0.4, 1 and discounted factor β = 0.9. The results are shown in

Tables 3.8 – 3.14. Comparing Tables 3.8–3.14 and Tables 3.1–3.7, we can find:

(4) The discounted factor cannot affect the structure of optimal preventive

replacement policy. i.e., The above lessons (1) – (3) always hold with

discounted factor β = 0.9.

(5) When the economic environment is unstable, such as β = 0.9, the optimal

preventive replacement times N∗ will be delayed. When the economic

environment is more unstable, for example, during times of economic un-

certainty, the optimal timing for performing preventive equipment replace-

ments will be postponed. This means that in uncertain economic condi-

tions, people may delay replacing equipment or machinery to reduce costs

or mitigate risks.

(6) The associated expected costs TC(N∗ | β) under RF and PL disciplines

for each model have experienced a significant expansion in their overall

size. We take Model 1 as an example. When cF = 2.0, cY = 0.8, the

optimal preventive replacement times N∗ and their associated expected

costs EC(N∗) are given by N∗ = 13, ECf1(N
∗) = 0.1418 and N∗ = 12,

ECl1(N
∗) = 0.1402 in Table 3.1. When cF = 2.0, cY = 0.8, β = 0.9, the
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optimal preventive replacement times N∗ and their associated expected

costs TC(N∗ | β) are given by N∗ = 14, TCf1(N
∗ | β) = 0.9319 and

N∗ = 14, TCl1(N
∗ | β) = 0.7568 in Table 3.8

Table 3.8: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 1, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf1(N
∗) N∗ TCl1(N

∗) N∗ TCf1(N
∗) N∗ TCl1(N

∗)

1.5 19 0.7962 18 0.5812 19 0.8832 18 0.5816

2.0 14 0.9319 14 0.7568 14 1.0184 14 0.7588

3.0 11 1.1463 11 1.0740 11 1.2320 11 1.0798

4.0 9 1.3127 10 1.3742 9 1.3971 10 1.3826

5.0 8 1.4488 9 1.6665 8 1.5321 9 1.6780

6.0 8 1.5620 8 1.9577 8 1.6453 9 1.9695

7.0 7 1.6625 8 2.2443 7 1.7445 8 2.2598

8.0 7 1.7506 8 2.5310 7 1.8328 8 2.5465

9.0 7 1.8392 8 2.8176 7 1.9211 8 2.8331

10.0 7 1.9082 8 3.1043 6 1.9882 8 3.1198
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Table 3.9: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 2, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf2(N
∗) N∗ TCl2(N

∗) N∗ TCf2(N
∗) N∗ TCl2(N

∗)

1.5 25 0.7971 22 0.5834 25 0.8841 22 0.5835

2.0 16 0.9437 15 0.7702 16 1.0305 15 0.7702

3.0 12 1.1966 11 1.1073 12 1.2827 11 1.1073

4.0 10 1.4008 10 1.4217 10 1.4859 10 1.4217

5.0 9 1.5739 9 1.7255 9 1.6538 9 1.7255

6.0 8 1.7219 8 2.0243 8 1.8053 8 2.0243

7.0 7 1.8559 8 2.3212 7 1.9378 8 2.3212

8.0 7 1.9764 7 2.6171 7 2.0584 7 2.6171

9.0 6 2.0938 7 2.9095 6 2.1737 7 2.9095

10.0 6 2.1899 7 3.2018 6 2.2697 7 3.2018

Table 3.10: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 3, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf3(N
∗) N∗ TCl3(N

∗) N∗ TCf3(N
∗) N∗ TCl3(N

∗)

1.5 20 0.7860 18 0.5808 19 0.8759 18 0.5813

2.0 15 0.9165 13 0.7535 15 1.0058 14 0.7563

3.0 11 1.1258 10 1.0615 11 1.2134 11 1.0694

4.0 10 1.2889 9 1.3502 10 1.3757 10 1.3631

5.0 9 1.4220 8 1.6328 9 1.5078 9 1.6469

6.0 8 1.5325 8 1.9103 8 1.6170 8 1.9277

7.0 7 1.6351 8 2.1879 7 1.7180 8 2.2052

8.0 7 1.7190 7 2.4637 7 1.8019 8 2.4828

9.0 7 1.8030 7 2.7374 7 1.8858 7 2.7602

10.0 6 1.8785 7 3.0111 6 1.9591 7 3.0339
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Table 3.11: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 4, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf4(N
∗) N∗ TCl4(N

∗) N∗ TCf4(N
∗) N∗ TCl4(N

∗)

1.5 19 0.7859 18 0.5808 19 0.8759 18 0.5813

2.0 15 0.9158 13 0.7535 15 1.0058 14 0.7563

3.0 11 1.1234 10 1.0615 11 1.2134 11 1.0694

4.0 10 1.2858 9 1.3502 10 1.3757 10 1.3631

5.0 9 1.4178 8 1.6328 9 1.5078 9 1.6469

6.0 8 1.5270 8 1.9103 8 1.6170 8 1.9277

7.0 7 1.6280 8 2.1879 7 1.7180 8 2.2052

8.0 7 1.7119 7 2.4637 7 1.8019 8 2.4828

9.0 7 1.7958 7 2.7374 7 1.8858 7 2.7602

10.0 6 1.8691 7 3.0111 6 1.9591 7 3.0339

Table 3.12: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 5, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf5(N
∗) N∗ TCl5(N

∗) N∗ TCf5(N
∗) N∗ TCl5(N

∗)

1.5 24 0.7971 22 0.5834 25 0.8841 22 0.5835

2.0 16 0.9433 15 0.7702 16 1.0305 15 0.7702

3.0 12 1.1950 11 1.1073 12 1.2827 11 1.1073

4.0 10 1.3979 10 1.4217 10 1.4859 10 1.4217

5.0 9 1.5700 9 1.7255 9 1.6538 9 1.7255

6.0 8 1.7167 8 2.0243 8 1.8053 8 2.0243

7.0 7 1.8490 8 2.3212 7 1.9378 8 2.3212

8.0 7 1.9696 7 2.6171 7 2.0584 7 2.6171

9.0 6 2.0847 7 2.9095 6 2.1737 7 2.9095

10.0 6 2.1807 7 3.2018 6 2.2697 7 3.2018
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Table 3.13: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with Model 6, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf6(N
∗) N∗ TCl6(N

∗) N∗ TCf6(N
∗) N∗ TCl6(N

∗)

1.5 25 0.7866 20 0.5833 25 0.8766 21 0.5834

2.0 17 0.9263 14 0.7660 17 1.0163 15 0.7683

3.0 12 1.1697 10 1.0876 12 1.2597 11 1.0967

4.0 10 1.3672 9 1.3858 10 1.4572 9 1.3988

5.0 9 1.5345 8 1.6737 9 1.6245 8 1.6910

6.0 8 1.6790 7 1.9575 8 1.7690 8 1.9788

7.0 7 1.8117 7 2.2394 7 1.9017 7 2.2622

8.0 7 1.9262 7 2.5214 7 2.0161 7 2.5441

9.0 7 2.0407 6 2.8004 7 2.1307 7 2.8261

10.0 6 2.1365 6 3.0788 6 2.2265 7 3.1080

Table 3.14: Optimal prescheduled preventive times N∗ and associated expected
discounted costs TC(N∗ | β) with unified model, when β = 0.9.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗ TCf7(N
∗) N∗ TCl7(N

∗) N∗ TCf7(N
∗) N∗ TCl7(N

∗)

1.5 21 0.7916 19 0.5822 21 0.8801 19 0.5824

2.0 15 0.9290 14 0.7602 15 1.0173 14 0.7623

3.0 11 1.1556 10 1.0791 11 1.2431 11 1.0856

4.0 10 1.3346 9 1.3769 10 1.4218 10 1.3885

5.0 9 1.4834 8 1.6683 9 1.5702 9 1.6815

6.0 8 1.6083 8 1.9545 8 1.6984 8 1.9709

7.0 7 1.7224 8 2.2407 7 1.8076 8 2.2571

8.0 7 1.8212 7 2.5243 7 1.9064 8 2.5433

9.0 7 1.9201 7 2.8065 7 2.0053 7 2.8282

10.0 6 2.0008 7 3.0887 6 2.0898 7 3.1104



Chapter 4

Two-Phase
Opportunity-Based Age
Replacement Models

4.1 RL Model in Continuous Time

4.1.1 Models Description

Let us consider a single-unit system with a non-repairable item. It is assumed

that the time interval between opportunity arrivals for replacement obeys a

homogeneous Poisson process with rate λ(> 0), so that the inter-arrival time of

replacement opportunities follows the exponential distribution:

G(t) = 1− e−λt (4.1)

with the p.d.f. is given by g(t) = dG(t)/d = λe−λt. Let F (t), f(t), and F̄ (t)

denote the c.d.f., p.d.f., and the survivor function of the failure time of a unit,

respectively. It is convenient to introduce the failure rate, denoted as r(t) = f(t)
F̄ (t)

.

Besides, the cost parameters are same with section 2.1.

Next, we describe the Iskandar and Sandoh model [8] and reformulate the

replacement policies. Similar to [8], let S denote the restricted duration of

replacement opportunity arrivals, during which no preventive replacement is

made even if opportunities arrive. That is, if the unit fails during the time

interval (0, S], a failure replacement is made. After the time S passes, it is

assumed that the unfailed unit is replaced at a pre-specified time T (≥ S)

or upon the arrival of a replacement opportunity. More specifically, in the

57
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replacement first model in the Iskandar and Sandoh model [8] , the unit is

preventively replaced at time T or at the first arrival of an opportunity after

the time S, whichever occurs first. On the other hand, under the replacement

last discipline [2], the unit is preventively replaced at time T or at the first

arrival of an opportunity after the time S, whichever occurs last (see the Figure

4.1). Let ECl(S, T ) denote the long-run average cost. Then we have

ECl(S, T ) =
Bl(S, T )

Al(S, T )
, (4.2)

where Al(S, T ) and Bl(S, T ) are the expected cycle length and the expected cost

per cycle, respectively. Here, each cycle corresponds to the time interval between

consecutive replacement actions, including both preventive replacements and

failure replacements. It is straightforward to derive Al(S, T ) and Bl(S, T ) as

follows:

Al(S, T ) =

∫ T

0

tf(t) dt+ T F̄ (T )

∫ T

S

g(t− S) dt

+

∫ ∞

T

tḠ(t− S)f(t) dt+

∫ ∞

T

tF̄ (t)g(t− S) dt

=

∫ T

0

F̄ (t) dt+

∫ ∞

T

F̄ (t)eλ(t−S) dt, (4.3)

Bl(S, T ) = cF

∫ T

0

f(t) dt+ cT F̄ (T )

∫ T

S

g(t− S) dt

+ cF

∫ ∞

T

Ḡ(t− S)f(t) dt+ cY

∫ ∞

T

F̄ (t)g(t− S) dt

= cF + (cF − cT )

[
F (T ) +

∫ ∞

T

Ḡ(t− S)f(t) dt

]
− (cT − cY )

∫ ∞

T

g(t− S)F̄ (t) dt. (4.4)

From the above equations, our purpose is to minimize the long-run average

cost ECl(S, T ) with respect to (S, T ). This minimization problem can be solved

numerically.

In this paper, we focus on the one-dimensional optimization problems with

respect to S for fixed T and T for fixed S. In some realistic cases, we may

seek an optimal S∗ for a given T when the preventive replacement time T is

scheduled, or an optimal T ∗ for a given S when the restricted duration S is
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Figure 4.1: Configuration of two-phase RL discipline.

decided in accordance with supply chain management. Hence, our problems are

to minimize ECl(S | T ) and ECl(T | S), respectively, with respect to S and T .

4.1.2 Optimal Preventive Replacement Policies

First, we investigate the existence of an optimal S that minimizes ECl(S | T )

for a fixed value of T . Two special cases with S = 0 and S = T are given in the

following:

ECl(0 | T ) =

cF + (cF − cT )
[
F (T ) +

∫∞
T

Ḡ(t)f(t) dt
]

−(cT − cY )
∫∞
T

g(t)F̄ (t) dt∫ T

0
F̄ (t) dt+

∫∞
T

F̄ (t)eλ(t) dt
, (4.5)

ECl(T | T ) =

cF + (cF − cT )
[
F (T ) +

∫∞
T

Ḡ(t− T )f(t) dt
]

−(cT − cY )
∫∞
T

g(t− T )F̄ (t) dt∫ T

0
F̄ (t) dt+

∫∞
T

F̄ (t)eλ(t−T ) dt
. (4.6)

To obtain the optimal S∗ minimizing ECl(S | T ), taking the differentiation

of ECl(S | T ) with respect to S, we have

dECl(S | T )
dS

= (cF − cT )

[∫ T

0

F̄ (t)dt

∫ ∞

T

e−λtf(t)dt− F (T )

∫ ∞

T

e−λtF̄ (t)

]

− [cT − cY ]λ

∫ T

0

F̄ (t)dt

∫ ∞

T

e−λtdt− cT

∫ ∞

T

e−λtF̄ (t)dt.

(4.7)

Let w(S | T ) denote the right-hand side of Eq. (4.7). Then it is evident to

see that the function w(S | T ) does not contain S, so that w(S | T ) is regarded
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as a constant, and that the long-run average cost ECl(S | T ) becomes a linear

function.

Theorem 4.1. (I) If w(S | T ) ≥ 0, then the optimal restricted duration time

is S∗ = 0, and it is optimal to trigger the preventive replacement at time T

or at the first arrival of a replacement opportunity, whichever occurs last. The

associated long-run average cost is given by Eq. (4.5).

(II) If w(S | T ) < 0, then the optimal restricted duration time is S∗ = T ,

and it is optimal to trigger the preventive replacement at the first arrival of an

opportunity. The minimized long-run average cost is given by Eq. (4.6).

The above result indicates that the optimal replacement last policies do

not depend on the non-zero and finite S, and can be reduced to two trivial

policies [2].

Next, we examine the existence of an optimal T that minimizes EC(T |S)

for a fixed S. Two special cases with T = S and T → ∞ are given by

ECl(S | S) =

cF + (cF − cT )
[
F (S) +

∫∞
S

Ḡ(t− S)f(t) dt
]

−(cT − cY )
∫∞
S

g(t− S)F̄ (t) dt∫ S

0
F̄ (t) dt+

∫∞
S

F̄ (t)eλ(t−S) dt
, (4.8)

ECl(∞ | S) = cF∫ T

0
F̄ (t)dt

. (4.9)

Taking the differentiation of EC(T |S) with respect to T yields

dECl(T | S)
dT

=
w(T | S)
Al(T | S)2

, (4.10)

where

w(T | S) =
[
(cF − cT ) r(T ) + (cT − cY ) Ĥ(T − S)

]
Al(S, T )−Bl(S, T ). (4.11)

Theorem 4.2. (I) Suppose that (cF − cT ) r
′(t)+(cT − cY ) Ĥ

′(t−S) > 0 under

Assumption 1.

(i) If w(∞ | S) > 0, then there exists a finite and unique optimal time T ∗

which satisfies w(T | S) = 0 and the optimal expected cost in steady state

is:

ECl(T
∗ | S) = (cF − cT ) r(T

∗) + (cT − cY ) Ĥ(T ∗ − S). (4.12)
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(ii) If w(∞ | S) ≤ 0, then the optimal scheduled preventive replacement time

is T ∗ → ∞ and the optimal expected cost in steady state can be calculated

by Eq. (4.9).

(II) Suppose that (cF − cT ) r
′(t) + (cT − cY ) Ĥ

′(t − S) < 0. Then the optimal

scheduled preventive replacement times are given by T ∗ → ∞ or T ∗ = S.

The proof of above theorem see the Appendix 7.4.6.

4.2 RF Model in Discrete Time

In our two-phase opportunity-based age replacement problems, if the failure

occurs during the first phase (0 < n ≤ N0), then the failure replacement is

made like a common age replacement, even though opportunity arrivals for

replacement come before the failure. After the time N0, an unfailed item is

replaced at the time when an opportunistic arrival or a scheduled preventive

replacement time N1 (≥ N0) comes, whichever occurs first. This discipline is

called the replacement first (RF) discipline with preventive replacement time in

the second phase (N0 ≤ n ≤ N1). On the other hand, Zhao and Nakagawa [2]

proposed RL discipline, where an unfailed item is replaced preventively at the

time when an opportunistic arrival or a scheduled preventive replacement time

N1 comes, whichever occurs last in the second phase (N0 ≤ n ≤ N1). The

configurations of RF and RL disciplines are shown in Figure 4.2.

Here we concentrate on RF policies with six priority models and formulate

the expected costs per unit time in the steady state. According to Figure 2 (i),

we can derive the probability that the item is replaced at time n (= 0, 1, 2, . . .)

for all Model j (= 1, · · · , 6) by

hfj(n) =



fY (n) 0 ≤ n ≤ N0

fY (n)ḠX(n− 1−N0) + gX(n−N0)F̄Y (n) N0 + 1 ≤ n < N1 − 1

ḠX(N1 − 1−N0)F̄Y (N1 − 1) n = N1

0 n ≥ N1 + 1,

(4.13)

where
∑∞

i=0 hfj(i) = 1.

Then, it is evident to see that the mean time lengths of one cycle in Model

j (= 1, 2, . . . , 6) are all same. Let Af (N0, N1) be the mean time length of one
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Figure 4.2: Configurations of two-phase RF and RL disciplines.
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cycle in each Model j as a function of N0 and N1. From a few algebras, we have

Af (N0, N1) =

N0∑
n=0

nfY (n) +

N1−1∑
n=N0+1

n
[
fY (n)ḠX(n− 1−N0) + gX(n−N0)F̄Y (n)

]
+N1ḠX(N1 − 1−N0)F̄Y (N1 − 1)

=

N0∑
n=1

F̄Y (n− 1) +

N1∑
n=N0+1

(1− q)n−1−N0 F̄Y (n− 1), (4.14)

which is statistically independent of the kind of replacement priority.

The total expected costs during one cycle, Bfj(N0, N1), for Model j (=

1, 2, . . . , 6) are given by

Bf1(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1−1∑
n=N0+1

(1− q)n−1−N0fY (n)

]

− (cT − cY )

N1−1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n), (4.15)

Bf2(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1∑
N0+1

(1− q)n−1−N0fY (n)

]

− (cT − cY )

N1−1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n), (4.16)

Bf3(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1−1∑
n=N0+1

(1− q)n−N0fY (n)

]

− (cT − cY )

N1−1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n− 1), (4.17)

Bf4(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1−1∑
n=N0+1

(1− q)n−N0fY (n)

]

− (cT − cY )

N1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n− 1), (4.18)

Bf5(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1∑
n=N0+1

(1− q)n−N0−1fY (n)

]

− (cT − cY )

N1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n), (4.19)
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Bf6(N0, N1) = cT + (cF − cT )

[
N0∑
n=0

fY (n) +

N1∑
n=N0+1

(1− q)n−N0fY (n)

]

− (cT − cY )

N1∑
n=N0+1

q(1− q)n−1−N0 F̄Y (n− 1), (4.20)

for Model j (= 1, 2, . . . , 6), respectively.

The expected costs per unit time in the steady state are given by

ECfj(N0, N1) =
Bfj(N0, N1)

Af (N0, N1)
. (4.21)

Then, the problems are to determine the optimal pair of the restricted duration

and the preventive replacement time (N∗
0 , N

∗
1 ), which minimizes ECfj(N0, N1)

with 1 ≤ N0 ≤ N1.

We minimize the long-run average costs ECfj(N0, N1) (j = 1, . . . , 6) with

respect to (N0, N1). The simultaneous minimization problem in discrete time

can be solved numerically. In this section, we focus on two one-dimensional

optimization problems with respect to N0 for a fixed N1 and N1 for a fixed N0.

In some realistic cases, we may seek an optimal N∗
0 for a given N1 when the

preventive replacement time N1 is scheduled, or an optimal N∗
1 for a given N0,

when the restricted duration N0 is decided in accordance with the supply chain

management.

First, we consider the case with N0 for a fixed N1, for Model j (= 1, 2, . . . , 6),

and derive the respective optimal opportunistic age replacement policies which

minimize the expected costs per unit time in the steady state, ECfj(N0 | N1).

Unfortunately, here we discuss the only case cT = cY . The other case cT > cY

is analyzed by numerical experiment.

Taking the difference of ECfj(N0 | N1) with respect to N0 yields

ECfj(N0 + 1 | N1)− ECfj(N0 | N1) =
Af0(N0 | N1)wfj(N0 | N1)

Af (N0, N1)Af (N0 + 1, N1)
, (4.22)

where

Af0(N0 | N1) = Af (N0 + 1, N1)−Af (N0, N1)

=

N1∑
n=N0+2

q(1− q)n−N0−2F̄Y (n− 1), (4.23)
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and

wf1(N0 | N1) = (cF − cT )

[
hY (N0, N1)−

q(1− q)N1−N0−2fY (N1)

Af0(N0 | N1)

]
×Af (N0, N1)−Bf1(N0, N1), (4.24)

wf2(N0 | N1) = (cF − cT )hY (N0, N1)Af (N0, N1)−Bf2(N0, N1), (4.25)

wf3(N0 | N1) = (cF − cT )HY (N0 + 1, N1 − 1)Af (N0, N1)−Bf3(N0, N1),
(4.26)

wf4(N0 | N1) = (cF − cT )HY (N0 + 1, N1 − 1)Af (N0, N1)−Bf4(N0, N1),
(4.27)

wf5(N0 | N1) = (cF − cT )hY (N0, N1)Af (N0, N1)−Bf5(N0, N1), (4.28)

wf6(N0 | N1) = (cF − cT )

[
HY (N0 + 1, N1 − 1)− q(1− q)N1−N0−1fY (N1)

Af0(N0 | N1)

]
×Af (N0, N1)−Bf6(N0, N1),

(4.29)

and

hY (N0, N1) =

∑N1

n=N0+2(1− q)n−N0fY (n)∑N1

n=N0+2(1− q)n−N0 F̄Y (n− 1)
, (4.30)

HY (N0 + 1, N1 − 1) =

∑N1−1
n=N0+1(1− q)n−N0fY (n)∑N1−1
n=N0+1(1− q)n−N0 F̄Y (n)

. (4.31)

Next, we care about the necessary conditions the functions wfj(n) are strictly

increasing. If the failure time Y is strictly IFR, both hY (N0, N1) and HY (N0 +

1, N1 − 1) are strictly increasing in N0 (the proof can be seen in Lemma 7.10).

Hence, if the failure time Y is strictly IFR, wfj(n) (j = 2, 3, 4, 5) are strictly

increasing. For Model 1 and More 6, the additional condition is required. More

detailed discussion can also be found in Lemma 7.11.

Theorem 4.3. (I) Suppose that the functions wfj(N0 | N1) (j = 1, 2, . . . , 6)

are strictly increasing in N0 at the special case cT = cY .

(i) If wfj(N1 | N1) > 0, then there exists at least one (at most two) optimal

restricted duration N∗
0 which satisfies wfj(N

∗
0 − 1 | N1) < 0 and wfj(N

∗
0 |

N1) ≥ 0.
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(ii) If wfj(N1 | N1) ≤ 0, then the optimal restricted duration is given by

N∗
0 = N1 and it is optimal to carry out only the age replacement.

(II) Suppose that the functions wfj(N0 | N1) are decreasing in N0. Then the

optimal restricted duration is given by N∗
0 = 1 or N∗

0 = N1.

For the proof, see the Appendix 7.4.5.

The following result can be derived from Theorem 4.3 straightforwardly.

Theorem 4.4. For Model j (= 1, 2, . . . , 6), suppose that the functions wfj(N0 |

N1) are strictly increasing in N0, in addition to wfj(N0|N1) < 0 and wfj(N1|N1) >

0. Then the minimum expected costs per unit time in the steady state have the

lower and upper bounds;

Vfj(N
∗
0 − 1 | N1) < ECfj(N

∗
0 | N1) ≤ Vfj(N

∗
0 | N1), (4.32)

where

Vf1(N0 | N1) =(cF − cT )

[
hY (N0, N1)−

q(1− q)N1−N0−2fY (N1)

Af0(N0 | N1)

]
, (4.33)

Vf2(N0 | N1) =(cF − cT )hY (N0, N1), (4.34)

Vf3(N0 | N1) =(cF − cT )HY (N0 + 1, N1 − 1), (4.35)

Vf4(N0 | N1) =(cF − cT )HY (N0 + 1, N1 − 1), (4.36)

Vf5(N0 | N1) =(cF − cT )hY (N0, N1), (4.37)

Vf6(N0 | N1) =(cF − cT )

[
HY (N0 + 1, N1 − 1)− q(1− q)N1−N0−1fY (N1)

Af0(N0 | N1)

]
.

(4.38)

Next, we consider the problem minN1 ECfj(N0, N1) for a fixed N0. Define

the functions:

wf1(N1 | N0) =
1

1− q

{
(cF − cT )RY (N1)− q(cT − cY )

}
Af (N0, N1)

−Bf1(N0, N1), (4.39)

wf2(N1 | N0) =
[
(cF − cT )rY (N1 + 1)− q

1− q
(cT − cY )

]
Af (N0, N1)

−Bf2(N0, N1), (4.40)

wf3(N1 | N0) =
{
(cF − cT )RY (N1)−

q

1− q
(cT − cY ) [1 +RY (N1)]

}
×Af (N0, N1)−Bf3(N0, N1), (4.41)
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wf4(N1 | N0) =
[
(cF − cT )RY (N1)− q(cT − cY )

]
Af (N0, N1)−Bf4(N0, N1),

(4.42)

wf5(N1 | N0) =
{
(cF − cT )rY (N1 + 1)− q(cT − cY ) [1− rY (N1 + 1)]

}
×Af (N0, N1)−Bf5(N0, N1), (4.43)

wf6(N1 | N0) =
{
(1− q)(cF − cT )rY (N1 + 1)− q(cT − cY )

}
×Af (N0, N1)−Bf6(N0, N1), (4.44)

satisfying

ECfj(N1 + 1 | N0)− ECfj(N1 | N0) =
Af1(N1 | N0)qfj(N1 | N0)

Af (N0, N1)Af (N0, N1 + 1)
, (4.45)

where

Af1(N1 | N0) = Af (N0, N1 + 1)−Af (N0, N1)

= F̄Y (N1)ḠX(N1 −N0). (4.46)

Theorem 4.5. (I) For Model 1, Model 2, Model 4, Model 5 and Model 6,

suppose the failure time distribution is strictly (IFR). For Model 3, suppose that

the failure time distribution is strictly IFR and (cF − cT ) ≥ (cT − cY )q/(1− q).

(i) If wfj(∞ | N0) > 0, then there exists at least one (at most two) optimal

preventive replacement time N∗
1 which satisfies wfj(N

∗
1 − 1 | N0) < 0 and

wfj(N
∗
1 | N0) ≥ 0.

(ii) If wfj(∞ | N0) ≤ 0, then the optimal preventive replacement time is

N∗
1 → ∞, and it is optimal to carry out either the failure replacement or

the opportunistic one, whichever occurs first.

(II) For Model 1, Model 2, Model 4, Model 5 and Model 6, suppose that the

failure time distribution is decreasing failure rate (DFR). For Model 3, suppose

that the failure time distribution is DFR and (cF − cT ) ≤ (cT − cY )q/(1 − q)

holds. Then the optimal preventive replacement time is given by N∗
1 → ∞ or

N∗
1 = N0.
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see the Appendix 7.4.5.

The following result can be derived from Theorem 4.5 directly without the

proof.

Theorem 4.6. For Model j (= 1, 2, . . . , 6), suppose that wfj(N1 | N0) are

strictly increasing in N1, wfj(N0|N0) < 0 and wfj(∞ | N0) > 0. Then the

minimum expected costs per unit time in the steady state have the lower and

upper bounds;

Vfj(N
∗
1 − 1 | N0 − 1) < ECfj(N

∗
1 | N0) ≤ Vfj(N

∗
1 | N0), (4.47)

where

Vf1(N1 | N0) =
1

1− q
[(cF − cT )RY (N1)− q(cT − cY )] , (4.48)

Vf2(N1 | N0) = (cF − cT )rY (N1 + 1)− q

1− q
(cT − cY ), (4.49)

Vf3(N1 | N0) = (cF − cT )RY (N1)−
q

1− q
(cT − cY ) [1 +RY (N1)] , (4.50)

Vf4(N1 | N0) = (cF − cT )RY (N1)− q(cT − cY ), (4.51)

Vf5(N1 | N0) = (cF − cT )rY (N1 + 1)− q(cT − cY ) [1− rY (N1 + 1)] , (4.52)

Vf6(N1 | N0) = (1− q)(cF − cT )rY (N1 + 1)− q(cT − cY ). (4.53)

4.3 RL Model in Discrete Time

Next, we concern about RL policies with 6 priority models (see Figure 2 (ii)).

Similar to the RF discipline, the probabilities that the item is replaced at time

n (= 0, 1, 2, . . .) for Model j (= 1, 2, . . . , 6) are given by

hlj(n) =



fY (n) 0 ≤ n ≤ N1 − 1

fY (N1)ḠX(N1 − 1−N0)+

F̄Y (N1 − 1)GX(N1 − 1−N0)

+F̄Y (N1)gX(N1 −N0) n = N1

fY (n)ḠX(n− 1−N0) + gX(n−N0)F̄Y (n) n ≥ N1 + 1,

(4.54)

where
∑∞

i=0 hlj(i) = 1 (j = 1, 2, . . . , 6).
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From Eq. (4.54), it is confirmed that the mean time lengths of one cycle for

Model j (= 1, 2, . . . , 6) are all same and given by

Al(N0, N1) =

N1−1∑
n=0

nfY (n) +N1

[
fY (N1)ḠX(N1 − 1−N0)

+ F̄Y (N1 − 1)GX(N1 − 1−N0) + F̄Y (N1)gX(N1 −N0)

]
+

∞∑
n=N1+1

n

[
fY (n)ḠX(n− 1−N0)

+ gX(n−N0)F̄Y (n)

]
=

N1∑
n=1

F̄Y (n− 1) +

∞∑
n=N1+1

(1− q)n−N0−1F̄Y (n− 1). (4.55)

The expected total costs during one cycle, Blj(N0, N1), for Model j (=

1, 2, . . . , 6) are given by

Bl1(N0, N1) = cT + (cF − cT )

[
N1−1∑
n=0

fY (n) +

∞∑
n=N1

(1− q)n−N0−1fY (n)

]

− (cT − cY )

∞∑
n=N1

q(1− q)n−N0−1F̄Y (n), (4.56)

Bl2(N0, N1) = Bl5(N0, N1)

= cT + (cF − cT )

[
N1∑
n=0

fY (n) +

∞∑
n=N1+1

(1− q)n−N0−1fY (n)

]

− (cT − cY )

∞∑
n=N1

q(1− q)n−N0−1F̄Y (n),

(4.57)

Bl3(N0, N1) = Bl4(N0, N1)

= cT + (cF − cT )

[
N1−1∑
n=0

fY (n) +

∞∑
n=N1

(1− q)n−N0fY (n)

]

− (cT − cY )

∞∑
n=N1

q(1− q)n−N0−1F̄Y (n− 1), (4.58)
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Bl6(N0, N1) = cT + (cF − cT )

[
N1−1∑
n=0

fY (n) + fY (N1)[1− q(1− q)n−N0−1]

+

∞∑
n=N1

(1− q)n−N0fY (n)

]

− (cT − cY )

∞∑
n=N1

q(1− q)n−N0−1F̄Y (n− 1).

(4.59)

Then, the problems are to minimize the expected costs per unit time in the

steady state under RL discipline, EClj(N0, N1) = Blj(N0, N1)/Al(N0, N1), for

Model j (= 1, 2, . . . , 6).

In a fashion similar to the RF policies, we consider minN0 EClj(N0, N1) for

a fixed N1 and minN1 EClj(N0, N1) for a fixed N0 under RL discipline.

First, let wlj(N0 | N1) satisfy

EClj(N0 + 1 | N1)− EClj(N0 | N1) =
Al0(N0 | N1)qlj(N0 | N1)

Al(N0, N1)Al(N0 + 1, N1)
, (4.60)

where

Al0(N0 | N1) = Al(N0 + 1, N1)−Al(N0, N1) =

∞∑
n=N1

q(1− q)n−N0−1F̄Y (n).

(4.61)

Then it is immediate to derive

wl1(N0 | N1) =
{
(cF − cT )

1

1− q
HY (N1 − 1)− q

1− q
(cT − cY )

}
×

N1−1∑
n=1

F̄Y (n− 1)− cT , (4.62)

wl2(N0 | N1) = wl5(N0 | N1) =
{
(cF − cT )HY (N1 − 1)− q

1− q
(cT − cY )

}
×

N1∑
n=1

F̄Y (n− 1)− cT ,

(4.63)

wl3(N0 | N1) =wl4(N0 | N1) =

{[
(cF − cT )

1

1− q
− q

1− q
(cT − cY )

]

×H(N1 − 1)− q

1− q
(cT − cY )

}
N1−1∑
n=1

F̄Y (n− 1)− cT , (4.64)
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wl6(N0 | N1) =

{[
(cF − cT )

1

1− q
− q

1− q
(cT − cY )

]
HY (N1 − 1)

− q

1− q
(cF − cT )

fY (N1) (1− q)
n∑∞

n=N1
F̄Y (n) (1− q)

n

− q

1− q
(cT − cY )

}
N1−1∑
n=1

F̄Y (n− 1) + (cF − cT ) fY (N1)

− cT , (4.65)

where

HY (N1 − 1) =

∑∞
n=N1

fY (n) (1− q)
n∑∞

n=N1
F̄Y (n) (1− q)

n . (4.66)

As shown in the above results, the functions wlj(N0|N1) (j = 1, 2, . . . , 6) do

not contain N0, i.e., the functions wlj(N0|N1) are constant values for Model

j (= 1, 2, . . . , 6).

Theorem 4.7. (I) If wlj(N0|N1) < 0 (j = 1, 2, . . . , 6), then the optimal

restricted duration is given by N∗
0 = N1 and it is optimal to carry out only

the age replacement.

(II) If wlj(N0|N1) ≥ 0 (j = 1, 2, . . . , 6), then the optimal restricted dura-

tion is N∗
0 = 0 and it is optimal to carry out either the age replacement

or the opportunistic one, whichever occurs last.

The following result can be derived from Theorem 4.7 directly.

Theorem 4.8. The minimum expected costs per unit time in the steady state
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are given by

ECl1(N
∗
0 | N1) = (cF − cT )

1

1− q
HY (N1 − 1)− q

1− q
(cT − cY ) , (4.67)

ECl2(N
∗
0 | N1) = ECl5(N

∗
0 | N1) = (cF − cT )HY (N1 − 1)− q

1− q
(cT − cY ) ,

(4.68)

ECl3(N
∗
0 | N1) = ECl4(N

∗
0 | N1) =

[
(cF − cT )

1

1− q
− q

1− q
(cT − cY )

]
×HY (N1 − 1)− q

1− q
(cT − cY ) ,

(4.69)

ECl6(N
∗
0 | N1) =

[
(cF − cT )

1

1− q
− q

1− q
(cT − cY )

]
HY (N1 − 1)

− q

1− q
(cF − cT )

fY (N1) (1− q)
n∑∞

n=N1
F̄Y (n) (1− q)

n

− q

1− q
(cT − cY ) . (4.70)

Next, we examine the existence of an optimal preventive replacement time

N∗
1 that minimizes EClj(N0, N1) for a fixed N0. Taking the difference of

EClj(N0, N1) with respect to N1 leads to

EClj(N1 + 1 | N0)− EClj(N1 | N0) =
Al1(N1 | N0)wlj(N1 | N0)

Al(N0, N1)Al(N0, N1 + 1)
, (4.71)

where

Al1(N1 | N0) = Al(N0, N1 + 1)−Al(N0, N1)

=
[
1− (1− q)n−N0

]
F̄Y (N1), (4.72)

and

wl1(N1 | N0) =
{
(cF − cT )RY (N1)

[
1− Ĥ(N0, N1)

]
+ (cT − cY )Ĥ(N0, N1)

}
×Al1(N0, N1)−Bl1(N0, N1),

(4.73)

wl2(N1 | N0) = wl5(N1 | N0) =
[
(cF − cT )rY (N1 + 1) + (cT − cY )Ĥ(N0, N1)

]
×Al(N0, N1)−Bl2(N0, N1),

(4.74)
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wl3(N1 | N0) = wl4(N1 | N0) =
{
(cF − cT )RY (N1)

+ (cT − cY ) [1 +RY (N1)] Ĥ(N0, N1)
}
Al(N0, N1)

−Bl3(N0, N1), (4.75)

wl6(N1 | N0) =
{
(cF − cT )

[
rY (N1 + 1) +RY (N1)Ĥ(N0, N1)

]
+ (cT − cY ) [1 +RY (N1)] Ĥ(N0, N1)

}
Al(N0, N1)

−Bl6(N0, N1), (4.76)

Ĥ(N0, N1) =
q(1− q)N1−1−N0

1− (1− q)N1−N0
. (4.77)

The monotone property of Ĥ(N0, N1) is shown in [43]. In addition, the

monotonicity of the functions wlj(N1 | N0) (j = 1, 2, . . . , 6) depends on the

function Ĥ(N0, N1). Then, additional necessary conditions for strictly increas-

ing wlj(N1 | N0) (j = 1, 2, . . . , 6) are given in Lemma 7.12 in Appendix.

Theorem 4.9. (I) Suppose that the functions wlj(N1|N0) (j = 1, 2, . . . , 6) are

strictly increasing in N1 for a fixed N0.

(i) If wlj(∞|N0) > 0, then there exists at least one (at most two) optimal

preventive replacement time N∗
1 which satisfies wlj(N

∗
1 − 1|N0) < 0 and

wlj(N
∗
1 |N0) ≥ 0.

(ii) If wlj(∞|N0) ≤ 0, then the optimal preventive replacement time is given

by N∗
1 → ∞, and it is optimal to carry out only the failure replacement or

opportunistic one.

(II) Suppose that wlj(N1|N0) (j = 1, 2, . . . , 6) are strictly decreasing in N1. The

optimal preventive replacement time is given by N∗
1 → ∞ or N∗

1 = N0.

For the proof of Theorem 4.9, see the Appendix 7.4.5. We also obtain the

following result without the proof.

Theorem 4.10. If wlj(N1|N0) are strictly increasing in N1, wlj(N0|N0) < 0

and wlj(∞|N0) > 0, then the lower and upper bounds of the minimum expected

costs per unit time in the steady state are given by

Vlj(N
∗
1 − 1 | N0) < EClj(N

∗
1 | N0) ≤ Vlj(N

∗
1 | N0), (4.78)
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where

Vl1(N1 | N0) =(cF − cT )RY (N1)
[
1− Ĥ(N0, N1)

]
+ (cT − cY )Ĥ(N0, N1), (4.79)

Vl2(N1 | N0) =Vl5(N1 | N0) = (cF − cT )rY (N1 + 1)

+ (cT − cY )Ĥ(N0, N1), (4.80)

Vl3(N1 | N0) =Vl4(N1 | N0) = (cF − cT )RY (N1)

+ (cT − cY ) [1 +RY (N1)] Ĥ(N0, N1), (4.81)

Vl6(N1 | N0) =(cF − cT )
[
rY (N1 + 1) +RY (N1)Ĥ(N0, N1)

]
+ (cT − cY ) [1 +RY (N1)] Ĥ(N0, N1). (4.82)

4.4 Unification with Probabilistic Priority in Dis-
crete Time

In the previous argument on the RF and RL policies, we classified 6 priority cases

and derived the optimal two-phase opportunity-based age replacement times in

respective cases. We also suppose that each replacement priority corresponding

to Model j (= 1, 2, . . . , 6) occurs with probability pj (0 ≤ pj ≤ 1), where∑6
j=1 pj = 1.

4.4.1 RF Model

First of all, we consider the RF policy. Since the mean time lengths of one cycle

in Model j (= 1, 2, . . . , 6) are all exactly same, the associated mean time length

in our unified model with probability pj is given by Af7(N0, N1) = Af (N0, N1)

in Eq. (4.14) Instead, the expected total cost during one cycle, Bf7(N0, N1),

with the probabilistic priority is given by Bf7(N0, N1) =
∑6

j=1 pjBfj(N0, N1)

with Eqs. (4.15)–(4.20). The underlying problem is to determine the optimal

(N∗
0 , N

∗
1 ), which minimizes ECf7(N0, N1), where ECf7(N0, N1) = Bf7(N0, N1)/Af (N0, N1).

Define wf7(N0 | N1) =
∑6

j=1 pjVfj(N0 | N1)Af (N0, N1)−Bf7(N0, N1) with

Eqs. (4.33)–(4.38). Then it can be seen that wf7(N0+1 | N1)−wf7(N0 | N1) =∑6
j=1 pj{wfj(N0 + 1 | N1)− wfj(N0 | N1)}Af (N0 + 1, N1).
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Theorem 4.11. Suppose that wf7(N0 | N1) is strictly increasing in N0, wf7(0 |

N1) < 0 and wf7(N1 | N1) > 0. Then the minimum expected cost per unit time

in the steady state has the lower and upper bounds;

Vf7(N
∗
0 − 1 | N1) < ECf7(N

∗
0 | N1) ≤ Vf7(N

∗
0 | N1), (4.83)

where

Vf7(N0 | N1) =

6∑
j=1

pjVfj(N0 | N1). (4.84)

Next, we define wf7(N1 | N0) =
∑6

j=1 pjVfj(N1 | N0)Af (N0, N1)−Bf7(N0, N1)

with Eqs. (4.48)–(4.53). Then we have wf7(N1 + 1 | N0) − wf7(N1, N0) =∑6
j=1 pj{wfj(N1 + 1 | N0)− wfj(N1 | N0)}Af (N0, N1 + 1).

Theorem 4.12. Suppose that wf7(N1 | N0) is strictly increasing in N1, wf7(N0 |

N0) < 0 and wf7(∞ | N0) > 0. Then the minimum expected cost per unit time

in the steady state has the lower and upper bounds;

Vf7(N
∗
1 − 1 | N0) < ECf7(N1 | N0) ≤ Vf7(N

∗
1 | N0), (4.85)

where

Vf7(N1 | N0) =

6∑
j=1

pjVfj(N1 | N0). (4.86)

4.4.2 RL Model

Next, we consider the RL discipline. Since the mean time length of one cycle and

the expected total cost during one cycle are given by Al7(N0, N1) = Al(N0, N1)

in Eq. (4.55) and Bl7(N0, N1) =
∑6

j=1 pjBlj(N0, N1) with Eqs. (4.56)–(4.59),

define wl7(N0 | N1) =
∑6

j=1 pjEClj(N0 | N1)Al(N0, N1) − Bl7(N0, N1) with

Eqs. (4.67)–(4.70). Then, one has wl7(N0+1 | N1)−wl7(N0 | N1) =
∑6

j=1 pj{wlj(N0+

1 | N1)− wlj(N0 | N1)}Al(N0 + 1, N1).

Theorem 4.13. The minimum expected cost per unit time in the steady state

is given by

ECl7(N0 | N1) =

6∑
j=1

pjEClj(N0 | N1). (4.87)
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Next, we define wl7(N1 | N0) =
∑6

j=1 pjVlj(N1 | N0)Al(N0, N1)−Bl7(N0, N1)

with Eqs. (4.79)–(4.82). Then, one obtains wl7(N1 + 1 | N0) − wl7(N1 | N0) =∑6
j=1 pj{wlj(N1 + 1 | N0)− wlj(N1 | N0)}Al(N0, N1 + 1).

Theorem 4.14. Suppose that wl7(N1 | N0) is strictly increasing in N1, wl7(N0 |

N0) < 0 and wl7(∞ | N0) > 0. Then the minimum expected cost per unit time

in the steady state has the lower and upper bounds;

Vl7(N
∗
1 − 1 | N0) < ECl7(N

∗
1 | N0) ≤ Vl7(N

∗
1 | N0), (4.88)

where

Vl7(N1 | N0) =

6∑
j=1

pjVlj(N1 | N0). (4.89)

4.5 Numerical Experiment

4.5.1 Continuous Time Models

This section presents numerical examples to illustrate the theoretical underpin-

nings of the proposed preventive replacement policies for each case. We take

the same assumptions with RF model [8]. The failure time Y of the unit obeys

a Gamma distribution. We can obtain the related c.d.f. and p.d.f.:

F (t) = 1− (1 + θt)e−θt, (4.90)

f(t) = θ2te−θt. (4.91)

The cost parameters are gvien: cF = 3.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,

cT = 1.0, and cY = 0.8, 1.0. Here, we calculate the S∗ with a fixed T = 4, T ∗

with a fixed S = 1, and associated EC(S∗ | T ), EC(T ∗ | S). In addition, we

compare our model (RL) and the RF [8]. Here, we review the RF [8] at the case

cY ≤ cT .

ECf (S, T ) =
Bf (S, T )

Af (S, T )
, (4.92)

where

Af (S, T ) =

∫ S

0

F̄ (t)dt+

∫ T

S

Ḡ(t− S)F̄ (t)dt, (4.93)
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Bf (S, T ) = cT + (cF − cT )

[∫ S

0

f(t)dt+

∫ T

S

Ḡ(t− S)f(t)dt

]

− (cT − cY )

∫ T

S

g(t− S)F̄ (t)dt. (4.94)

Table 4.1: Optimal restricted duration S∗ and associated expected costs
EC(S∗ | T ) in RF and RL models, when θ = 1, λ = 1, T = 4.

cY = 0.8 cY = 1.0

RF RL RF RL

cF S∗ ECf (S
∗) S∗ ECl(S

∗) S∗ ECf (S
∗) S∗ ECl(S

∗)

3.0 1.4597 1.4569 4 1.4889 2.4798 1.4876 0 1.4904

4.0 0.8960 1.8626 0 1.9711 1.3037 1.9252 0 1.9713

5.0 0.6487 2.2426 0 2.4519 0.8979 2.3275 0 2.4521

6.0 0.5093 2.6087 0 2.9326 0.6873 2.7095 0 2.9327

7.0 0.4195 2.9661 0 3.4134 0.5575 3.0789 0 3.4135

8.0 0.3567 3.3178 0 3.8942 0.4693 3.4400 0 3.8943

9.0 0.3104 3.6655 0 4.3750 0.4045 3.7954 0 4.3751

10.0 0.2747 4.0104 0 4.8558 0.3568 4.1466 0 4.8559

11.0 0.2465 4.3533 0 5.3366 0.3188 4.4947 0 5.3367

12.0 0.2235 4.6946 0 5.8173 0.2880 4.8403 0 5.8174

Table 4.1 presents the optimal restricted duration S∗ and the minimum long-

run cost EC(S∗ | T ) under both RF and RL disciplines, with the assumption

that cT ≥ cY . It can be observed that RL outperforms RF regarding the optimal

restricted duration S.

Table 4.2 shows the optimal preventive replacement time T ∗ and its associ-

ated long-run average cost EC(T ∗ | S) under RF and RL disciplines. Except for

the case where cF = 3, RF is generally superior to RL in terms of the optimal

preventive replacement time T ∗.

4.5.2 Discrete Time Models

Here, we take the same models parameters and cost parameters with Section 2.6.

We calculate the optimal prescheduled preventive replacement times N∗
1 for a

fixed N0 and the optimal restricted durations N∗
0 for a fixed N1 under RF and



78CHAPTER 4. TWO-PHASE OPPORTUNITY-BASED AGE REPLACEMENTMODELS

Table 4.2: Optimal prescheduled preventive replacement time T ∗ and associated
expected costs EC(T ∗ | S) in RF and RL models, when θ = 1, λ = 1, S = 1.

cY = 0.8 cY = 1.0

RF RL RF RL

cF T ∗ ECf (T
∗) T ∗ ECl(T

∗) T ∗ ECf (T
∗) T ∗ ECl(T

∗)

3.0 4.9896 1.4661 1 1.4660 3.2880 1.5336 2.8963 1.4863

4.0 2.1866 1.8584 1 1.8644 1.7685 1.9164 1.7751 1.9190

5.0 1.5422 2.2266 1 2.2627 1.3082 2.2670 1.3910 2.3271

6.0 1.2392 2.5671 1 2.6609 1.0772 2.5871 1.2001 2.7280

7.0 1.0566 2.8825 1 3.0592 1 2.8844 1.0884 3.1269

8.0 1 3.1792 1 3.4575 1 3.1792 1.0146 3.5253

9.0 1 3.4739 1 3.8558 1 3.4740 1 3.9236

10.0 1 3.7688 1 4.2541 1 3.7688 1 4.3219

11.0 1 4.0636 1 4.6523 1 4.0635 1 4.7201

12.0 1 4.3583 1 5.0506 1 4.3583 1 5.1184

RL disciplines. Besides, we seek the pair of restricted duration and preventive

replacement time (N∗
0 , N

∗
1 ).

In Tables 4.3–4.9, we present the comparison results of the optimal restricted

durations N0 for a fixed N1, when N1 = 8, cY = 0.8, 1.0. We can see that:

(1) In all tables, the optimal prescheduled restricted durations for respective

priority models often converge to similar values in most cases. This is

primarily since these optimal restricted durations are discretized as integer

values, and the differences in replacement priorities are not particularly

significant.

(2) When the cost of corrective replacement cF is become big, the optimal

restricted durations N∗
0 become small. In addition, in RL policies, when

cF is relatively small, such as cF = 1.5, 2.0, the N∗
0 are constant values

8. At this case, two-phase RF model will degenerate into DD model in

Section 2.2.2. When cF ≥ 3, the N∗
0 is constant value 0. This is indicates

that two-phase models in RL discipline can degenerate into RF model in

Section 3.1.2.
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(3) When the cost of the opportunistic replacement cY is become big, the

optimal prescheduled optimal restricted durations N∗
0 become small.

(4) RL policies are only better than RF policies in some limited cases where

the failure replacement cost cF is relatively small. In our example, when

cF = 1.5, RL policies are better than RF policies. Conversely, when cF is

large and the impact of system failure becomes more remarkable, we can

find that RF policies are better than RL policies.

Tables 4.10–4.16 present the optimal preventive replacement times N∗
1 and

their associated long-run average costs EC(N∗
1 | N0), when N0 = 5, cY =

0.8, 1.0. We can find that:

(5) When the cost of the corrective replacement cY is become big, the optimal

prescheduled preventive replacement times N∗
1 become small. When the

cost of repairing or replacing equipment becomes expensive, it means that

it’s no longer cost-effective to wait for the equipment to break down and

then perform emergency repairs. In such situations, it’s more economical

to perform preventive maintenance, which involves regular maintenance

or replacement of components before they fail.

(6) Even in these cases, RL policies could outperform the RF policies only

when cF is small enough. From the results above, it can be recognized

that the efficiency of the RL policies is rather limited in the case where

the failure replacement cost is relatively low compared to the preventive

replacement and opportunistic replacement costs.

In Tables 4.17–4.24, we numerically derive the joint optimal policies (N∗
0 , N

∗
1 )

in the two-phase opportunity-based age replacement models under the RF and

RL disciplines, where we assume cY = 0.8, 1.0. It can be seen that:

(7) In the realm of RF discipline, with cY = 0.8, the jointly optimal policy is

(4, 8). However, when both cT = cY = 1.0, the optimal joint policy shifts

to (7, 7).

(8) Within the domain of RL discipline, with cY = 0.8, the optimal combina-

tion of restricted duration and preventive replacement time is (0, 9). As

cY = 1.0, the jointly optimal policy transitions to (0, 9).
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Table 4.3: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 1, when the prescheduled preventive replacement time

N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf1(N

∗
0 ) N∗

0 ECl1(N
∗
0 ) N∗

0 ECf1(N
∗
0 ) N∗

0 ECl1(N
∗
0 )

1.5 6 0.1372 8 0.1101 7 0.1376 8 0.1140

2.0 6 0.1451 8 0.1428 7 0.1454 8 0.1465

3.0 6 0.1609 0 0.1969 7 0.1612 0 0.1999

4.0 6 0.1767 0 0.2504 7 0.1769 0 0.2534

5.0 5 0.1925 0 0.3039 7 0.1926 0 0.3069

6.0 5 0.2082 0 0.3574 7 0.2084 0 0.3603

7.0 4 0.2238 0 0.4108 7 0.2241 0 0.4138

8.0 4 0.2393 0 0.4643 7 0.2398 0 0.4673

9.0 3 0.2548 0 0.5178 7 0.2556 0 0.5208

10.0 3 0.2700 0 0.5713 7 0.2713 0 0.5742

Table 4.4: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 2, when the prescheduled preventive replacement time

N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf2(N0) N∗

0 ECl2(N
∗
0 ) N∗

0 ECf2(N
∗
0 ) N∗

0 ECl2(N
∗
0 )

1.5 6 0.1403 8 0.1100 7 0.1409 8 0.1130

2.0 5 0.1514 8 0.1426 7 0.1521 8 0.1465

3.0 5 0.1732 0 0.1198 7 0.1745 0 0.2028

4.0 4 0.1949 0 0.2547 7 0.1968 0 0.2577

5.0 4 0.2163 0 0.3096 6 0.2191 0 0.3126

6.0 3 0.2376 0 0.3645 5 0.2411 0 0.3675

7.0 3 0.2586 0 0.4195 4 0.2628 0 0.4224

8.0 3 0.2796 0 0.4743 4 0.2843 0 0.4773

9.0 2 0.3005 0 0.5293 3 0.3056 0 0.5322

10.0 2 0.3211 0 0.5841 3 0.3266 0 0.5872
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Table 4.5: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 3, when the prescheduled preventive replacement time

duration N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf3(N

∗
0 ) N∗

0 ECl3(N
∗
0 ) N∗

0 ECf3(N
∗
0 ) N∗

0 ECl3(N
∗
0 )

1.5 6 0.1370 8 0.1082 7 0.1376 8 0.1126

2.0 5 0.1447 8 0.1395 7 0.1454 8 0.1440

3.0 5 0.1599 0 0.1923 7 0.1612 0 0.1957

4.0 5 0.1752 0 0.2437 7 0.1769 0 0.2471

5.0 4 0.1902 0 0.2950 7 0.1926 0 0.2984

6.0 4 0.2051 0 0.3464 6 0.2082 0 0.3498

7.0 3 0.2199 0 0.3978 5 0.2236 0 0.4012

8.0 3 0.2345 0 0.4491 4 0.2388 0 0.4525

9.0 3 0.2491 0 0.5005 4 0.2537 0 0.5039

10.0 3 0.2637 0 0.5519 4 0.2687 0 0.5554

Table 4.6: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 4, when the prescheduled preventive replacement time

N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf4(N

∗
0 ) N∗

0 ECl4(N
∗
0 ) N∗

0 ECf4(N
∗
0 ) N∗

0 ECl4(N
∗
0 )

1.5 6 0.1358 8 0.1082 7 0.1376 8 0.1126

2.0 5 0.1435 8 0.1395 7 0.1454 8 0.1440

3.0 5 0.1588 0 0.1923 7 0.1612 0 0.1957

4.0 5 0.1741 0 0.2437 7 0.1769 0 0.2471

5.0 4 0.1891 0 0.2950 7 0.1926 0 0.2984

6.0 4 0.2040 0 0.3464 6 0.2082 0 0.3498

7.0 3 0.2189 0 0.3978 5 0.2236 0 0.4012

8.0 3 0.2335 0 0.4491 4 0.2388 0 0.4525

9.0 3 0.2481 0 0.5005 4 0.2537 0 0.5039

10.0 3 0.2627 0 0.5519 4 0.2687 0 0.5553
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Table 4.7: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 5, when the prescheduled preventive replacement time

N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf5(N

∗
0 ) N∗

0 ECl5(N
∗
0 ) N∗

0 ECf5(N
∗
0 ) N∗

0 ECl5(N
∗
0 )

1.5 6 0.1393 8 0.1100 7 0.1409 8 0.1139

2.0 5 0.1503 8 0.1426 7 0.1521 8 0.1465

3.0 5 0.1721 0 0.1998 7 0.1745 0 0.2028

4.0 4 0.1939 0 0.2547 7 0.1968 0 0.2577

5.0 4 0.2153 0 0.3096 6 0.2191 0 0.3126

6.0 3 0.2366 0 0.3645 5 0.2411 0 0.3675

7.0 3 0.2576 0 0.4195 4 0.2628 0 0.4224

8.0 3 0.2786 0 0.4743 4 0.2843 0 0.4773

9.0 2 0.2995 0 0.5193 3 0.3056 0 0.5322

10.0 2 0.3202 0 0.5841 3 0.3266 0 0.5872

Table 4.8: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in Model 6, when the prescheduled preventive replacement time

N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf6(N

∗
0 ) N∗

0 ECl6(N
∗
0 ) N∗

0 ECf6(N
∗
0 ) N∗

0 ECl6(N
∗
0 )

1.5 6 0.1388 8 0.1101 7 0.1407 8 0.1146

2.0 5 0.1494 8 0.1434 7 0.1518 8 0.1479

3.0 5 0.1704 0 0.2015 6 0.1736 0 0.2049

4.0 4 0.1910 0 0.2574 5 0.1951 0 0.2609

5.0 3 0.2115 0 0.3134 5 0.2162 0 0.3168

6.0 3 0.2315 0 0.3694 4 0.2369 0 0.3728

7.0 3 0.2515 0 0.4253 4 0.2575 0 0.4287

8.0 3 0.2706 0 0.4813 3 0.2778 0 0.4847

9.0 2 0.2913 0 0.5372 3 0.2978 0 0.5406

10.0 2 0.3109 0 0.5932 3 0.3179 0 0.5966
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Table 4.9: Optimal restricted duration N∗
0 and associated expected costs

EC(N∗
0 | N1) in unified Model, when the prescheduled preventive replacement

time N1 = 8.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
0 ECf7(N

∗
0 ) N∗

0 ECl7(N
∗
0 ) N∗

0 ECf7(N
∗
0 ) N∗

0 ECl7(N
∗
0 )

1.5 6 0.1379 8 0.1093 7 0.1389 8 0.1135

2.0 5 0.1470 8 0.1415 7 0.1481 8 0.1457

3.0 5 0.1649 0 0.1964 7 0.1664 0 0.1996

4.0 5 0.1828 0 0.2497 7 0.1848 0 0.2529

5.0 4 0.2003 0 0.3030 7 0.2031 0 0.3062

6.0 4 0.2179 0 0.3563 6 0.2214 0 0.3595

7.0 3 0.2352 0 0.4096 5 0.2394 0 0.4128

8.0 3 0.2524 0 0.4629 4 0.2572 0 0.4661

9.0 3 0.2696 0 0.5163 4 0.2748 0 0.5195

10.0 2 0.2868 0 0.5696 4 0.2923 0 0.5727

Table 4.10: Optimal preventive replacement time N∗
1 and associated expected

costs EC(N∗
1 | N0) in Model 1, when the restricted duration N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf1(N

∗
1 ) N∗

1 ECl1(N
∗
1 ) N∗

1 ECf1(N
∗
1 ) N∗

1 ECl1(N
∗
1 )

1.5 16 0.1097 15 0.1105 15 0.1148 16 0.1110

2.0 12 0.1297 12 0.1418 12 0.1341 13 0.1429

3.0 10 0.1572 11 0.1969 9 0.1606 12 0.2045

4.0 8 0.1767 10 0.2028 8 0.1792 11 0.2654

5.0 8 0.1924 10 0.3240 7 0.1945 11 0.3262

6.0 7 0.2048 10 0.3846 7 0.2063 10 0.3869

7.0 7 0.2166 10 0.4542 7 0.2180 10 0.4475

8.0 6 0.2263 10 0.5057 6 0.2264 10 0.5080

9.0 6 0.2345 10 0.5663 6 0.2345 10 0.5686

10.0 6 0.2427 10 0.6269 6 0.2427 10 0.6292
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Table 4.11: Optimal prescheduled preventive replacement time N∗
1 and asso-

ciated expected costs EC(N∗
1 | N0) in Model 2, when the restricted duration

N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf2(N

∗
1 ) N∗

1 ECl2(N
∗
1 ) N∗

1 ECf2(N
∗
1 ) N∗

1 ECl2(N
∗
1 )

1.5 17 0.1114 5 0.1115 17 0.1166 16 0.1120

2.0 13 0.1353 5 0.1421 12 0.1399 13 0.1448

3.0 10 0.1696 5 0.2034 9 0.1731 10 0.2073

4.0 8 0.1950 5 0.2647 8 0.1975 10 0.2689

5.0 7 0.2162 5 0.3260 7 0.2177 9 0.3303

6.0 7 0.2338 5 0.3873 7 0.2352 9 0.3916

7.0 7 0.2503 5 0.4486 7 0.2503 9 0.4529

8.0 6 0.2638 5 0.5098 6 0.2638 9 0.5142

9.0 6 0.2773 5 0.5711 6 0.2773 8 0.5754

10.0 5 0.2893 5 0.6324 5 0.2893 8 0.6636

Table 4.12: Optimal prescheduled preventive replacement time N∗
1 and asso-

ciated expected costs EC(N∗
1 | N0) in Model 3, when the restricted duration

N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf3(N

∗
1 ) N∗

1 ECl3(N
∗
1 ) N∗

1 ECf3(N
∗
1 ) N∗

1 ECl3(N
∗
1 )

1.5 16 0.1082 5 0.1095 16 0.1138 15 0.1106

2.0 12 0.1280 5 0.1387 12 0.1327 12 0.1416

3.0 10 0.1551 5 0.1971 10 0.1590 11 0.2010

4.0 9 0.1751 5 0.2556 8 0.1777 10 0.2596

5.0 8 0.1905 5 0.3140 8 0.1930 10 0.3181

6.0 7 0.2036 5 0.3724 7 0.2051 9 0.3764

7.0 7 0.2152 5 0.4308 7 0.2167 9 0.4347

8.0 6 0.2264 5 0.4893 6 0.2264 9 0.4930

9.0 6 0.2345 5 0.5477 6 0.2345 9 0.5513

10.0 6 0.2427 5 0.6061 6 0.2427 9 0.6096



4.5. NUMERICAL EXPERIMENT 85

Table 4.13: Optimal prescheduled preventive replacement time N∗
1 and asso-

ciated expected costs EC(N∗
1 | N0) in Model 4, when the restricted duration

N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf4(N

∗
1 ) N∗

1 ECl4(N
∗
1 ) N∗

1 ECf4(N
∗
1 ) N∗

1 ECl4(N
∗
1 )

1.5 16 0.1080 5 0.1095 16 0.1138 15 0.1106

2.0 12 0.1275 5 0.1387 12 0.1327 12 0.1416

3.0 10 0.1544 5 0.1971 10 0.1590 11 0.2010

4.0 8 0.1741 5 0.2556 8 0.1777 10 0.2596

5.0 8 0.1874 5 0.3140 8 0.1930 10 0.3181

6.0 7 0.2023 5 0.3724 7 0.2051 9 0.3764

7.0 7 0.2138 5 0.4308 7 0.2167 9 0.4347

8.0 6 0.2247 5 0.4893 6 0.2264 9 0.4930

9.0 6 0.2328 5 0.5477 6 0.2345 9 0.5513

10.0 6 0.2410 5 0.6061 6 0.2427 9 0.6096

Table 4.14: Optimal prescheduled preventive replacement time N∗
1 and asso-

ciated expected costs EC(N∗
1 | N0) in Model 5, when the restricted duration

N1 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf5(N

∗
1 ) N∗

1 ECl5(N
∗
1 ) N∗

1 ECf5(N
∗
1 ) N∗

1 ECl5(N
∗
1 )

1.5 17 0.1113 5 0.1115 17 0.1166 16 0.1120

2.0 13 0.1350 5 0.1421 12 0.1399 13 0.1448

3.0 10 0.1690 5 0.2034 9 0.1731 10 0.2073

4.0 8 0.1940 5 0.2647 8 0.1975 10 0.2689

5.0 7 0.2150 5 0.3260 7 0.2177 9 0.3303

6.0 7 0.2325 5 0.3873 7 0.2352 9 0.3916

7.0 7 0.2487 5 0.4486 7 0.2503 9 0.4529

8.0 6 0.2622 5 0.5098 6 0.2638 9 0.5142

9.0 6 0.2757 5 0.5711 6 0.2773 8 0.5754

10.0 6 0.2892 5 0.6324 5 0.2893 8 0.6636
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Table 4.15: Optimal prescheduled preventive replacement time N∗
1 and asso-

ciated expected costs EC(N∗
1 | N0) in Model 6, when the restricted duration

N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf6(N

∗
1 ) N∗

1 ECl6(N
∗
1 ) N∗

1 ECf6(N
∗
1 ) N∗

1 ECl6(N
∗
1 )

1.5 18 0.1095 5 0.1104 17 0.1154 19 0.1129

2.0 13 0.1327 5 0.1405 13 0.1381 5 0.1471

3.0 10 0.1664 5 0.200 8 10 0.1709 5 0.2074

4.0 8 0.1915 5 0.2611 8 0.1951 5 0.2677

5.0 8 0.2122 5 0.3214 7 0.2156 5 0.3280

6.0 7 0.2298 5 0.3817 7 0.2326 5 0.3882

7.0 7 0.2469 5 0.4419 6 0.2487 5 0.4485

8.0 6 0.2603 5 0.5022 6 0.2619 5 0.5088

9.0 6 0.2735 5 0.5625 6 0.2752 5 0.5691

10.0 6 0.2868 5 0.6228 6 0.2884 5 0.6293

Table 4.16: Optimal prescheduled preventive replacement time N∗
1 and associ-

ated expected costs EC(N∗
1 | N0) in unified Model, when the restricted duration

N0 = 5.

cY = 0.8 cY = 1.0

RF RL RF RL

cF N∗
1 ECf7(N

∗
1 ) N∗

1 ECl7(N
∗
1 ) N∗

1 ECf7(N
∗
1 ) N∗

1 ECl7(N
∗
1 )

1.5 16 0.1096 5 0.1106 16 0.1150 16 0.1114

2.0 12 0.1309 5 0.1406 12 0.1357 13 0.1434

3.0 10 0.1608 5 0.2007 9 0.1648 11 0.2048

4.0 8 0.1828 5 0.2608 8 0.1857 10 0.2653

5.0 8 0.2007 5 0.3208 7 0.2032 9 0.3256

6.0 7 0.2152 5 0.3809 7 0.2171 9 0.3857

7.0 7 0.2291 5 0.4409 6 0.2309 9 0.4459

8.0 6 0.2405 5 0.5010 6 0.2412 9 0.5060

9.0 6 0.2508 5 0.5611 6 0.2514 9 0.5662

10.0 6 0.2610 5 0.6211 6 0.2617 9 0.6263
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Table 4.17: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RF discipline with cF = 5 and cY = 0.8.

Model 1 Model 2 Model 3

N0 N∗
1 ECf1(N

∗
0 , N

∗
1 ) N∗

1 ECf2(N
∗
0 , N

∗
1 ) N∗

1 ECf3(N
∗
0 , N

∗
1 )

1 8 0.1985 7 0.2205 8 0.1954

2 8 0.1954 7 0.2175 8 0.1924

3 8 0.1936 7 0.2160 8 0.1907

4 8 0.1927 7 0.2157 8 0.1902

5 8 0.1927 7 0.2163 8 0.1905

6 8 0.1925 7 0.2174 8 0.1914

7 8 0.1926 7 0.2174 8 0.1927

8 9 0.1979 8 0.2192 9 0.1979

9 10 0.2075 9 0.2262 10 0.2075

10 11 0.2203 10 0.2368 11 0.2203

Table 4.18: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RF discipline with cF = 5 and cY = 0.8.

Model 4 Model 5 Model 6

N0 N∗
1 ECf4(N

∗
0 , N

∗
1 ) N∗

1 ECf5(N
∗
0 , N

∗
1 ) N∗

1 ECf6(N
∗
0 , N

∗
1 )

1 8 0.1944 7 0.2193 8 0.2154

2 8 0.1914 7 0.2163 8 0.2127

3 8 0.1897 7 0.2147 8 0.2115

4 8 0.1891 7 0.2144 8 0.2115

5 8 0.1894 7 0.2150 8 0.2126

6 8 0.1903 7 0.2161 8 0.2144

7 8 0.1914 7 0.2174 8 0.2167

8 9 0.1969 8 0.2192 8 0.2192

9 10 0.2067 9 0.2262 9 0.2262

10 11 0.2195 10 0.2368 10 0.2368
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Table 4.19: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RF discipline with cF = 5 and cY = 1.0.

Model 1 Model 2 Model 3

N0 N∗
1 ECf1(N

∗
0 , N

∗
1 ) N∗

1 ECf2(N
∗
0 , N

∗
1 ) N∗

1 ECf3(N
∗
0 , N

∗
1 )

1 8 0.2063 7 0.2279 8 0.2034

2 8 0.2018 7 0.2233 8 0.1989

3 8 0.1986 7 0.2203 8 0.1959

4 7 0.1962 7 0.2185 8 0.1940

5 7 0.1945 7 0.2177 8 0.1930

6 7 0.1932 7 0.2174 8 0.1927

7 7 0.1926 7 0.2174 8 0.1926

8 9 0.1979 8 0.2192 9 0.1979

9 10 0.2075 9 0.2262 10 0.2075

10 10 0.2203 10 0.2368 11 0.2203

Table 4.20: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RF discipline with cF = 5 and cY = 1.0.

Model 4 Model 5 Model 6

N0 N∗
1 ECf4(N

∗
0 , N

∗
1 ) N∗

1 ECf5(N
∗
0 , N

∗
1 ) N∗

1 ECf6(N
∗
0 , N

∗
1 )

1 8 0.2034 7 0.2279 8 0.2244

2 8 0.1989 7 0.2233 7 0.2201

3 8 0.1959 7 0.2203 7 0.2173

4 8 0.1940 7 0.2185 7 0.2158

5 8 0.1930 7 0.2177 7 0.2156

6 8 0.1927 7 0.2174 7 0.2162

7 8 0.1926 7 0.2174 7 0.2174

8 9 0.1979 8 0.2192 8 0.2192

9 10 0.2075 9 0.2262 9 0.2262

10 10 0.2203 10 0.2368 10 0.2368
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Table 4.21: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RL discipline with cF = 5 and cY = 0.8.

Model 1 Model 2 Model 3

N0 N∗
1 ECl1(N

∗
0 , N

∗
1 ) N∗

1 ECl2(N
∗
0 , N

∗
1 ) N∗

1 ECl3(N
∗
0 , N

∗
1 )

0 9 0.3049 9 0.3123 9 0.2974

1 10 0.3036 8 0.3128 9 0.2983

2 10 0.3105 8 0.3162 9 0.3022

3 10 0.3148 8 0.3197 9 0.3063

4 10 0.3193 4 0.3230 4 0.3105

5 10 0.3239 5 0.3258 5 0.3140

6 10 0.3286 6 0.3294 6 0.3178

7 11 0.3334 7 0.3336 7 0.3224

8 11 0.3382 8 0.3382 8 0.3275

9 12 0.3432 9 0.3429 9 0.3330

10 13 0.3479 10 0.3477 10 0.3385

Table 4.22: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RL discipline with cF = 5 and cY = 0.8.

Model 4 Model 5 Model 6

N0 N∗
1 ECl4(N

∗
0 , N

∗
1 ) N∗

1 ECl5(N
∗
0 , N

∗
1 ) N∗

1 ECl6(N
∗
0 , N

∗
1 )

0 9 0.2974 9 0.3123 6 0.3120

1 9 0.2983 8 0.3128 1 0.3096

2 9 0.3022 8 0.3162 2 0.3097

3 9 0.3063 8 0.3197 3 0.3119

4 4 0.3105 4 0.3230 4 0.3159

5 5 0.3140 5 0.3258 5 0.3214

6 6 0.3178 6 0.3294 6 0.3280

7 7 0.3224 7 0.3336 7 0.3354

8 8 0.3275 8 0.3382 8 0.3433

9 9 0.3330 9 0.3429 9 0.3512

10 10 0.3385 10 0.3477 10 0.3589
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Table 4.23: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RL discipline with cF = 5 and cY = 1.0.

Model 1 Model 2 Model 3

N0 N∗
1 ECl1(N

∗
0 , N

∗
1 ) N∗

1 ECl2(N
∗
0 , N

∗
1 ) N∗

1 ECl3(N
∗
0 , N

∗
1 )

0 10 0.3041 9 0.3119 9 0.2972

1 10 0.3082 9 0.3154 9 0.3011

2 10 0.3125 9 0.3189 9 0.3052

3 10 0.3169 9 0.3226 9 0.3094

4 10 0.3214 9 0.3263 9 0.3137

5 11 0.3261 9 0.3301 10 0.3181

6 11 0.3306 9 0.3340 10 0.3226

7 11 0.3354 9 0.3380 10 0.3272

8 12 0.3401 9 0.3421 10 0.3320

9 12 0.3448 9 0.3463 9 0.3368

10 13 0.3494 10 0.3505 10 0.3418

Table 4.24: Simultaneous optimal restricted duration and prescheduled preven-
tive replacement time (N∗

0 , N
∗
1 ) under RL discipline with cF = 5 and cY = 1.0.

Model 4 Model 5 Model 6

N0 N∗
1 ECl4(N

∗
0 , N

∗
1 ) N∗

1 ECl5(N
∗
0 , N

∗
1 ) N∗

1 ECl6(N
∗
0 , N

∗
1 )

0 9 0.2972 9 0.3119 7 0.3164

1 9 0.3011 9 0.3154 1 0.3197

2 9 0.3052 9 0.3189 2 0.3188

3 9 0.3094 9 0.3226 3 0.3201

4 9 0.3137 9 0.3263 4 0.3233

5 10 0.3181 9 0.3301 5 0.3280

6 10 0.3226 9 0.3340 6 0.3338

7 10 0.3272 9 0.3380 7 0.3406

8 10 0.3320 9 0.3421 8 0.3478

9 9 0.3368 9 0.3463 9 0.3551

10 10 0.3418 10 0.3505 10 0.3622



Chapter 5

An NPV Analysis of
Failure-Correlated
Opportunity-Based Age
Replacement Models

5.1 Models Description

5.1.1 Assumptions and Notations

We discuss a single-unit system consisting of a non- repairable item. Suppose

that the failure times (lifetimes) of the item, Y , follow i.i.d.. When the system

fails, we denote the c.d.f. by F (t), the p.d.f. by f(t) and the survivor function

of the failure times by F̄ (t). The failure rate of this system is r(t) = f(t)/F̄ (t).

In our assumption, the random time intervals, X, between two consecutive

opportunities for replacement follow a common distribution with p.d.f. g(t) and

c.d.f. G(t). Additionally, we define the hazard rate function of X as h(t) =

g(t)/Ḡ(t) and the reversed hazard rate function as Ĥ(t) = g(t)/G(t).

5.1.2 Renewal Reward Approach

Zhao and Nakagawa [2] proposed some slightly different opportunistic preven-

tive replacement models from Dekker and Smeitink [21, 22] and Dekker and

Dijkstra [9]. More specifically, the authors in [2] proposed that opportunities

for replacement obey a renewal process. Based on this assumption, they in-

troduced RF discipline. For better understanding the underlying model, we

91
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formulate the expected cost per unit time in steady state with RF discipline.

Let T (> 0) denote the pre-determined age measured from the new installation

of the system or the replacement time of the unit. Also, we define the time

length from the replacement point of failed/unfailed unit to the next one as

one cycle. In the RF model, the decision for preventive replacement is deter-

mined by the age threshold T or the occurrence of a random opportunity X for

replacement.

The expected time length of one cycle Af (T ) with RF discipline is given by

Af (T ) =

∫ T

0

tḠ(f)f(t)dt+

∫ T

0

tF̄ (t)g(t)dt+ T F̄ (T )Ḡ(T )

=

∫ T

0

Ḡ(t)F̄ (t)dt. (5.1)

The expected cost for one cycle Bf (T ) is

Bf (T ) = cF

∫ T

0

Ḡ(f)f(t)dt+ cY

∫ T

0

F̄ (t)g(t)dt+ cT Ḡ(T )F̄ (T )

= cT + (cF − cT )

∫ T

0

Ḡ(f)f(t)dt− (cT − cY )

∫ T

0

F̄ (t)g(t)dt. (5.2)

Based on the renewal reward theorem, we can give the expected cost per

unit time in the steady state (expected cost rate) in RF model by

ECf (T ) =
Bf (T )

Af (T )
. (5.3)

Our aim is to find the optimal preventive replacement time T which minimizes

ECf (T ). From a few algebraic manipulations, it is immediate to see that an

optimal preventive replacement time T ∗ minimizing ECf (T ) satisfies

(cF − cT )

[
r(T )

∫ T

0

F̄ (t)Ḡ(t)dt−
∫ T

0

Ḡ(t)dF (t)

]

− (cT − cY )

[
h(T )

∫ T

0

F̄ (t)Ḡ(t)dt−
∫ T

0

F̄ (t)dG(t)

]
= cT . (5.4)

Zhao and Nakagawa [2] gave the minimal expected cost rate function as

ECf (T
∗) = (cF − cT )r(T

∗)− (cT − cY )h(T
∗). (5.5)

Next, we consider the RL model. In RL discipline, the non-failed unit is

taken place by new one at the pre-determined time T ∗ or the occurrence of the
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opportunity X, whichever comes last [2]. Similarly, the expected cost rate in

RL discipline becomes

ECl(T ) =
Bl(T )

Al(T )
, (5.6)

where

Al(T ) =

∫ T

0

F̄ (t)dt+

∫ ∞

T

F̄ (t)Ḡ(t)dt (5.7)

and

Bl(T ) = cT + (cF − cT )

[
F (T ) +

∫ ∞

T

Ḡ(t)f(t)dt

]
− (cT − cY )

∫ ∞

T

F̄ (t)dG(t). (5.8)

From the similar manipulations to Eq. (5.5), our interest is to derive an

optimal preventive replacement time T ∗ minimizing El(t) which satisfies[
(cF − cT )r(T ) + (cT − cY )Ĥ(T )

]
Al(T )−Bl(T ) = 0. (5.9)

Zhao and Nakagawa [2] gave the minimum expected cost rate function, when

cT = cY . In our case, it is seen that

ECl(T
∗) = (cF − cT )r(T

∗) + (cT − cY )Ĥ(T ∗). (5.10)

5.1.3 NPV Approach

In our models, we denote the discount factor β (> 0) to represent the NPV of

the expected total cost over an operating horizon. In the RF model, TCβf (T, β)

denotes the NPV of the expected total cost. Then, we have

TCβf (T, β) =
Bβf (T, β)

1−Aβf (T, β)
, (5.11)

where Aβf (T, β) and Bβf (T, β) are the expected discounted value of one unit

cost during one cycle and the expected discounted cost during one cycle, respec-

tively. We straightforwardly derive Aβf (T, β) and Bβf (T, β) as

Aβf (T, β) =

∫ T

0

e−βtḠ(t)dF (t) +

∫ T

0

e−βtF̄ (t)dG(t)

+ e−βT Ḡ(T )F̄ (T ), (5.12)

Bβf (T, β) = cF

∫ T

0

e−βtḠ(t)dF (t) + cY

∫ T

0

e−βtF̄ (t)dG(t)

+ cT e
−βT Ḡ(T )F̄ (T ). (5.13)
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It is evident from the well-known l’Hopital’s theorem that

ECf (T ) = lim
β→0

βTCβf (T, β). (5.14)

Taking the differentiation of TCβf (T, β) with respect to T and equaling it

to zero, we can get

[(cF − cT )r(T )− (cT − cY )h(T )− βcT ] [1−Aβf (T, β)]−Bβf (T, β) = 0.

(5.15)

Let wβf (T, β) denote the left-hand side of Eq. (5.15). Further differentiating

wβf (T, β) with respect to T , we have

w′
βf (T, β) = [(cF − cT )r

′(T )− (cT − cY )h
′(T )] [1−Aβf (T, β)] . (5.16)

Then the optimal replacement policy in RF discipline with discounting can be

described as follows.

Theorem 5.1. (I) Suppose that (cF − cT )r
′(T )− (cT − cY )h

′(T ) > 0.

(i) If wβf (∞ | β) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.15) and its

resulting expected total discounted cost rate is

TCβf (T
∗ | β) = (cF − cT )r(T

∗)− (cT − cY )h(T
∗)

β
− cT . (5.17)

(ii) If wβf (∞ | β) ≤ 0, then the optimal preventive replacement time is given

by T ∗ → ∞, so the decision-maker should take the failure replacement or

opportunistic replacement.

(II) Suppose that (cF −cT )r
′(T )−(cT −cY )h

′(T ) ≤ 0. Then, the decision-maker

should perform the failure replacement or opportunistic replacement, whichever

comes first.

The proof is similar to that for Theorem 4.2 in Appendix 7.4.6.

Next, we formulate the RL model with NPV approach. In the RL discipline,

TCβl(T, β) denotes the NPV of the total expected cost over an infinite time

horizon. Then, we have

TCβl(T, β) =
Bβl(T, β)

1−Aβl(T, β)
, (5.18)
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where

Aβl(T, β) =

∫ T

0

e−βtf(t)dt+

∫ ∞

T

e−βtḠ(t)dF (t)

+

∫ ∞

T

e−βtF̄ (t)dG(t) + e−βTG(T )F̄ (T ), (5.19)

Bβl(T, β) = cF

∫ T

0

e−βtf(t)dt+ cF

∫ ∞

T

e−βtḠ(t)dF (t)

+ cY

∫ ∞

T

e−βtF̄ (t)dG(t) + cT e
−βTG(T )F̄ (T ). (5.20)

It is evident to confirm that

ECl(T ) = lim
β→0

βTCβl(T, β). (5.21)

Calculating dTCβl(T, β)/dT = 0, we have[
(cF − cT )r(T ) + (cT − cY )Ĥ(T )− βcT

]
[1−Aβl(T, β)]−Bβl(T, β) = 0.

(5.22)

Let wβl(T, β) denote the left-hand side of Eq. (5.22). Further differentiating

wβl(T, β) with respect to T , we have

w′
βl(T, β) =

[
(cF − cT )r

′(T ) + (cT − cY )Ĥ
′(T )

]
[1−Aβl(T, β)] . (5.23)

Then the optimal replacement policy in RL discipline with discounting can be

described as follows.

Theorem 5.2. (I) Suppose that (cF − cT )r
′(T ) + (cT − cY )Ĥ

′(T ) > 0.

(i) If wβl(∞ | β) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.22) and its

resulting expected total discounted cost rate is

TCβl(T
∗ | β) = (cF − cT )r(T

∗) + (cT − cY )Ĥ(T ∗)

β
− cT . (5.24)

(ii) If wβl(∞ | β) ≤ 0, then the optimal preventive replacement time is given

by T ∗ → ∞, so the decision-maker should take the failure replacement or

opportunistic replacement.

(II) Suppose that (cF − cT )r
′(T ) + (cT − cY )Ĥ

′(T ) ≤ 0. Then, the optimal

preventive replacement time is given by T ∗ → ∞.

The proof of Theorem 5.2 is similar to Theorem 4.2 in Appendix 7.4.6.
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5.2 Failure-Correlated Opportunity Models

In the conventional opportunistic replacement models [9, 21, 22], it is assumed

that the lifetime of the system and the coming time of replacement opportuni-

ties are statistically independent from each other. However, this assumption is

quite strong. Recognizing the importance to account for the correlation between

the lifetime and the coming time of replacement opportunities, Dohi and Oka-

mura [10] introduced a bivariate copula with the marginal distributions. The

copula allows for a more accurate representation of the correlation in models

when the age of the system and the occurrence of the opportunity are dependent.

5.2.1 Renewal Reward Approach

Following Dohi and Okamura [10], we first formulate the failure-correlated opportunity-

based RF model. Suppose that the random variables Y and X are statistically

dependent. The joint c.d.f. of variables Y and X is

Pr{Y ≤ v,X ≤ u} = C(v, u) =

∫ y

0

∫ x

0

cY,X(s, t)dsdt, (5.25)

where cy,x = ∂2C(y, x)/∂y∂x is the bivariate p.d.f. of (X,Y ), limx→∞ = F (y)

and limy→∞ = G(x) are marginal c.d.f.’s. The bivariate survival function is

given by:

Pr{Y > v,X > u} = M(y, x) = 1− F (y)−G(x) + C(y, x). (5.26)

When the random variables Y and X are statistically dependent, the expected

cost for one cycle in RF model is given by [10]

BF (T ) = cF

∫ T

0

∫ ∞

y

cY,X(y, x)dxdy + cY

∫ T

0

∫ ∞

x

cY,X(y, x)dydx

+ cT

∫ ∞

T

∫ ∞

T

cY,X(y, x)dydx

= cT + (cF − cT )

∫ T

0

∫ ∞

y

cY,X(y, x)dxdy

− (cT − cY )

∫ T

0

∫ ∞

x

cY,X(y, x)dydx. (5.27)
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The expected time length of one cycle with RF discipline is

AF (T ) =

∫ T

0

∫ ∞

y

ycY,X(y, x)dxdy +

∫ T

0

∫ ∞

x

xcY,X(y, x)dydx

+ T

∫ ∞

T

∫ ∞

T

cY,X(y, x)dydx

=

∫ T

0

M(t, t)dt. (5.28)

The expected cost rate can get formulated as

ECF (T ) =
BF (T )

AF (T )
. (5.29)

Calculating dECF (T )/dT , we can get

dECF (T )

dT
=

wF (T )

A2
F (T )

, (5.30)

where

wF (T ) = [(cF − cT )ΛY (T )− (cT − cY )ΛX(T )]AF (T )−BF (T ). (5.31)

In the bivariate model, the concept of the bivariate hazard rate function, as

defined by Basu [45], is widely known. However, in our models, the bivariate

hazard rate function does not adequately capture the optimality condition in

the dependent case.

In Eq. (5.31), the expressions

ΛY (t) =

∫∞
t

cX,Y (t, x)dx

M(t, t)
, (5.32)

ΛX(t) =

∫∞
t

cX,Y (t, y)dy

M(t, t)
, (5.33)

are called the initial hazard rate functions for the bivariate random variable Y

and X [45]. We are in the position to characterize the optimal failure-correlated

opportunity-based RF policy with the initial hazard rate functions.

Theorem 5.3. (I) Suppose that (cF − cT )Λ
′
Y (T )− (cT − cY )Λ

′
X(T ) > 0.

(i) If wF (∞) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.31) and its

resulting optimal expected total cost rate is given by

ECF (T
∗) = (cF − cT )ΛY (T

∗)− (cT − cY )ΛX(T ∗). (5.34)
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(ii) If wF (∞) ≤ 0, then the optimal preventive replacement time is given by

T ∗ → ∞, so the decision-maker should take the failure replacement or

opportunistic replacement.

(II) Suppose that (cF − cT )Λ
′
Y (T ) − (cT − cY )Λ

′
X(T ) ≤ 0. Then, the optimal

preventive replacement time is given by T ∗ → ∞.

Next, we consider the failure-correlated opportunity-based RL model. The

expected time length of one cycle becomes

BL(T ) = cF

∫ T

0

tf(t)dt+ cF

∫ ∞

T

∫ ∞

y

cY,X(y, x)dxdy

+ cY

∫ ∞

T

∫ ∞

x

cY,X(y, x)dydx+ cT

∫ T

0

∫ ∞

T

cY,X(y, x)dydx

= cT + (cF − cT )

[
F (T ) +

∫ ∞

T

∫ ∞

y

cY,X(y, x)dxdy

]
− (cT − cY )

∫ ∞

T

∫ ∞

x

cY,X(y, x)dydx. (5.35)

The expected time length of one cycle with RL discipline is

AL(T ) =

∫ T

0

tf(t)dt+

∫ ∞

T

∫ ∞

y

ycY,X(y, x)dxdy

+

∫ ∞

T

∫ ∞

x

xcY,X(y, x)dydx+ T

∫ T

0

∫ ∞

T

cY,X(y, x)dydx

=

∫ T

0

F̄ (t)dt+

∫ ∞

T

M(t, t)dt. (5.36)

The expected cost rate can ge formulated as

ECL(T ) =
BL(T )

AL(T )
. (5.37)

Calculating dECL(T )/dT , we can get

ECL(T )

dT
=

wL(T )

A2
L(T )

, (5.38)

where

wL(T ) = [(cF − cT )ΦY (T ) + (cT − cY )ΦX(T )]AL(T )−BL(T ), (5.39)

ΦY (t) =
f(t)−

∫∞
t

cX,Y (t, x)dx

F̄ (t)−M(t, t)
, (5.40)

ΦX(t) =

∫∞
t

cX,Y (x, t)dx

F̄ (t)−M(t, t)
. (5.41)

Then the optimal failure-correlated replacement policies with RL discipline can

be described as follows.
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Theorem 5.4. (I) Suppose that (cF − cT )Φ
′
Y (T ) + (cT − cY )Φ

′
X(T ) > 0.

(i) If wL(∞) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.39) and its

resulting optimal expected total cost rate is given by

ECF (T
∗) = (cF − cT )ΦY (T

∗) + (cT − cY )ΦX(T ∗). (5.42)

(ii) If wL(∞) ≤ 0, then the optimal preventive replacement time is given by

T ∗ → ∞.

(II) Suppose that (cF − cT )Φ
′
Y (T ) + (cT − cY )Φ

′
X(T ) ≤ 0. Then, the optimal

preventive replacement time is given by T ∗ → ∞.

5.2.2 NPV Approach

Similarly, we formulate the failure-correlated opportunity-based RF model with

discounting. Let TCβF (T, β) denote the NPV of the expected total cost. We

can get

TCβF (T, β) =
BβF (T, β)

1−AβF (T, β)
, (5.43)

BβF (T, β) = cF

∫ T

0

∫ ∞

y

e−βycY,X(y, x)dxdy + cY

∫ T

0

∫ ∞

x

e−βxcY,X(y, x)dydx

+ cT e
−βT

∫ ∞

T

∫ ∞

T

cY,X(y, x)dydx,

(5.44)

AβF (T, β) =

∫ T

0

∫ ∞

y

e−βycY,X(y, x)dxdy +

∫ T

0

∫ ∞

x

e−βxcY,X(y, x)dydx

+ e−βT

∫ ∞

T

∫ ∞

T

cY,X(y, x)dydx.

(5.45)

It is evident to confirm that

ECF (T ) = lim
β→0

βTCβF (T, β). (5.46)

Calculating dTCβF (T | β)/dT , we can get

dTCβF (T | β)
dT

=
wβF (T | β)

[1−AβF (T, β)]
2 , (5.47)
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where

wβF (T | β) =
[
(cF − cT )ΛY (T )− (cT − cY )ΛX(T )

β
− cT

]
× [1−AβF (T, β)]−BβF (T, β). (5.48)

Theorem 5.5. (I) Suppose that (cF − cT )Λ
′
Y (T )− (cT − cY )Λ

′
X(T ) > 0.

(i) If wβF (∞ | β) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.48) and its

resulting optimal expected total cost rate is given by

TCβF (T
∗ | β) = (cF − cT )ΛY (T

∗)− (cT − cY )ΛX(T ∗)

β
− cT . (5.49)

(ii) If wβF (∞ | β) ≤ 0, then the optimal preventive replacement time is given

by T ∗ → ∞, so the decision-maker should take the failure replacement or

opportunistic replacement.

(II) Suppose that (cF − cT )Λ
′
Y (T ) − (cT − cY )Λ

′
X(T ) ≤ 0. Then, the optimal

preventive replacement time is given by T ∗ → ∞.

Next, we derive the optimal failure-correlated replacement policy in RL

model with NPV approach. The NPV of the expected total cost over an in-

finite time horizon is

TCβL(T, β) =
BβL(T, β)

1−AβL(T, β)
, (5.50)

where

BβL(T, β) = cF

∫ T

0

e−βtf(t)dt+ cF

∫ ∞

T

∫ ∞

y

e−βycY,X(y, x)dxdy

+ cY

∫ ∞

T

∫ ∞

x

e−βxcY,X(y, x)dydx

+ cT e
−βT

∫ T

0

∫ ∞

T

cY,X(y, x)dydx, (5.51)

AβL(T, β) =

∫ T

0

e−βtf(t)dt+

∫ ∞

T

∫ ∞

y

e−βycY,X(y, x)dxdy

+

∫ ∞

T

∫ ∞

x

e−βxcY,X(y, x)dydx

+ e−βT

∫ T

0

∫ ∞

T

cY,X(y, x)dydx. (5.52)
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It is evident to confirm that

ECL(T ) = lim
β→0

βTCβL(T, β). (5.53)

Calculating dTCβL(T | β)/dT , we can get

dTCβL(T | β)
dT

=
wβL(T | β)

[1−AβL(T, β)]
2 , (5.54)

where

wβL(T | β) =
[
(cF − cT )ΦY (T ) + (cT − cY )ΦX(T )

β
− cT

]
× [1−AβL(T, β)]−BβL(T, β). (5.55)

Theorem 5.6. (I) Suppose that (cF − cT )Φ
′
Y (T ) + (cT − cY )Φ

′
X(T ) > 0.

(i) If wβL(∞ | β) > 0, then there exists a finite and unique optimal preventive

replacement time T ∗ (0 < T ∗ < ∞) which satisfies Eq. (5.55) and its

resulting optimal expected total cost rate is given by

TCβF (T
∗ | β) = (cF − cT )ΦY (T

∗) + (cT − cY )ΦX(T ∗)

β
− cT . (5.56)

(ii) If wβF (∞ | β) ≤ 0, then the optimal preventive replacement time is given

by T ∗ → ∞, so the decision-maker should take the failure replacement or

opportunistic replacement.

(II) Suppose that (cF − cT )Φ
′
Y (T ) + (cT − cY )Φ

′
X(T ) ≤ 0. Then, the optimal

preventive replacement time is given by T ∗ → ∞.

5.3 Numerical Examples

Based on the previous mathematical theorems, we analyze the correlation be-

tween failure time and opportunity arrival in opportunity-based age replacement

models. In our examples, the FGM bivariate copula is utilized to capture the

dependence between the system lifetime and the occurrence of an opportunity.

For more details of bivariate copula, see Dohi and Okamura [10]. The FGM

bivariate copula function is given by

C [F (y), F (x)] = F (y)G(x) [1 + γ(1− F (y))(1−G(x))] , (5.57)

where −1 ≤ γ ≤ 1 is a parameter for the strength of correlation. Spearman’s

rank correlation coefficient becomes ρS = γ/3.
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We suppose the failure time Y of the unit obeys a Gamma distribution. We

can obtain the related c.d.f. and p.d.f.:

F (t) = 1− (1 + θt)e−θt, (5.58)

f(t) = θ2te−θt. (5.59)

When G(t) = 1 − e−θt, we can have g(t) = θe−θt. The cost parameters are

gvien: cT = 15, 17, 19, 21, 23, 25, 27, 29, 31, 35, cF = 150, and cY = 10, 15. The

discounted factor is set as β = 0.6, 0.9.

Table 5.1 shows the optimal preventive replacement times T ∗ and their as-

sociated expected cost rates EC(T ∗) under RF and RL disciplines, when θ = 1,

λ = 1 and cF = 150. It can be seen that the optimal preventive replacement

times T ∗ under under RF and RL disciplines increase, as the preventive re-

placement cost cT increases significantly. When the opportunistic replacement

cost is relatively small, such as cY = 10, RF policy always outperforms RL pol-

icy. When the opportunistic replacement cost is big enough, such as cY = 15,

RF policy is better than RL policy in some specific cases where the preventive

replacement cost is very big, such as cT = 31, 35.

Tables 5.2 and 5.3 present the optimal preventive replacement times T ∗ and

their expected total discounted costs TC(T ∗) over an infinite horizon under RF

and RL disciplines, when the discount factor is given by β = 0.9, 0.6. From the

tables, when the economic environment is not stable, the optimal preventive

replacement times T ∗ are delayed. That is, when the economic environment

is unstable, the decision-maker can reduce the frequency of preventive replace-

ments to save money. Moreover, the tendency becomes more remarkable when

the economic environment is more unstable.

Table 5.4 presents the optimal preventive replacement times T ∗ and their

associated expected cost rates EC(T ∗) with FGM copula, when θ = 1, λ = 1

and cF = 150. We can find that when there is a positive correlation, the ex-

pected cost rate decreases in both disciplines. Conversely, a negative correlation

indicates the opposite scenario. In such cases, if the unit remains operational

for an extended period, the chance for replacement may arise sooner. In the dis-

cipline of RL, a positive correlation leads to a longer optimal replacement time,

while a negative correlation results a smaller optimal replacement time. How-



5.3. NUMERICAL EXAMPLES 103

ever, this trend is observed in the RF discipline only when the cost of preventive

replacement cT is sufficiently low.

Tables 5.5 and 5.6 present the optimal preventive replacement times T ∗ and

their expected total discounted costs TC(T ∗) over an infinite horizon with FGM

copula, when the discount factor β = 0.6, 0.9. It is seen that when the lifetime

of system and the arrival of replacement opportunity are statistically corre-

lated, the optimal preventive replacement times T ∗ are delayed in the unstable

economic environment.

Table 5.1: Optimal RF and RL policies without discounting, when λ = 1, θ = 1
and cF = 150.

cY = 10 cY = 15

RF RL RF RL

cT T ∗ EC(T ∗) T ∗ EC(T ∗) T ∗ EC(T ∗) T ∗ EC(T ∗)

15 0.973 56.6 0 57.5 0.973 66.6 0.715 56.2

17 1.145 57.0 0 57.5 1.145 67.0 0.732 57.9

19 1.351 57.3 0 57.5 1.351 67.3 0.769 59.6

21 1.602 57.4 0 57.5 1.602 67.5 0.794 61.2

23 1.917 57.5 0 57.5 1.917 67.5 0.842 62.7

25 2.332 57.5 0 57.5 2.332 67.5 0.912 64.2

27 2.906 57.5 0 57.5 2.906 67.5 0.945 65.6

29 3.745 57.5 0.778 66.8 3.745 67.5 1.111 66.9

31 5.103 57.5 1.052 67.8 5.103 67.5 1.170 68.1

35 14.33 57.5 1.391 69.9 14.33 67.5 1.421 70.1
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Table 5.2: Optimal RF and RL policies with discounting, when β = 0.6, λ = 1,
θ = 1 and cF = 150.

cY = 10 cY = 15

RF RL RF RL

cT T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗)

15 1.211 87.3 0.551 81.3 1.211 1039 0.763 822.4

17 1.363 87.5 0.600 83.8 1.363 1042 0.817 843.0

19 1.675 87.6 0.712 85.1 1.675 1043 0.875 863.9

21 2.081 57.7 0.825 87.7 2.082 1043 0.955 882.1

23 2.671 57.7 0.949 89.5 2.671 1043 1.052 898.4

25 3.565 57.7 1.092 91.0 3.565 1043 1.169 914.5

27 5.091 57.7 1.245 92.3 5.091 1043 1.303 914.5

29 8.322 57.7 1.419 93.4 8.322 1043 1.452 914.5

31 19.55 57.7 1.615 94.0 19.55 1043 1.631 914.5

35 > 20 57.7 2.052 95.3 > 20 1043 2.076 914.5

Table 5.3: Optimal RF and RL policies with discounting, when β = 0.9, λ = 1,
θ = 1 and cF = 150.

cY = 10 cY = 15

RF RL RF RL

cT T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗)

15 1.213 52.1 0.656 50.9 1.213 67.2 0.794 51.4

17 1.504 52.9 0.735 52.2 1.504 67.3 0.861 52.6

19 1.892 56.2 0.840 53.4 1.892 67.3 0.947 53.7

21 2.443 56.2 0.966 54.4 2.443 67.4 1.052 54.6

23 3.278 56.2 1.073 55.1 3.278 67.4 1.177 55.4

25 4.110 56.2 1.277 55.9 4.110 67.4 1.326 56.0

27 7.73 56.2 1.465 56.4 7.73 67.4 1.501 56.5

29 18.75 56.2 1.668 56.7 18.75 67.4 1.707 56.9

31 > 20 56.2 1.900 57.0 > 20 67.4 1.948 57.2

35 > 20 56.2 2.552 57.4 > 20 67.4 2.584 57.5
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Table 5.4: Optimal RF and RL policies without discounting, when λ = 1, θ = 1
and cF = 150 in failure-correlated-opportunity case.

cY = 10 cY = 15

RF RL RF RL

cT ρS T ∗ EC(T ∗) T ∗ EC(T ∗) T ∗ EC(T ∗) T ∗ EC(T ∗)

15 0.3 1.483 42.5 0 42.9 1.482 52.4 0.349 50.2

15 0.2 1.389 47.2 0 47.6 1.388 57.1 0.479 52.9

15 0.1 1.274 51.9 0 52.5 1.215 61.9 0.603 54.8

15 0.0 0.973 56.6 0 57.5 0.973 66.6 0.711 56.2

15 -0.1 0.777 60.9 0 62.8 0.776 70.9 0.802 57.2

15 -0.2 0.655 64.6 0 68.2 0.653 74.7 0.875 58.0

15 -0.3 0.576 68.0 0 68.0 0.575 78.1 0.935 58.6

20 0.3 1.871 42.8 0 42.9 1.868 52.6 0 57.3

20 0.2 1.838 47.5 0 47.6 1.837 57.4 0.471 57.4

20 0.1 1.728 52.4 0 52.5 1.727 62.3 0.665 59.3

20 0.0 1.469 57.3 0 57.5 1.467 67.3 0.801 60.4

20 -0.1 1.119 62.3 0 62.8 1.116 72.4 0.901 61.2

20 -0.2 0.889 66.9 0 68.2 0.884 77.0 0.978 61.7

20 -0.3 0.744 71.0 0 68.0 0.741 81.2 1.041 62.2

25 0.3 2.381 42.9 0 42.9 2.375 52.7 0 57.3

25 0.2 2.441 47.6 0 47.6 2.440 57.4 0.447 61.7

25 0.1 2.451 52.4 0 52.4 2.450 62.4 0.788 63.4

25 0.0 2.333 57.5 0 57.5 2.330 67.5 0.940 64.2

25 -0.1 1.773 62.7 0 62.7 1.772 72.8 1.041 64.7

25 -0.2 1.206 67.9 0 68.2 1.204 78.0 1.118 65.1

25 -0.3 0.947 72.7 0 68.0 0.941 82.9 1.179 65.4
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Table 5.5: Optimal RF and RL policies without discounting, when β = 0.6,
λ = 1, θ = 1 and cF = 150 in failure-correlated-opportunity case.

cY = 10 cY = 15

RF RL RF RL

cT ρS T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗)

15 0.3 1.669 66.3 ∞ 96.2 1.668 82.7 0.417 76.1

15 0.2 1.581 73.2 0.325 75.4 1.581 89.7 0.544 79.1

15 0.1 1.404 80.2 0.524 79.0 1.403 96.8 0.663 81.0

15 0.0 1.122 87.3 0.668 81.1 1.121 104 0.761 82.2

15 -0.1 0.867 94.0 0.774 82.4 0.865 111 0.840 83.2

15 -0.2 0.711 100 0.856 83.4 0.710 117 0.905 84.0

15 -0.3 0.616 106 0.922 84.2 0.614 122 0.959 84.6

20 0.3 2.212 66.4 ∞ 96.2 2.208 82.9 0.110 84.9

20 0.2 2.206 73.3 0 66.4 2.203 89.8 0.672 85.3

20 0.1 2.126 80.4 0.215 87.8 2.125 97.0 0.822 86.5

20 0.0 1.863 87.7 0.169 94.2 1.863 104 0.927 87.3

20 -0.1 1.360 95.1 0.949 87.5 1.358 112 1.006 88.0

20 -0.2 1.001 102 1.028 88.1 0.998 119 1.069 88.3

20 -0.3 0.817 109 1.091 88.5 0.813 125 1.123 88.7

25 0.3 3.057 66.5 ∞ 96.2 3.048 82.9 0.695 89.4

25 0.2 3.223 73.3 0.726 89.6 3.215 89.8 0.961 90.4

25 0.1 3.404 80.4 0.995 90.5 3.398 97.0 0.151 102

25 0.0 3.563 87.7 1.120 91.0 3.564 104 0.138 110

25 -0.1 3.330 95.2 0.195 106 3.347 112 0.118 117

25 -0.2 1.514 103 0.173 114 1.511 120 0.107 124

25 -0.3 1.076 108 0.156 121 1.090 127 0.099 132
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Table 5.6: Optimal RF and RL policies with discounting, when β = 0.9, λ = 1,
θ = 1 and cF = 150 in failure-correlated-opportunity case.

cY = 10 cY = 15

RF RL RF RL

cT ρS T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗) T ∗ TC(T ∗)

15 0.3 1.776 43.0 ∞ 50.9 1.774 54.0 0.456 48.3

15 0.2 1.692 47.9 0.400 48.1 1.692 58.3 0.588 49.8

15 0.1 1.516 51.7 0.579 49.9 1.515 62.7 0.702 50.8

15 0.0 1.213 56.1 0.711 50.9 1.213 67.2 0.794 51.0

15 -0.1 0.920 60.4 0.809 51.5 0.919 71.5 0.867 51.9

15 -0.2 0.745 64.4 0.885 52.0 0.742 75.6 0.930 52.2

15 -0.3 0.639 67.9 0.947 52.4 0.639 79.2 0.981 52.5

20 0.3 2.424 43.0 ∞ 50.9 2.419 54.0 0.594 52.5

20 0.2 2.418 47.3 0.261 53.0 2.414 58.3 0.787 53.3

20 0.1 2.384 51.7 0.186 56.7 2.382 62.7 0.915 53.8

20 0.0 2.141 56.2 0.937 53.9 2.141 67.3 1.006 54.1

20 -0.1 1.537 60.8 1.028 54.2 1.536 71.9 1.076 54.4

20 -0.2 1.076 65.3 1.097 54.4 1.073 76.6 1.132 54.6

20 -0.3 0.858 69.6 1.153 54.6 0.855 80.9 1.180 54.7

25 0.3 3.561 43.0 ∞ 50.9 3.549 54.0 1.038 55.6

25 0.2 3.834 47.3 1.072 55.6 3.822 58.3 1.179 55.8

25 0.1 4.192 51.7 1.203 55.8 4.183 62.8 1.267 55.9

25 0.0 4.711 56.2 1.288 55.9 4.711 67.8 1.332 56.0

25 -0.1 5.653 60.9 1.353 56.0 5.677 72.0 1.385 56.1

25 -0.2 7.902 65.8 1.406 56.1 7.997 76.8 1.429 56.1

25 -0.3 7.070 70.4 1.450 51.7 7.030 81.7 1.467 56.2
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Chapter 6

Conclusion

This dissertation includes five chapters. We discussed opportunity-based age re-

placement models and their applications in discrete time and continuous time,

respectively. In discrete time setting, the concept of replacement priority was

introduced to deal with the case that more than one replacement options occur

at same time point. Several discrete time opportunistic age replacement models

were formulated, and optimal preventive replacement policies are proposed for

each model. A study on pole air switch was presented on optimal preventive re-

placement policies. For continuous time models, we took the restricted duration

consideration in RL model and compare with RF [8] by numerical experiment.

We also considered the correlation between lifetime of system and the arrival of

opportunity in RF and RL models.

In Chapter 2, two classical age-based replacement models: AR and DD

models have been considered in discrete time. For more details, the concept

of replacement priority was introduced to address such situations where failure

replacement and preventive replacement occur at a given age or opportunity.

We explored two priority cases in each replacement model. First, we formulated

the optimal preventive replacement policies for each model by the familiar re-

newal reward argument and NPV method. Next, we studied unified stochastic

models incorporating the probabilistic priority of replacement options. Besides,

another important contribution is that general framework was proposed to opti-

mize preventive replacement policies in discrete time. The discrete time AR and

DD models with/without discounting were reformulated under this framework.

To provide practical insights, we present numerical illustrations using real failure

109
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data for pole air switches, comparing the performance of these optimal preven-

tive policies. we could find that: (1) When cT = cY , the AR policy is better

than the DD policy. Additionally, the AR time is larger than the DD time. (2)

When cT < cY , the DD policy is better than the AR policy in some cases where

cF is relatively smaller. For example, when cF = 1.5, it is easy to confirm that

the DD policy is better than the AR policy. In our actual application, under the

assumption of cT = 2cY , if cT < cF < 1.5cT , the decision-maker should consider

the opportunity in the preventive replacement. Otherwise, if cT > 1.5cY , the

decision-maker should consider only the AR policy instead of the DD policy. (3)

In terms of the optimal time in AR and DD policies, the optimal replacement

time with discounting is longer than that without discounting. This indicates

that when the economic environment is unstable, decision-makers will shorten

the replacement times for their equipment.

In Chapter 3, we further focused on two important opportunity-based age

replacement models in discrete time: RF and RL models, where the expected

cost model under each discipline can be further classified into six cases by taking

account of the priority of multiple replacement options. We characterize several

optimal opportunity-based age replacement policies minimizing the relevant ex-

pected costs. Besides, the NPV method was applied to formulate the expected

discounted costs over infinite horizon under RF and RL disciplines. In addition,

six discrete time opportunity-based age replacement models with/ without dis-

counting were unified with deterministic priorities. In numerical illustrations,

we obtain and compare all the optimal scheduled preventive replacement times

with RF and RL disciplines. The results indicate that: When cF is relatively

small (cF = 1.5, 2.0), it can be shown in all priority models that RL policies

are better than RF policies in both Assumption 1. On the other hand, when

cF is larger and the impact of system failure becomes more remarkable, we find

that RF policies are better than RL policies. From the results above, it is con-

firmed that RL policies can be motivated even in the plausible case of cF > cY .

However, when the failure impact is remarkable with large cF , as expected, RF

policies always outperform RL policies. In the sensitivity of the cost parame-

ter cF , as cF increases, the optimal scheduled preventive replacement time N∗
0

and its associated minimum expected cost decreases and increases, respectively.
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(2) When the economic environment is unstable, such as β = 0.9, the optimal

preventive replacement times N∗ will be delayed. When the economic environ-

ment is more unstable, for example, during times of economic uncertainty, the

optimal timing for performing preventive equipment replacements will be post-

poned. This means that in uncertain economic conditions, people may delay

replacing equipment or machinery to reduce costs or mitigate risks. (3) The

discounted factor cannot affect the structure of optimal preventive replacement

policy.

In Chapter 4, we extended RF and RL models with the restricted duration

in continuous/discrete time. Firstly, we formulate RF and RL models with the

restricted duration in continuous time, where the arrival of opportunities obeys a

homogeneous Poisson process. Next, we considered these opportunity-based age

replacement models in discrete time, where the inter-arrival times of replacement

opportunities obey an independent and identical geometric distribution. The

optimal two-phase opportunity-based age replacement policies are characterized

by minimizing the long-run average costs. The numerical examples are presented

to compare two replacement policies with RF and RL disciplines. The results

indicate: (1) In all tables, the optimal prescheduled preventive replacement

times for respective priority models often converge to similar values in most

cases. This is primarily since these optimal replacement times are discretized as

integer values, and the differences in replacement priorities are not particularly

significant. (2) When the cost of the corrective replacement cF is become big,

the optimal prescheduled preventive replacement times N∗
0 become small. In

addition, RL model can degenerate into two special cases in Section 3.1.2. (3)

RL policies are only better than RF policies in some limited cases where the

failure replacement cost cF is relatively small. In our example, when cF = 1.5,

RL policies are better than RF policies. Conversely, when cF is large and the

impact of system failure becomes more remarkable, we can find that RF policies

are better than RL policies.

In Chapter 5, we further generalized RF and RL models in continuous time.

The correlation between lifetime and the arrival of opportunity have considered

in these models. First, we reformulated two basic opportunity-based age re-

placement models with RF and RL disciplines, in which the failure time and the
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arrival time of a replacement opportunity are statistically independent. Next,

we take place the NPV analysis for the failure-correlated opportunity-based age

replacement models with RF and RL disciplines. We obtained the expected

total discounted costs over an infinite time horizon and derived the optimal

preventive replacement policies by minimizing them in both cases. The FGM

bivariate copula was presented in numerical examples to investigate the depen-

dence of correlation between the failure time and the opportunistic replacement

time on the age opportunity-based replacement policies. We could know that:

(1) When the opportunistic replacement cost is relatively small, such as cY = 10,

RF policy always outperforms RL policy. When the opportunistic replacement

cost is big enough, such as cY = 15, RF policy is better than RL policy in

some specific cases where the preventive replacement cost is very big, such as

cT = 31, 35. (2) when the economic environment is not stable, the optimal

preventive replacement times T ∗ are delayed. That is, when the economic envi-

ronment is unstable, the decision-maker can reduce the frequency of preventive

replacements to save money. Moreover, the tendency becomes more remarkable

when the economic environment is more unstable. (3) when there is a positive

correlation, the expected cost rate decreases in both disciplines. Conversely, a

negative correlation indicates the opposite scenario. In such cases, if the unit

remains operational for an extended period, the chance for replacement may

arise sooner. In the discipline of RL, a positive correlation leads to a longer

optimal replacement time, while a negative correlation results a smaller optimal

replacement time. However, this trend is observed in the RF discipline only

when the cost of preventive replacement cT is sufficiently low.

Summarily, the main contribution of this thesis are shown as: (1) We in-

troduce the concept of replacement priority to deal with the case that more

than one replacement options occur at same time point. (2) The AR, DD,

RF, RL models are reformulated in discrete time by renewal reward argument

and NPV method. (3) The RF and RF more are generalized into two-phase

opportunity-based models. (4) The correlation between lifetime and the arrival

of opportunity have considered in RF and RL models.

However, it is noted that there are some limitations in this thesis:

(1) Although we have found that RL policy is only better than RF policy in
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some limited cases where the failure replacement cost is relatively small.

However, we cannot give that more accurate cost parameter ranges that

RF policy equals RL policy in many cases.

(2) In our experiments, we calculated the model parameters using real fail-

ure data for pole air switches. In fact, these data is very old (1980s).

More detailed statistical properties of the discrete lifetime data should be

investigated by checking the goodness-of-fit to the discrete Weibull distri-

bution.

(3) We must acknowledge that although the experiments revealed several

trends, real-world decision-making often demands consideration of addi-

tional factors such as equipment significance, availability needs, and main-

tenance schedules. In addition, the discounted factor β is not a constant

value.

In the future works, we want to further study opportunity-based models in

the following viewpoints:

(1) Section 2 has propose the general framework to optimize preventive re-

placement policies in discrete time. The discrete time AR and DD models

with/without discounting were reformulated under this framework. The

results have shown that this method is a very effective tool for discrete

time models. In future, we want to study more discrete time models, such

as RF and RL, two-phase models by this general framework.

(2) We intend to further study the risk and uncertainties in opportunity-based

replacement models, where the lifetime of system and the occurrence of

opportunity are correlated. In this model, our findings show that when the

economic environment is unstable, the optimal replacement time should

be delayed. Other researchers studied this topic from somewhat different

viewpoint. Giri and Dohi [46] studied the issue of risk-sensitive preven-

tive maintenance policy with the mean-variance criterion, not just the

expected cost criterion in the steady state and reformulated the age and

block models under a new framework. Another extended direction of our

study is to analyze the correlation between the lifetime of the unit and

the occurrence of replacement opportunities in block replacement models.
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(3) As Dohi and Okamura [10] were first to recognize the significance of corre-

lation between age and replacement opportunity and proposed opportunity-

based models by introducing the bivariate copula with arbitrary marginal

distributions, where they consider the correlation between age and the

opportunity. So, we will further study the correlation between the life

of the system and the arrival of replacement opportunity in discrete-time

models.

(4) As we are aware, PH distributions offer high accuracy and are well-suited

for modeling failure times. Zheng et al. [1] explored replacement first

and replacement last models, where the arrival of opportunities obeys a

Markovian arrival process. We will apply the PH/MAP techniques to

study the opportunity-based models in discrete time.
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Appendix

7.1 Acronyms

AR Age replacement

DD Dekker and Dijkstra’s replacement model

IFR Increasing failure rate

DFR Decreasing failure rate

NPV Net present value

RF Replacement first discipline

RL Replacement last discipline

PH Phase-type

MAP Markovian arrival process

p.d.f. Probability density function

c.d.f. Cumulative distribution function

FGM Farlie-Gumbel-Morgenstern copula

7.2 Symbols

7.3 Lemmas

Lemma 7.1. The function RY (n) (HX(n)) is strictly increasing (decreasing)

in n, if and only if rY (n) (hX(n)) is strictly increasing (decreasing) in n.

Proof. We give the proof for only RY (n). From the definition in Lemma 7.1, it

115
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Ca Failure (corrective) replacement

Sc Preventive

Op Opportunistic replacement

cF Failure replacement cost

cP Preventive replacement cost

cY Opportunistic replacement cost

turns out that

RY (n) =
fY (n)

F̄Y (n)
=

F̄Y (n− 1)

F̄Y (n)
· fY (n)

F̄Y (n− 1)

=
{ F̄Y (n− 1)− fY (n)

F̄Y (n− 1)

}−1

rY (n) = {1− rY (n)}−1rY (n). (7.1)

Further difference yields

RY (n+ 1)−RY (n) =
rY (n+ 1)− rY (n)

{1− rY (n+ 1)}{1− rY (n)}
. (7.2)

Since 0 < rY (n) < 1 for n = 1, 2, . . ..

Lemma 7.2. The function RY (n) (rX(n)) is strictly increasing (decreasing) in

n, if and only if HY (n) (hY (n)) is strictly increasing (decreasing) in n.

Proof. If RY (n) is a strictly increasing function of n, then we have

fY (n)

F̄Y (n)
<

fY (n+ k)

F̄Y (n+ k)
, (7.3)

where, k ≥ 1 is an arbitrary integer. Sicne

fY (n)F̄Y (n+ k) < fY (n+ k)F̄Y (n), (7.4)

we can get the following inequality:

fY (n)F̄Y (n+ k)(1− p)k < fY (n+ k)F̄Y (n)(1− p)k. (7.5)

Further, we have

fY (n)

∞∑
k=1

F̄Y (n+ k)(1− p)k +

∞∑
k=1

fY (n+ k)(1− p)k
∞∑
j=1

F̄Y (n+ k)(1− p)k

< fY (n+ k)F̄Y (n)(1− p)k +

∞∑
k=1

F̄Y (n+ k)(1− p)k
∞∑
k=1

F̄Y (n+ k)(1− p)k.

(7.6)
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X Arrival times of opportunity for replacement

Y Failure times

Pr{X = n} = gX(n) Probability mass function

Pr{X ≤ n} = GX(n) Cumulative distribution function

Pr{X ≥ n} = ḠX(n− 1) Survivor function

hX(n) = gX(n)/ḠX(n− 1) Hazard rate

HX(n) = gX(n)/ḠX(n) Shifted hazard rate

ĤX(n) = gX(n)/GX(n) Reversed hazard rate

Pr{Y = n} = fY (n) Probability mass function

Pr{Y ≤ n} = FY (n) Cumulative distribution function

Pr{Y ≥ n} = F̄Y (n− 1) Reliability function

rY (n) = fY (n)/F̄Y (n− 1) Failure rate

RY (n) = fY (n)/F̄Y (n) Shifted failure rate

N Preventive replacement time for discrete time model

Aa(N) Expected length of one cycle for AR model

Baj(N) Expected cost of one cycle for AR model

ECaj(N) Expected cost rate for AR model

β Discounted factor

Ao(N) Expected length of one cycle for DD model

Boj(N) Expected cost of one cycle for DD Model

ECoj(N) Expected cost rate for DD model

HY (n) Hazard rate in DD model

Aa(N, β) NPV of one unit cost for one cycle for AR model

Baj(N, β) Expected total discounted costs of one cycle for AR model

TCaj(N, β) Expected total discounted costs over an infinite time horizon

for AR model

Ao(N, β) NPV of one unit cost for one cycle for DD model

Boj(N, β) Expected total discounted costs of one cycle for DD model

TCoj(N, β) Expected total discounted costs over an infinite time horizon

for DD model

HY (N, β) Shifted hazard rate in DD model with discounting

hY (N, β) Hazard rate in DD model with discounting
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A(N) Expected length of one cycle for general discrete time model

Bj(N) Expected cost of one cycle for general discrete time model

ECj(N) Expected cost rate for general discrete time model

Af (N) Expected length of one cycle for RF model

Bfj(N) Expected cost of one cycle for RF model

ECfj(N) Expected cost rate for RF model

Al(N) Expected length of one cycle for RL model

Blj(N) Expected cost of one cycle for RL model

EClj(N) Expected cost rate for RL model

Af (N, β) NPV of one unit cost for one cycle for RF model

Bfj(N, β) Expected total discounted costs of one cycle for RF model

TCfj(N, β) Expected total discounted costs over an infinite time horizon

for RF model

Al(N, β) NPV of one unit cost for one cycle for RL model

Blj(N, β) Expected total discounted costs of one cycle for RL model

TClj(N, β) Expected total discounted costs over an infinite time horizon

for RL model

G(t) = 1− e−λt Inter-arrival time of replacement follows the exponential distribution

g(t) = dG(t)/dt p.d.f. of X in continuous time

F̄ (t) Survivor function

F (t) c.d.f of Y in continuous time

f(t) p.d.f. of Y in continuous time

r(t) Failure rate in continnous time

S Restricted duration in continuous time model

T Preventive replacement time in continuous time model

Al(S, T ) Expected cycle length per unit for two-phase RL model in continuous time

Bl(S, T ) Expected cost per unit time in steady state for two-phase RL model

in continuous time

ECl(S, T ) Expected cost per cycle for two-phas RL model in continuous time

Af (S, T ) Expected cycle length per unit for two-phase RF model in continuous time

Bf (S, T ) Expected cost per unit time in steady state for two-phase RF model

in continuous time
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ECf (S, T ) Expected cost per cycle for two-phase RF model

in continuous time

N0 Restricted duration in discrete time model

N1 Preventive replacement time in discrete time model

Af (N0, N1) Expected cost per unit time in steady state for two-phase RF model

in discrete time

Bfj(N0, N1) Expected cycle length per unit for two-phase RF model in discrete time

ECfj(N0, N1) Expected cost per cycle for two-phase RF model in discrete time

Al(N0, N1) Expected cost per unit time in steady state for two-phase RL model

in discrete time

Blj(N0, N1) Expected cycle length per unit for two-phase RL model in discrete time

EClj(N0, N1) Expected cost per cycle for two-phase RL model in discrete time

hY (N0, N1) Hazard rate in two-phase RF model in discrete time

HY (N0, N1) Shifted hazard rate in two-phase RF model in discrete time

ĤY (N0, N1) Reversed hazard rate in two-phase RF model in discrete time

h(t) Hazard rate in continuous time model

Ĥ(t) Reversed hazard rate in continuous time model

Af (T ) Expected time length of one cycle with RF in continuous time

Bf (T ) Expected cost of one cycle with RF in continuous time

ECf (T ) Expected cost rate with RF in continuous time

Al(T ) Expected time length of one cycle with RL in continuous time

Bl(T ) Expected cost of one cycle with RL in continuous time

ECl(T ) Expected cost rate with RL in continuous time

Aβf (T, β) Expected discounted value of one unit cost during one cycle

with RF model in continuous time

Bβf (T, β) Expected discounted cost during one cycle

with RF model in continuous time

TCβf (T, β) NPV of the expected total cost with RF model in continuous time

Aβl(T, β) Expected discounted value of one unit cost during one cycle

with RL model in continous time
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Bβl(T, β) Expected discounted cost during one cycle

with RL model in continous time

TCβl(T, β) NPV of the expected total cost with RL model in continous time

AF (T ) Expected time length of one cycle

with failure-correlated opportunity-based RF model

BF (T ) Expected cost of one cycle

with failure-correlated opportunity-based RF model

ECF (T ) Expected cost rate

with failure-correlated opportunity-based RF model

AL(T ) Expected time length of one cycle

with failure-correlated opportunity-based RL model

BL(T ) Expected cost of one cycle

with failure-correlated opportunity-based RL model

ECL(T ) Expected cost rate with failure-correlated opportunity-based RL model

AβF (T, β) Expected discounted value of one unit cost during one cycle

with failure-correlated opportunity-based RF model

BβF (T, β) Expected discounted cost during one cycle

with failure-correlated opportunity-based RF model

TCβF (T, β) NPV of the expected total cost with RF model in continous time

with failure-correlated opportunity-based RF model

AβL(T, β) Expected time length of one cycle

with failure-correlated opportunity-based RL model

BβL(T, β) Expected cost of one cycle

with failure-correlated opportunity-based RL model

TCβL(T, β) NPV of the expected total cost

with failure-correlated opportunity-based RL model

C(y, x) Joint c.d.f. of variables Y and X

c(y, x) Bivariate p.d.f of variables Y and X

M(y, x) Bivariate survival function

ΛY (t) Initial hazard rate function for the bivariate random variable

in RF model

ΛX(t) Initial hazard rate function for the bivariate random variable

in RF model
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ΦY (t) Initial hazard rate function for the bivariate random variable

in RL model

ΦX(t) Initial hazard rate function for the bivariate random variable

in RL model

From above inequality, we can get∑∞
k=0 fY (n+ k)(1− p)k∑∞
k=0 F̄Y (n+ k)(1− p)k

<

∑∞
k=1 fY (n+ k)(1− p)k∑∞
k=1 F̄Y (n+ k)(1− p)k

. (7.7)

Hence, we have

HY (n− 1) < HY (n). (7.8)

The proof for hY (n) is similar to HY (n).

From Lemmas 7.1 and 7.2, we can obtain the following lemmas directly.

Lemma 7.3. The function HY (n) is strictly increasing (decreasing) in n, if

and only if hY (n) is strictly increasing (decreasing) in n.

Lemma 7.4. The function RY (n) (rX(n)) is strictly increasing (decreasing) in

n, if and only if HY (n, β) (hY (n, β)) is strictly increasing (decreasing) in n.

Proof . Similar to the proof of Lemma 7.2.

Lemma 7.5. The function HY (n, β) is strictly increasing (decreasing) in n, if

and only if hY (n, β) is strictly increasing (decreasing) in n.

Lemma 7.6. Suppose that the failure time Y is strictly IFR and that the arrival

time of opportunity X is DHR under Assumption 1. Then, additional necessary

conditions of strictly increasing wfj(N) (j = 1, 2, . . . , 6) are given by

Model 1: RY (N + 1)HX(N + 1) ≥ RY (N)HX(N),

Model 2: None,

Model 3: RY (N + 1)HX(N + 1) ≤ RY (N)HX(N),

Model 4: None,

Model 5: rY (N + 1)hX(N + 1) ≥ rY (N)hX(N),
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Model 6: rY (N + 1)hX(N + 1) ≤ rY (N)hX(N).

Proof. Taking the difference of the functions wfj(N) (j = 1, 2, . . . , 6), one ob-

tains

wf1(N + 1)− wf1(N) =
{
(cF − cT )

[
RY (N + 1) (1 +HX(N + 1))

−RY (N) (1 +HX(N))
]

− (cT − cY )
[
HX(N + 1)−HX(N)

]}
Af (N + 1),

(7.9)

wf2(N + 1)− wf2(N) =
{
(cF − cT ) [rY (N + 2)− rY (N + 1)]

− (cT − cY ) [HX(N + 1)−HX(N)]
}
Af (N + 1),

(7.10)

wf3(N + 1)− wf3(N) =
{
(cF − cT ) [RY (N + 1)−RY (N)]

− (cT − cY )
[
(1 +RY (N + 1))HX(N + 1)

− (1 +RY (N))HX(N)
]}

Af (N + 1), (7.11)

wf4(N + 1)− wf4(N) =
{
(cF − cT ) [RY (N + 1)−RY (N)]

− (cT − cY ) [hX(N + 2)− hX(N + 1)]
}
Af (N + 1),

(7.12)

wf5(N + 1)− wf5(N) =
{
(cF − cT ) [rY (N + 2)− rY (N + 1)]

− (cT − cY )
[
(1− rY (N + 2))hX(N + 2)

− (1− rY (N + 1))hX(N + 1)
]}

Af (N + 1), (7.13)

wf6(N + 1)− wf6(N) =
{
(cF − cT )

[
rY (N + 2) (1− hX(N + 2))

− rY (N + 1) (1− hX(N + 1))
]

− (cT − cY ) [hX(N + 2)− hX(N + 1)]
}
Af (N + 1).

(7.14)

In Model 1, if RY (N + 1) > RY (N), RY (N + 1)HX(N + 1) ≥ RY (N)HX(N)

and HX(N+1) ≤ HX(N), then wf1(N+1) > wf1(N) for all N under cT ≥ cY .

Similarily, if rY (N +1) > rY (N) and HX(N +1) ≤ HX(N), then wf2(N +1) >
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wf2(N). If RY (N + 1) > RY (N), RY (N + 1)HX(N + 1) ≤ RY (N)HX(N) and

HX(N + 1) ≤ HX(N), then wf3(N + 1) > wf3(N). If RY (N + 1) > RY (N)

and hX(N + 1) ≤ hX(N), then wf4(N + 1) > wf4(N). If rY (N + 1) > rY (N),

rY (N + 1)hX(N + 1) ≥ rY (N)hX(N) and hX(N + 1) ≤ hX(N), then wf5(N +

1) > wf5(N). If rY (N +1) > rY (N), rY (N +1)hX(N +1) ≤ rY (N)hX(N) and

hX(N +1) ≤ hX(N), then wf6(N +1) > wf6(N). From Lemma 7.1, the results

hold.

Lemma 7.7. Suppose that the failure time Y is strictly IFR under Assumption

1. Then, additional necessary conditions of strictly increasing wlj(n0) (j =

1, 2, . . . , 6) are given by

Model 1: (cF−cT ){RY (N)ĤX(N)−RY (N+1)ĤX(N+1)} > (cT−cY ){ĤX(N)−

ĤX(N + 1)},

Model 2 & 5: (cF − cT ){rY (N + 2) − rY (N + 1)} > (cT − cY ){ĤX(N) −

ĤX(N + 1)},

Model 3 & 4: {1 +RY (N + 1)}ĤX(N + 1) ≥ {1 +RY (N)}ĤX(N),

Model 6: RY (N + 1)ĤX(N + 1) ≥ RY (N)ĤX(N), {1 +RY (N + 1)}ĤX(N +

1) ≥ {1 +RY (N)}ĤX(N).

Lemma 7.8. Suppose that the failure time Y is strictly IFR and that the arrival

time of opportunity X is DHR under Assumption 1. Then, additional necessary

conditions of strictly increasing wfj(N, β) (j = 1, 2, . . . , 6) are given by

Model 1: RY (N + 1)HX(N + 1) ≥ RY (N)HX(N),

Model 2: None,

Model 3: RY (N + 1)HX(N + 1) ≤ RY (N)HX(N),

Model 4: None,

Model 5: rY (N + 1)hX(N + 1) ≥ rY (N)hX(N),

Model 6: rY (N + 1)hX(N + 1) ≤ rY (N)hX(N).
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Proof. Taking further difference of wfj(N | β), we can obtain

wf1(N + 1 | β)− wf1(N | β) =

[
(cF − cT )

[
RY (N + 1) [1 +HX(N + 1)]

1− β

−
RY (N) [1 +HX(N)]

]
1− β

− (cT − cY ) [HX(N + 1)−HX(N)]

1− β

]
× [1− Lf (N + 1)] ,

(7.15)

wf2(N + 1 | β)− wf2(N | β) =

[
β (cF − cT ) [rY (N + 2)− rY (N + 1)]

1− β

− (cT − cY ) [HX(N + 1)−HX(N)]

1− β

]
× [1− Lf (N + 1)] , (7.16)

wf3(N + 1 | β)− wf3(N | β) =

[
(cF − cT ) [RY (N + 1)−RY (N)]

1− β

−
(cT − cY )

[
HX(N + 1) [RY (N + 1) + 1]

1− β

−
HX(N) [RY (N) + 1]

]
1− β

]
× [1− Lf (N + 1)] , (7.17)

wf4(N + 1 | β)− wf4(N | β) =

[
(cF − cT ) [rY (N + 1)− rY (N)]

1− β

− β (cT − cY ) [hX(N + 2)− hX(N + 1)]

1− β

]
× [1− Lf (N + 1)] , (7.18)
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wf5(N + 1 | β)− wf5(N | β) =

[
β (cF − cT ) [rY (N + 2)− rY (N + 1)]

1− β

−
β (cT − cY )

[
hX(N + 2) [1− rY (N + 2)]

1− β

−
hX(N + 1) [1− rY (N + 1)]

]
1− β

]
× [1− Lf (N + 1)] , (7.19)

wf6(N + 1 | β)− wf6(N | β) =

[
β (cF − cT )

[
rY (N + 2) [1− hX(N + 2)]

1− β

−
rY (N + 1) [1− hX(N + 1)]

]
1− β

− β (cT − cY ) [hX(N + 2)− hX(N + 1)]

1− β

]
× [1− Lf (N + 1)] .

(7.20)

Lemma 7.9. Suppose that the failure time Y is strictly increases under As-

sumption 1. Then, additional necessary condition of strictly increasing wlj(N |

β)(j = 1, · · · , 6) are given in

Model 1: (cF−cT ){RY (N)ĤX(N)−RY (N+1)ĤX(N+1)} > (cT−cY ){ĤX(N)−

ĤX(N + 1)},

Model 2 & 5: (cF − cT ){rY (N + 2) − rY (N + 1)} > (cT − cY ){ĤX(N) −

ĤX(N + 1)},

Model 3 & 4: {1 +RY (N + 1)}ĤX(N + 1) ≥ {1 +RY (N)}ĤX(N),

Model 6: RY (N + 1)ĤX(N + 1) ≥ RY (N)ĤX(N), {1 +RY (N + 1)}ĤX(N +

1) ≥ {1 +RY (N)}ĤX(N).

From Lemma 7.2, we can get the following lemma.

Lemma 7.10. The function RY (N0) (rX(N0)) is strictly increasing (decreas-

ing) in N0, if and only if HY (N0, N1) (hY (N0, N1)) is strictly increasing (de-

creasing) in N0.
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Proof. Refer to Lemma 7.2.

Lemma 7.11. Suppose that the failure time Y is strictly increases under As-

sumption 1. Then, additional necessary condition of strictly increasing wfj(N0 |

N1)(j = 1, · · · , 6) are given in

Model 1:
[
rY (N0 + 1, N1)− q(1−q)N1−N0−3fY (N1)

Af0(N0+1|N1)

]
−
[
rY (N0, N1)− q(1−q)N1−N0−2fY (N1)

Af0(N0|N1)

]
> 0,

Model 2: None,

Model 3: None,

Model 4: None,

Model 5: None,

Model 6:
[
HY (N0 + 2, N1 − 1)− q(1−q)N1−N0−2fY (N1)

Af0(N0+1|N1)

]
−
[
HY (N0 + 1, N1 − 1)− q(1−q)N1−N0−1fY (N1)

Af0(N0|N1)

]
> 0.

Proof. Refer to Lemma 7.8.

Lemma 7.12. Suppose that the failure time Y is strictly IFR. Then, additional

necessary conditions for strictly increasing wlj(N1 | N0) (j = 1, 2, . . . , 6) are

given by

Model 1: (cF − cT ){RY (n1)Ĥ(N0, N1)−RY (N1 + 1)Ĥ(N0, N1 + 1)} > (cT −

cY ){Ĥ(N0, N1)− Ĥ(N0, N1 + 1)},

Model 2 & 5: (cF − cT ){rY (n1 + 2)− rY (n1 + 1)} > (cT − cY ){Ĥ(N0, N1)−

Ĥ(N0, N1 + 1)},

Model 3 & 4: {1 +RY (n1 + 1)}Ĥ(N0, N1 + 1) ≥ {1 +RY (n1)}Ĥ(N0, N1),

Model 6: RY (n1+1)Ĥ(N0, N1+1) ≥ RY (n1)Ĥ(N0, N1), {1+RY (n1+1)}Ĥ(N0, N1+

1) ≥ {1 +RY (n1)}Ĥ(N0, N1).

Proof. Refer to Lemma 7.8.
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7.4 Proofs of Theorem

7.4.1 Proof of Theorem 2.1

Proof. Here, we give the proof for Model 1. From the inequality ECa1(N +1)−

ECa1(N) ≥ 0 , we get

RY (N)

N∑
n=1

F̄Y (n− 1)− FY (N − 1) ≥ cT
cF − cT

. (7.21)

Let wa1(N) denote the left-hand side of above equation and further taking the

difference yields

wa1(N + 1)− wa1(N) = [RY (N + 1)−RY (N)]

N+1∑
n=1

F̄Y (n− 1). (7.22)

If the failure time Y is strictly IFR, then the function wa1(N) is strictly increas-

ing in N . If wa1(∞) > cT /(cF − cT ), then there exists at least one (at most

two) optimal AR time. If wa1(∞) ≤ cT /(cF − cT ), the function ECa1(N) is

monotonically decreasing. Then the optimal AR time becomes N∗ → ∞. On

the other hand, if Y is strictly DFR, then the function ECa1(N) is concave in

N . Thus, if ECa1(1) < ECa1(∞), then N∗ = 1, otherwise, N∗ → ∞. The

proof for Model 2 is similar to that for Model 1.

7.4.2 Proof of Theorem 2.2

Proof. Here, we give the proof for Model 1. From the inequality ECo1(N +1)−

ECo1(N) ≥ 0 , we get

HY (N)Ao1(N)−Bo1(N) ≥ cY
cF − cY

. (7.23)

Let wo1(N) denote the left-hand side of above equation and further taking the

difference yields

wo1(N + 1)− wo1(N) = [HY (N + 1)−HY (N)]Ao1(N + 1). (7.24)

If the failure time Y is strictly IFR, then the function wo1(N) is strictly increas-

ing in N . If wo1(∞) > cY /(cF −cY ), then there exists at least one (at most two)

optimal time limit N∗. If wo1(∞) ≤ cY /(cF − cY ), the function ECo1(N) is

monotonically decreasing. Then the optimal preventive replacement time limit

becomes N∗ → ∞. On the other hand, if Y is strictly DFR, then the func-

tion ECo1(N) is concave in N . Thus, if ECo1(1) < ECo1(∞), then N∗ = 1,

otherwise, N∗ → ∞. The proof for Model 2 is similar to that for Model 1.
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7.4.3 Proof of Theorem 2.13

Proof. (i) Taking the difference of Ψj(N), we have

Ψj(N + 1)−Ψj(N) = [mj(N + 2)−mj(N + 1)]A(N + 1) (7.25)

If mj(N+1) is non-increasing, Ψj(N+1)−Ψj(N) ≤ 0. Since Ψj(N) < bj ,

ECj(N) is a decreasing function.

(ii) If mj(N + 1) increases strictly in
[
N,N

]
, then Ψj(N + 1) is a strictly in-

creasing function. Since Ψj(N) < bj and Ψj(N) > bj , ECj(N) must have

at least one (at most two) minimal value, satisfying Eq. (2.57). Equiva-

lently, we can obtain the Eqs. (2.58) and (2.59).

(iii) If Ψj(N) < bj for all N > N , then ECj(N + 1) − ECj(N) < 0. Hence,

ECj(N) is decreasing for N > N .

(iv) It is noted that

Ψj(N)−Ψj(N) =

N∑
n=N

[mj(N + 1)−mj(n+ 1)] a(n)

+ [mj(N + 1)−mj(N)]A(N). (7.26)

Hence, if mj(N + 1) goes to infinity, then Ψ(N) goes to infinity. For a

large N , we can get mj(N+1)−ECj(N) > 0. So, if limN→∞ mj(N) = ∞,

then limN→∞ mj(N) > limN→∞ ECj(N). Next, we can see that ECj(N)

converges to m from the following inequality

bj −ma+

∞∑
n=0

[m−mj(N)] a(N) < 0. (7.27)

7.4.4 Proof of Theorem 3.1

Proof. In Eq. (3.10), we have

wfj(N) = ∆Bfj(N)Af (N)−Bfj(N)∆Af (N), (7.28)

where

∆Af (N) = {Af (N + 1)−Af (N)}/{F̄Y (N)ḠX(N)} = 1 (7.29)
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and

∆Bfj(N) = {Bfj(N + 1)−Bfj(N)}/{F̄Y (N)ḠX(N)}. (7.30)

Here we briefly sketch the proof for Model 1. From Eqs (3.2) and (3.3), we get

∆Bf1(N) = (cF − cT )RY (N) (1 +HX(N))− (cT − cY )HX(N). (7.31)

Further difference of wf1(N) yields Eq. (7.9). When wf1(N + 1) > qf1(N),

the function ECf1(N) is strictly quasi-convex in N . Further, if wf1(1) < 0

and qf1(∞) > 0, then there exists at least one (at most two) optimal scheduled

preventive replacement time N∗ which satisfies wf1(N
∗−1) < 0 and qf1(N

∗) ≥

0. Conversely, if wf1(∞) ≤ 0 and wf1(1) ≥ 0, then the function ECf1(N)

is monotonically decreasing and increasing, respectively, so that the optimal

scheduled preventive replacement time for Model 1 is N∗ → ∞ or N∗ = 1. If

wf1(N + 1) ≤ wf1(N) for an arbitrary N ≥ 1, then the function ECf1(N) is

quasi-concave in N . Thus, if ECf1(1) < ECf1(∞), then N∗ = 1, otherwise,

N∗ → ∞.

7.4.5 Proof of Theorem 3.5

Proof. Here, we only take the example of Model 1. Taking further difference

of Eq. (3.49) yields Eq (7.15). When wf1(N + 1 | β) > wf1(N | β), the

function TCf1(N, β) is strictly convex in N . if wf1(N | β) > 0, then there

exists at least one (at most two) optimal prescheduled preventive replacement

time N∗ which satisfies wf1(N
∗ − 1 | β) < 0 and wf1(N

∗ | β) ≥ 0. Conversely,

if wf1(N | β) ≤ 0, then the function is monotonically decreasing. Then the

optimal prescheduled preventive replacement time is given by N∗ → ∞.

On the other hand, if wf1(N + 1 | β) ≤ wf1(N | β), then the function

TCf1(N | β) is concave in N for a fixed β. Thus, if TCf1(1 | β) < TCf1(∞ | β),

then N∗ = 1, otherwise, N∗ → ∞.

7.4.6 Proof of Theorem 4.2

Proof. Taking the further difference of w(T | S) with respect to T , we can obtain

dw(T | S)
dT

=
[
(cF − cT )r(T )

′ + (cT − cY )Ĥ(T − S)′
]
Al(S, T ). (7.32)
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If (cF − cT )r(T )
′ + (cT − cY )Ĥ(T − S)′ > 0, dw(T | S)/dT > 0. Otherwise,

dw(T | S)/dT ≤ 0. If w(∞ | S) > 0, then exists a finite and unique optimal

T ∗ satisfying w(T | S) = 0. Otherwise, w(T | S) ≤ 0 and ECl(T | S) is a

decreasing function of T .



Bibliography

[1] Zheng J, Okamura H, Dohi T. Age replacement with Markovian opportu-

nity process. Reliability Engineering & System Safety 2021; 216: 107949.

[2] Zhao X, Nakagawa T. Optimization problems of replacement first or last

in reliability theory. European Journal of Operational Research 2012; 223

(1): 141–149.

[3] Zhao X, Nakagawa T, Zuo MJ. Optimal replacement last with continuous

and discrete policies. IEEE Transactions on Reliability 2014; 63 (4): 868–

880.

[4] Zhao X, Liu HC, Nakagawa T. Where does ”whichever occurs first? hold

or preventive maintenance modelings?. Reliability Engineering & System

Safety 2015; 142: 203–211.

[5] Zhao X, Cai J, Mizutani S, Nakagawa, T. Preventive replacement policies

with time of operations, mission durations, minimal repairs and mainte-

nance triggering approaches. Journal of Manufacturing Systems 2021; 61:

819–829.

[6] Chen M, Zhao X, Nakagawa T. Replacement policies with general models.

Annals of Operations Research 2019; 277 (1): 47–61.

[7] Sheu SH, Liu TH, Sheu WT, Zhang ZG, Ke JC. Optimal replacement

policy with replacement last under cumulative damage models. Reliability

Engineering & System Safety 2021; 209: 107445.

[8] Iskandar BP, Sandoh H. An extended opportunity-based age replacement

policy. RAIRO-Operations Research-Recherche Opérationnelle 2000; 34 (2):

145–15.

131



132 BIBLIOGRAPHY

[9] Dekker R, Dijkstra MC. Opportunity-based age replacement: Exponen-

tially distributed times between opportunities. Naval Research Logistics

1992; 39 (2): 175–190.

[10] Dohi T, Okamura H. Failure-correlated opportunity-based age replacement

models. International Journal of Reliability, Quality and Safety Engineer-

ing 2020; 27 (2): 2040008.

[11] Eryilmaz S, Tank F. Optimal age replacement policy for discrete time

parallel systems. TOP 2022; 31(3): 475–490.

[12] Eryilmaz S. Revisiting discrete time age replacement policy for phase-type

lifetime distributions. European Journal of Operational Research 2021; 295

(2): 699–704.

[13] Nakagawa T, Osaki S. Discrete time age replacement policies. Journal of

the Operational Research Society 1977; 28 (4): 881–885.

[14] Nakagawa T. A summary of discrete replacement policies. European Jour-

nal of Operational Research 1984; 17 (3): 382–392.

[15] Nakagawa T. Optimal policy of continuous and discrete replacement with

minimal repair at failure. Naval Research Logistics Quarterly 1984; 31 (4):

543–550.

[16] Nakagawa T. Continuous and discrete age-replacement policies. Journal of

the Operational Research Society 1985; 36 (2): 147–154.

[17] Nakagawa, T. Random Maintenance Policies. Springer Series in Reliability

Engineering; 2014.

[18] Radner R, Jorgenson DW. Opportunistic replacement of a single part in

the presence of several monitored parts. Management Science 1963; 10 (1):

70–84.

[19] Berg M. General trigger-off replacement procedures for two-unit systems.

Naval Research Logistics Quarterly 1978; 25 (1): 15–29.

[20] Jhang JP, Sheu SH. Opportunity-based age replacement policy with mini-

mal repair. Reliability Engineering & System Safety 1999; 64 (3): 339–344.



BIBLIOGRAPHY 133

[21] Dekker R, Smeitink E. Preventive maintenance at opportunities of re-

stricted duration. Naval Research Logistics 1994; 41 (3): 335–353.

[22] Dekker R, Smeitink E. Opportunity-based block replacement. European

Journal of Operational Research 1991; 53 (1): 46–63.

[23] Wang J, Miao Y, Yi Y, Huang D. An imperfect age-based and condition-

based opportunistic maintenance model for a two-unit series system. Com-

puters & Industrial Engineering 2021; 160: 107583.

[24] Si G, Xia T, Gebraeel N, Wang D, Pan E, Xi, L. A reliability-and-cost-based

framework to optimize maintenance planning and diverse-skilled technician

routing for geographically distributed systems. Reliability Engineering &

System Safety 2021; 226, 108652.

[25] Mizutani S, Zhao X, Nakagawa T. Age and periodic replacement policies

with two failure modes in general replacement models. Reliability Engi-

neering & System Safety 2021; 214: 107754.

[26] Zhang Q, Fang Z, Cai J. Extended block replacement policies with mission

durations and maintenance triggering approaches. Reliability Engineering

& System Safety 2021; 207: 107399.

[27] Zhang Q, Xu P, Fang Z. Optimal age replacement policies for parallel

systems with mission durations. Computers & Industrial Engineering 2022;

169: 108172.

[28] Cha J H, Limnios N. Discrete time minimal repair process and its reliability

applications under random environments. Stochastic Models 2022: 1–22.

[29] Eryilmaz S. Age based preventive replacement policy for discrete time

coherent systems with independent and identical components Reliability

Engineering & System Safety 2023; 240: 109544.

[30] Wei F, Wang J, Ma X, Yang L, Qiu Q. An optimal opportunistic main-

tenance planning integrating discrete-and continuous-state information.

Mathematics 2023; 11: 3322.

[31] Nair NU, Sankaran PG, Balakrishnan N. Reliability modelling and analysis

in discrete time.. Academic Press; 2018.



134 BIBLIOGRAPHY

[32] Fox B. Age replacement with discounting. Operations Research. 1965;

14(3): 533–537.

[33] Nakagawa T. A summary of block replacement policies. RAIRO-Operations

Research-Recherche Opérationnelle. 1979; 13: 351–361.

[34] Chen, CS, Savits TH. A discounted cost relationship. Journal of Multi-

variate Analysis. 1988; 27(1): 105–115.

[35] van den Boomen M, Schoenmaker R, Wolfert ARM. A life cycle costing

approach for discounting in age and interval replacement optimisation mod-

els for civil infrastructure assets. Structure and Infrastructure Engineering.

2018; 14(1): 1–13.

[36] Zhang Q, Yao W, Xu P, Fang, Z. Optimal age replacement policies of

mission-oriented systems with discounting. Computers & Industrial Engi-

neering. 2023; 177: 109027.

[37] Ross SM. Applied Probability Models with Optimization Applications.

Courier Corporation; 2013.

[38] Unnikrishnan Nair N, Sankaran PG. Characterizations of discrete distribu-

tions using reliability concepts in reversed time. Statistics and Probability

Letters 2013, 83; 1939–1945.

[39] Holland CW, McLean RA. Applications of replacement theory. AIIE Trans-

actions 1975; 7 (1): 42–47.

[40] Nakagawa T, Osaki S. The discrete Weibull distribution. IEEE Transac-

tions on Reliability 1975; R-24 (5): 300–301.

[41] Stein WE, Dattero R. A new discrete Weibull distribution. IEEE Trans-

actions on Reliability 1984; R-33 (2): 196–197.

[42] Khan M, Khalique A, Abouammoh A. On estimating parameters in a

discrete Weibull distribution. IEEE Transactions on Reliability 1989; 38

(3): 348–350.

[43] Nanda AK, Sengupta D. Discrete life distributions with decreasing reversed
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