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Abstract 
Ground motion models (GMM) are key tools for predicting seismic ground motions 

in future earthquakes and are also critical for regional disaster planning and seismic-

resistant building design. Seismic ground motion models are influenced by source 

characteristics, propagation path effects, and site effects (also known as site amplification 

factors, SAFs). SAFs play a significant role in controlling the amplitudes of seismic 

waves at the surface. One method to evaluate SAFs is the generalized spectral inversion 

technique (GIT), which derives source characteristics, propagation path effects, and SAFs 

from Fourier spectral data recorded at multiple sites. However, the GIT is limited to strong 

seismic records and cannot be applied to sites without such observations. Boreholes can 

be used to obtain information on subsurface soil stratification. After obtaining the one-

dimensional site model, it is assumed that seismic waves propagate only in the vertical 

direction and pass through the horizontally stratified medium. This assumption is known 

as the 1D SH assumption. Subsequently, the propagation of S-waves through each soil 

layer is simulated, and the site effect is evaluated by multiple reflection theory. However, 

this approach requires detailed site subsurface soil modeling. 

Recently, researchers have explored SAF estimation methods based on the 

horizontal-vertical spectral ratio (HVR). Since the proposal of the HVR method, the 

relationships between site effects and HVR have been discussed based on microtremor 

and earthquake observation data in various regions. The predominant frequency of HVR 

coincided with those of SAF at most sites, and the spectral shape of HVR and SAF were 

similar. However, significant discrepancies between the amplitude of MHVR and SAF 

were found in most cases. As a result, this study explores the development and application 

of deep neural network (DNN) models for predicting site effects and ground motion 

parameters using HVR data. The study is structured into seven chapters, each addressing 

a specific aspect of the research. 

Chapter 1 provided a comprehensive background on earthquakes, emphasizing the 
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importance of accurate ground motion prediction and the critical role of site effects. It 

discusses the significance of horizontal-to-vertical spectral ratios (HVRs) in assessing site 

effects and outlines the objectives and structure of the dissertation. This chapter sets the 

stage by establishing the importance of predicting ground motion and understanding site 

effects using HVR. 

Chapter 2 explored the first objective of the study, develop a robust deep neural 

network (DNN) model utilizing microtremor horizontal-to-vertical spectral ratios 

(MHVR) for assessing SAFs. It details the data collection, model construction, and 

validation processes. The DNN model demonstrated superior performance in estimating 

SAFs compared to traditional methods, showcasing the potential of using MHVR data for 

site effects assessment. The developed DNN model does not require any hard-to-get data 

such as seismic velocity structures and damping models thus providing a significant cost-

benefit. 

Chapter 3 expanded on this foundation by incorporating transfer learning techniques 

to adapt the pre-trained DNN model for new regions with varying geological conditions. 

It discusses the compilation of SAFs and MHVRs from various locations and the 

construction of the transfer learning model. Transfer learning significantly improved the 

performance in estimating SAFs in data-limited areas, demonstrating the feasibility of 

extending the applicability of the DNN model beyond its initial training region. 

Chapter 4 introduced a model to predict pseudo-EHVR (pEHVR) from MHVR, 

addressing the challenge of obtaining reliable EHVR data in regions without direct 

seismic measurements. It discusses the comparison between MHVR and EHVR, model 

construction, and validation. The model successfully predicted pEHVR from MHVR with 

high accuracy. Future research should focus on improving high-frequency predictions and 

expanding the dataset to enhance generalizability. 

Chapter 5 proposed the DNN model for predicting seismic ground motion 

parameters using EHVR. It integrates EHVR into existing ground motion prediction 

equations to improve prediction accuracy. The DNN model incorporating EHVR 
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outperformed traditional models in predicting ground motion parameters, particularly for 

spectral amplitude and shape. However, the availability of EHVR data and potential data 

leakage are limitations that need addressing in future research. 

Chapter 6 summarized the findings of the previous chapters and discusses potential 

areas for future research. The research demonstrated the effectiveness of using HVR data 

for seismic risk assessment and ground motion prediction. Future work should focus on 

improving prediction accuracy, validating the models in diverse geological settings, and 

exploring the integration of additional seismic features to enhance model robustness. 
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Chapter 1. Introduction  

As the opening chapter of the entire paper, this section first provides some 

background on earthquakes and related seismic damage, including ground motion. It then 

discusses some key factors influencing the prediction of ground motion caused by 

earthquakes. Subsequently, it introduces the main focus of this paper, site effects, 

including their concept and methods of acquisition. Following this, the second focus of 

this thesis, the significance of horizontal-to-vertical spectral ratio, and its application are 

introduced. Finally, the paper briefly outlines its objectives and overall structure. 
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1.1. Background 

An earthquake is a sudden vibration or shaking of the Earth's surface, usually caused 

by a sudden release of energy from underground rock formations. This release of energy 

results in the propagation of seismic waves, which cause the ground motion. Earthquake-

related hazards can be categorized into several key areas:  

1. Building damage: Strong ground motion by an earthquake can cause buildings 

to be damaged or even collapse. Older or inadequately designed buildings are 

more likely to be damaged. The main cause of the structural damage is the build-

up of excess stress within structural components during ground motion, which 

eventually exceeds the strength of the materials and leads to their failure. 

Besides the failure of structural components, various other parts (such as, pipes, 

valves, wires, and decorative elements) can also be damaged during the motion 

process. 

2. Infrastructure destruction: Ground motion can severely impact critical 

infrastructure, including roads, bridges, railways, airports, and ports, disrupting 

transportation and complicating rescue and recovery efforts. Damage to power 

plants and energy pipelines can lead to power outages or hazardous leaks, 

further intensifying the crisis. 

3. Personal injury and death: Ground motion may result in injuries and deaths from 

collapsed houses, flying debris and so on. Confusion and panic during an 

earthquake may also lead to injuries during evacuation.  

4. Liquefaction of ground motion: Liquefaction phenomenon refers to that the 

sudden increase in water pressure in saturated, loose soil due to strong ground 

motion in earthquakes reduces the contact forces between soil particles. 

Liquefaction can seriously affect the foundation bearing capacity of a building, 

which in turn can lead to tilting or even collapse of the building. 

5. Secondary hazards: Earthquake can trigger other hazards such as fires, 

explosions, landslides, mudslides, and tsunamis. 
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Among the various types of hazards mentioned above, ground motion due to 

earthquakes is usually the main cause of damage. Therefore, studying ground motion 

prediction can help people in a wide range of fields to better understand and manage the 

risk of earthquakes, potentially reducing injuries and damage when earthquakes occur. 

The ground motion prediction, is a model used to predict the strength and 

characteristics of ground motion when an earthquake occurs, also referred to as ‘ground 

motion model’. Note that the model does not apply to predicting when and where 

earthquakes will occur.  

To properly develop a ground motion model, it is first necessary to identify the 

different factors that are involved in the propagation of seismic waves from an earthquake 

source to sites, causing ground motion to occur at the sites. There are three main factors 

that impact ground motion: earthquake source, propagation path, and site effect, as shown 

in Figure 1-1. 

Here earthquake source refers to the characteristics and the physical processes of the 

earthquake itself, including its magnitude, depth, faulting mechanism, and others. These 

factors determine the energy released at the source and the nature of the earthquake waves 

generated. 

The propagation path refers to the movement of seismic waves within the earth. The 

energy generated by an earthquake source travels in the form of seismic waves through 

various media within the earth, reaching up to the surface. The different media in the 

propagation path affect the propagation velocity, intensity, period, and other important 

factors of seismic waves. Therefore, the propagation path is also considered in models 

predicting ground motion. 

Site effects, sometimes referred to as site response, are the impacts of different 

geological and soil conditions on the propagation of seismic waves from bedrock to the 

surface. These conditions, such as soil type, soil thickness, water table elevation, and the 

type and structure of subsurface rock, can alter the propagation characteristics of seismic 
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waves. These effects can significantly influence the intensity, duration, frequency, and 

other important factors of vibrations propagating to the ground surface. Site effects have 

important implications for the structural safety and seismic design of buildings. Building 

engineers and seismologists need to consider these factors to better assess seismic risk 

and design safer buildings. For example, by conducting seismic micro zonation and 

analyzing seismic site effect [1], it is possible to more accurately predict the ground 

motion that different regions may experience during an earthquake. This thesis focuses 

on site effects. 

 

 

 
 
  

Figure 1-1. Three factors that impact the ground motion of earthquakes: source, path, and site 

effect. The red arrows indicate that seismic waves are impacted by site effect, which 

are the amplification of waves while travelling through the soil layer. 
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1.2. Literature Reviews 

1.2.1. Site effects 

The primary focus of this thesis is to study site effects—the third aspect of 

influencing seismic ground motion mentioned earlier (in Section 1.1). To better 

understand site effects, we first need to recognize the main components below the ground 

surface. As shown in Figure 1-1, in mountainous or plateau regions, the area below the 

surface is composed of bedrock, known as rock outcrops. In contrast, in plains or basin 

areas, the subsurface is made up of various types of topsoil and weathered rock layers. 

Depending on the properties of wave propagation, the amplitude is lower in hard soil 

layers and amplified in soft soils. Therefore, site effects often lead to the following 

phenomena: first and foremost, under certain specific geological conditions, the 

amplitude of seismic waves passing through the bedrock to the surface may be 

significantly amplified, a phenomenon known as site amplification effect (abbreviated as 

SAF in this thesis). This is especially true in basins or plains with soft soils or deep 

sedimentary layers. Secondly, as the waves pass through different geological structures, 

changes in the frequency components and duration of the seismic waves occur, affecting 

the characteristics of ground motion. 

Currently, there are a variety of techniques for obtaining site effects. Boreholes can 

be used to obtain information on subsurface soil stratification. This information includes 
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the thickness, type, and physical properties of each soil layer. For each layer, parameters 

such as density, S-wave velocity (shear wave velocity), damping coefficient, and 

attenuation coefficient need to be determined. These parameters are essential for 

modeling the propagation of seismic waves through different media. S-wave velocity is a 

key parameter because it directly relates to the propagation speed of seismic waves and 

the magnitude of the amplification. After obtaining the one-dimensional site model, it is 

assumed that seismic waves propagate only in the vertical direction and pass through the 

horizontally stratified medium. This assumption is known as the 1DSH assumption [2]. 

Subsequently, the propagation of S-waves through each soil layer is simulated, and the 

site effect is evaluated by multiple reflection theory as shown in Figure 1-2. This approach 

requires detailed site subsurface soil modeling.  

Another method involves recording seismic activity simultaneously at the surface 

and at the subsurface bedrock level [3]. By comparing the spectral ratios of the recordings 

from the surface and the bedrock, the site effects can be effectively quantified. 

Generalized Spectral Inversion Technique (GIT) has been proposed as a method to 

separate seismic source, propagation, and amplification factors from seismic records [4,5]. 

This technique posits that the Fourier spectra of seismic records can be expressed as 

convolutions of the seismic source spectra, the damping characteristics of the propagation 

path, and the site amplification spectra. This approach assumes that the Fourier spectra of 

seismic records can be depicted as convolutions of the seismic source spectra, the 

damping characteristics of the propagation path, and site amplification spectra. By 

employing simultaneous equations derived from multiple seismic record spectra observed 

at various sites, GIT determines the source spectra, the Q-values of the seismic wave 

propagation path, and the amplification for each site. The amplification derived from 

multiple seismic records by GIT. As such, GIT enables the assessment of site 

amplification without the necessity for borehole data and site subsurface soil modeling. 

Recently, this technique has been utilized in several regions to evaluate the amplification 

factors at seismic observation sites, facilitated by the growing availability of seismic data 
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from the expansion of seismic observation networks [6–8]. However, it is important to 

note that it is impossible to obtain amplification factors at sites lacking seismic 

observation data.  

1.2.2. Horizontal to Vertical spectral ratio 

Horizontal to vertical spectral ratio (HVR) technique is a widely used technique in 

geophysical and seismological studies to estimate site effects, particularly site 

amplification, and to characterize subsurface geological conditions, by collecting and 

processing signals on the ground surface. This method proposed by Nakamura [9] in 1989, 

and overcomes the difficulties of the conventional use of seismic stations. It provides new 

ideas and methods for the assessment of site effects.  

Nakamura [9] explained HVR technology based on two assumptions. The initial 

proposal by Nakamura [9] was that the HVR could to some extent replace the S-wave 

amplification factor for the horizontal component of the earthquake. The HVR derived 

from the data obtained at the surface can be expressed by Eq. (1-1): 

 

 𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆 =
𝐻𝐻𝑆𝑆
𝐻𝐻𝑆𝑆

 (1-1) 

 

Here HS is the horizontal component of the record acquired on the ground surface and VS 

is the corresponding vertical component, as shown in Figure 1-3. All are Fourier spectral 

records. Then it is assumed that the seismic waves propagate uniformly in the horizontal-

vertical direction at the bedrock, as Eq. (1-2). The subscript B stands for bedrock. 

 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵 =
𝐻𝐻𝐵𝐵
𝐻𝐻𝐵𝐵

= 1 (1-2) 

 

Additionally, assuming that the vertical component of the seismic wave is not amplified, 
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it can be expressed as: 

 

 
𝐻𝐻𝑆𝑆
𝐻𝐻𝐵𝐵

= 1 (1-3) 

 

Then the amplification of seismic waves transmitted from bedrock to the ground surface 

can be expressed as the amplification of the horizontal component. Combining the above 

two equations, the following equation can be obtained. Based on these two assumptions, 

Nakamura [9] suggested that the HVRs can be equated to some extent with site effects.  

 

 
𝐻𝐻𝑆𝑆
𝐻𝐻𝐵𝐵

=
𝐻𝐻𝑆𝑆
𝐻𝐻𝑆𝑆

×
𝐻𝐻𝑆𝑆
𝐻𝐻𝐵𝐵

×
𝐻𝐻𝐵𝐵
𝐻𝐻𝐵𝐵

= 𝐻𝐻𝐻𝐻𝐻𝐻𝑆𝑆 (1-4) 

 

 

The HVR method is currently being discussed and applied in some of the following 

areas.  

1. Site Classification: HVR is widely used to classify sites based on their 

Figure 1-3. Concept of the HVR technique. 
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predominant periods, crucial for assessing earthquake hazards. By comparing HVR 

curves with empirical curves, researchers can identify site categories and assess seismic 

risks[10,11]. Improvements and new methods, like spectral ratio curve matching and 

integration with local soil properties, enhance accuracy and applicability across different 

regions[12–14]. 

2. Site Effect Analysis: HVR helps in understanding site effects on ground motion 

during earthquakes. By analyzing HVR curves from ambient noise or earthquake 

recordings, researchers can estimate site amplification and resonance frequencies [15–

17]. This method provides a cost-effective alternative to traditional spectral ratio methods, 

though it sometimes struggles with distinguishing source effects. 

3. Inversion of Velocity Structure: HVR is employed to invert shear-wave velocity 

profiles, revealing subsurface conditions. Researchers use ambient noise or ground 

pulsation data to develop models of the shallow structure [18,19]. This application aids 

in site effect analysis by providing detailed subsurface information, essential for accurate 

seismic hazard assessments. 

This paper will discuss the application of HVR to site effect analysis and ground 

motion prediction, with a more detailed discussion to follow. 
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1.3. Objectives 

This paper aims to address several critical research topics to enhance site effect 

assessment and ground motion prediction accuracy.  

The first objective is to develop a robust deep neural network (DNN) model utilizing 

microtremor horizontal-to-vertical spectral ratios (MHVR) for assessing site effects. 

Accurate assessment of site effects is essential for predicting earthquake impacts on 

specific locations, as traditional methods usually require a sufficiently large number of 

ground-shaking records or site subsurface formations. The MHVR-based DNN model 

does not require complex information and is available at any site. 

Expanding applicability of the model is another significant goal. By incorporating 

data from diverse geographical regions and applying transfer learning techniques, the 

research aims to ensure that the model can effectively adapt to different geological 

settings. This approach enhances the generalizability of the model, making it a versatile 

tool for global site effect assessment by using MHVR. 

Additionally, this study seeks to explore the relationship between microtremor HVR 

(MHVR) and earthquake HVR (EHVR) and develop a predictive model for evaluating 

EHVR from MHVR data. EHVR provides critical information about ground motion 

behavior during earthquakes, but obtaining EHVR data requires earthquake occurrences, 

which may be infrequent. MHVR, in contrast, can be measured continuously and non-

invasively. By establishing a predictive relationship between MHVR and EHVR, the 

study aims to leverage the more readily available MHVR data to infer EHVR, thereby 

enhancing seismic hazard assessments in regions without recent earthquake records. 

Finally, the research aims to improve the accuracy of existing ground motion 

prediction models by integrating EHVR data directly into ground motion prediction 

equations (GMPEs). Current GMPEs often rely on proxy parameters such as VS30 to 

account for site effects, which may not fully capture the complexity of local site 

conditions. Incorporating EHVR data provides a more accurate representation of site 
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effects, leading to better predictions of ground motion parameters such as peak ground 

acceleration (PGA), peak ground velocity (PGV), and spectral acceleration (SA). 
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1.4. Thesis structure 

0: Introduction 

This chapter introduces the background on earthquakes and the associated seismic 

damage, focusing on ground motion and site effects. It discusses key factors influencing 

ground motion prediction and highlights the significance of HVR in site effect analysis. 

The chapter also outlines the objectives and structure of the thesis. The introduction sets 

the stage for the research by establishing the importance of accurately predicting ground 

motion and understanding site effects using HVR. 

Chapter 2: Predicting Site Amplification Factors (SAFs) from MHVRs using a 

DNN Model 

This chapter proposes a methodology for estimating S-wave site amplification 

factors (SAFs) from MHVRs using a DNN model. It details the data collection, model 

construction, and validation processes. The DNN model demonstrated superior 

performance in estimating SAFs compared to traditional methods, showcasing the 

potential of using MHVR data for site effects assessment. 

Chapter 3: Expanding MHVR-to-SAF Prediction to Data-Limited Areas Using 

Transfer Learning 

This chapter explores the use of transfer learning to adapt a pre-trained DNN model 

to new regions and datasets. It discusses the compilation of SAFs and MHVRs from 

various locations and the construction of the transfer learning model. Transfer learning 

significantly improved the performance in estimating SAFs in data-limited areas, 

demonstrating the feasibility of extending the applicability of the DNN model beyond its 

initial training region. 

Chapter 4: Prediction of Earthquake HVR (EHVR) from MHVR using a DNN 

Model 

This chapter focuses on developing a DNN model to predict pseudo-EHVR (pEHVR) 

from MHVR. It discusses the comparison between MHVR and EHVR, model 
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construction, and validation. The model successfully predicted pEHVR from MHVR with 

high accuracy, providing a valuable tool for seismic risk assessment in regions without 

seismic records. Future research should focus on improving high-frequency predictions 

and expanding the dataset to enhance generalizability. 

Chapter 5: Ground Motion Prediction by DNN Model using EHVR 

This chapter proposes the DNN model for predicting seismic ground motion 

parameters using EHVR. It integrates EHVR into existing ground motion prediction 

equations to improve prediction accuracy. The DNN model incorporating EHVR 

outperformed traditional models in predicting ground motion parameters, particularly for 

spectral amplitude and shape. However, the availability of EHVR data and potential data 

leakage are limitations that need addressing in future research. 

Chapter 6: Conclusions and Future Work 

This chapter summarizes the findings of the previous chapters and discusses 

potential areas for future research. The research demonstrated the effectiveness of using 

HVR data for seismic risk assessment and ground motion prediction. Future work should 

focus on improving prediction accuracy, validating the models in diverse geological 

settings, and exploring the integration of additional seismic features to enhance model 

robustness. 

Chapter 7: Appendix 

In this chapter, we will provide the usage methods for the deep neural network (DNN) 

models developed in this thesis, primarily focusing on utilizing several publicly available 

pre-trained models. 
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Figure 1-4. Outline of this dissertation. 
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Chapter 2. Predicting Site Amplification Factors 

(SAFs) from Microtremor H/V Spectral Ratios 

(MHVRs) by Using Deep Neural Network Model  

This chapter proposed a novel methodology for directly estimating S-wave site 

amplification factors (SAF) from microtremor horizontal-to-vertical spectral ratio 

(MHVR) based on deep neural network (DNN) model. We analyzed site amplifications 

obtained from generalized spectral inversion technique and microtremor data observed at 

K-NET and KiK-net sites in Chugoku district, western Japan. The DNN model was 

developed using peak frequency and the frequency-dependent relationship between 

MHVRs and SAFs. The sites were divided into training set, validation set and test set. 

The training set and validation set were used in k-fold cross validation technique to 

evaluate and select optimal model. Once the optimal model had been determined, the 

model was employed on the test set that was completely independent of the training and 

validation set for evaluating the generalization performance. Residuals and root mean 

square error between the estimated and observed SAFs were evaluated to discuss the 

applicability of the proposed model. From the comparison of the results by the DNN 

model with those by existing double empirical correction method, we confirmed that the 

DNN model shows better performance in estimating SAFs. 
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2.1. Background  

Seismic ground motions at surface can be represented as a product of seismic source, 

propagation, and site effects. Especially for soft soil sites, the site effect is essential for 

evaluation of seismic ground motion characteristics since the site effect strongly controls 

frequency-dependent amplitudes of ground motions. Site effect for S-wave of seismic 

ground motion is typically described as amplification of SH wave, which can be 

theoretically obtained by multiple reflection theory [2] when S-wave velocity structure 

model is available from PS logging and/or borehole data. It is, however, difficult to obtain 

amplification factors at sites where S-wave velocity structure models have not been 

obtained. 

Generalized spectral inversion technique (GIT) has been proposed as a method for 

separating seismic source, propagation, and amplification factors from seismic records 

[4,5]. The approach assumes that Fourier spectra of seismic records at ground surface can 

be represented as products of seismic source spectra, damping characteristic of 

propagation path, and site amplification factors (SAFs). The source spectra, the Q-values 

of the seismic wave propagation path, and SAF are derived by using simultaneous 

equations from multiple spectra of seismic records observed at multiple sites. Thus, SAF 

can be evaluated without PS logging or borehole data by the GIT. Recently, this method 

has been applied in several regions to evaluate empirical amplification factors of seismic 

observation sites since more seismic data have been available with recent development 

of seismic observation networks [6–8]. It is, however, obviously impossible to obtain SAF 

without seismic observation data. 

Another approach to obtain SAF is to use microtremor data. Microtremors have been 

considered as an effective tool to easily evaluate site effect since they can be observed 

everywhere and anytime once a measuring instrument is available. In particular, 

horizontal-to-vertical spectral ratio of microtremors (MHVR) typically presented by 

Nakamura [9,20] has been widely used for site effect. The relationships between SAF and 

MHVR have been discussed from various observation data in various regions [15,21–24]. 
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These studies indicated that the predominant frequency of MHVR coincided with those 

of SAF at most sites, the spectral shape of MHVR and SAF were similar, but the 

significant discrepancy between amplitude of MHVR and SAF were found in most cases. 

These results suggested that MHVR should not be directly used as SAF despite the 

opinion by Nakamura [20]. 

Many studies have also been conducted to estimate the S-wave velocity structure via 

inverse analysis using MHVR. Arai and Tokimatsu [25] proposed a method to estimate 

the S-wave velocity structure based on the inverse analysis of MHVR and surface wave 

phase velocity data. Additionally, another method to infer S-wave velocity structure via 

diffuse field concept (DFC) has been proposed by Sánchez-Sesma et al. [26] and Kawase 

et al. [27]. Besides, a DFC-based approach was applied to estimate the S-wave velocity 

structure models from the MHVRs with help of existing geotechnical data as a constraint 

[28]. However, it cannot avoid the trade-off between S-wave velocity and layer thickness 

in the inverse analysis without a priori soil information. Therefore, it is still difficult to 

accurately estimate the S-wave velocity structure exclusively from MHVR [29]. 

Recently several studies have been performed to directly estimate SAFs from 

MHVRs. Sardina and Midorikawa [11] applied a pattern recognition approach for 

estimating soil response from MHVR, and suggested the possibility of MHVRs in direct 

estimation of SAFs. Such direct estimation approaches have been applied to horizontal-

to-vertical spectral ratio not only of microtremors but also of earthquake motions 

(EHVRs). As introduced by Kawase et al. [30], EHVRs can be theoretically represented 

by transfer functions of P- and S-waves. Since EHVR can be described by simpler 

formula than MHVR in DFC, EHVRs have been used to directly estimate SAFs at seismic 

observation sites [3,31]. The EHVR-based approach cannot be applied to arbitrary sites 

where seismic observation records are not available. Kawase et al. [32] expanded the 

empirical method to estimate SAFs from MHVRs by developing double empirical 

corrections to firstly transform EHVRs from MHVRs, and to subsequently estimate SAFs 

from the transformed EHVRs using empirically derived spectral ratios of vertical motion 
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at surface to horizontal motion at bedrock. This suggested clear correlations between 

MHVR and EHVR (called EMR factor), and between EHVR and SAF (called VHbR 

factor). The double correlation model for estimating site amplification from MHVR 

through EHVR is shown in Eq. (2-1). Here, pSAF indicates pseudo site amplification 

factor, VHbR indicates vertical-to-horizontal spectral ratio of bedrock motion. EHVR was 

estimated from MHVR using EMR that indicates earthquake-to-microtremor ratio in 

horizontal-to-vertical spectral ratio. 

 

 

𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓) = 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓) × 𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻(𝑓𝑓) 

                   =
𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓)
𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓)

× 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓) × 𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻(𝑓𝑓) 

                   = {𝐸𝐸𝑀𝑀𝐻𝐻(𝑓𝑓) × 𝐻𝐻𝐻𝐻𝑏𝑏𝐻𝐻(𝑓𝑓)} × 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓) 

(2-1) 

 

However, includes two major uncertainties; uncertainty between MHVRs and 

EHVRs, and uncertainty between EHVRs and site amplification factors. These 

uncertainties would increase errors in estimating site amplifications.  

Inspired by these previous studies, this study aims to propose an alternative 

empirical model to directly estimate SAFs from MHVRs. Recently, deep learning-based 

techniques, one of the artificial intelligence technologies, have been applied in many 

fields such as image classification [33], earthquake predictions [34,35] and other fields 

[36]. Deep learning refers to machine learning techniques which utilize multiple layers of 

artificial neural networks, such as deep neural networks (DNN) [37] which can repeatedly 

learn from a large amount of training data to efficiently extract eigenvalues.  

In this study, we proposed a DNN model for directly estimating site amplification 

factors from MHVR. First, the relationships between S-wave site amplification factors 

(SAFs) and MHVRs were analyzed using observation data at K-NET and KiK-net in 

Chugoku district, western Japan. Second, we developed a DNN model to estimate the 

SAF based on a combination of multiple Affine and nonlinear activation layers Third, the 
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developed DNN model was validated through k-fold cross validation, residual, and root 

mean square error (RMSE). Then, the generalization performance of the developed model 

was tested by applying it to a completely unknown test set. Also, the results were 

compared with the double empirical correction method proposed by [32]. 

 

2.2. Data  

2.2.1. Target sites 

Nationwide seismic observation networks in Japan named as K-NET and KiK-net 

are operated by the National Institute for Earth Science and Disaster Resilience (NIED). 

We selected the target area of this study as the seismic observation sites in Chugoku 

district, western Japan. The locations of the K-NET and KiK-net sites in Chugoku district 

are shown in Figure 2-1. Chugoku district includes Hiroshima (HRS), Okayama (OKY), 

Shimane (SMN), Tottori (TTR) and Yamaguchi (YMG) prefectures. Totally 155 

observation sites are located in the district. 
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Hiroshima
(HRS)

Figure 2-1. Locations of K-NET and KiK-net sites in Chugoku district, Japan. 
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Circles and diagonal crosses indicate sites where microtremor was measured and not 

measured, respectively. Color of circle represents predominant frequency of microtremor 

H/V spectral ratio (MHVR), fM (Hz). NC means that peak was not confirmed in the 

observed MHVR. 

 

2.2.2. Site Amplification Factors (SAFs) from Generalized Spectral Inversion 
Technique (GIT) 

Takeda et al. [38,39] extracted the frequency-dependent SAFs of S-waves at the K-

NET and KiK-net sites in Chugoku district by GIT. In the spectral inversion, the Fourier 

spectrum of the seismic observation record was assumed to be represented as the 

following Eq. (2-2). 

 

 𝑂𝑂𝑖𝑖𝑖𝑖(𝑓𝑓) = 𝑝𝑝𝑖𝑖(𝑓𝑓)
1
𝐻𝐻𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝜋𝜋𝑓𝑓𝐻𝐻𝑖𝑖𝑖𝑖
𝑄𝑄(𝑓𝑓)𝐻𝐻𝑉𝑉

�𝐺𝐺𝑖𝑖(𝑓𝑓) (2-2) 

 

Here O(f) is the observed spectrum at frequency f, the subscripts of i and j represent 

earthquake number and station number, respectively, and S is the source spectrum, Q is 

the Q-value for frequency-dependent attenuation of S-wave, Vs is S-wave velocity of the 

seismic bedrock, and G is the site amplification factors. R is the distance from the 

earthquake i to the station j, R-1 was adopted as the geometrical spreading of seismic wave 

since S-wave parts of the observation records were analyzed in this study. The exponential 

term represents the viscous damping factor of the propagation path. Using observation 

data recorded by multiple earthquakes at multiple sites, Si(f), Q(f), and Gj(f) were obtained 

for each frequency from Eq. (2-2) by solving the simultaneous equations. 

Considering the criteria for data selection in the previous GIT studies [8,40], we 

preliminary assessed the observed ground motion records as follows. To exclude effects 

of surface waves mainly contained in later part of the seismic records, the horizontal 
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ground motions at surface with the duration of 10.24 s from the arrival of S-waves were 

analyzed. The records whose peak ground accelerations were larger than 200 cm/s2 were 

excluded in the GIT to avoid nonlinear site response due to strong ground shakings. The 

Fourier spectra of NS and EW (north-south and east-west) components were calculated 

(HNS and HEW), and the horizontal spectra were obtained by root of the sum of squares 

from the following Eq. (2-3). 

 

 𝑂𝑂(𝑓𝑓) = �𝐻𝐻𝑁𝑁𝑆𝑆2(𝑓𝑓) + 𝐻𝐻𝐸𝐸𝐸𝐸2(𝑓𝑓) (2-3) 

 

The seismic records observed from 2001 to 2008 in Chugoku district for 119 

earthquakes with the magnitude of 4.0 or larger were analyzed in the GIT. The distribution 

of epicenters of the earthquakes used in the GIT is shown in Figure 2-2. The figure also 

Figure 2-2. Epicentral locations of earthquakes used in our GIT and classification of regions (1-6) 

by Nakano et al. [8]. 
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illustrates the classification of regions for evaluating different Q-value in each region by 

Nakano et al. [8]. Since the epicenters used in the study are mostly within the region four, 

single Q-value was estimated in the study. There were 68 crustal earthquakes, 49 

intraplate earthquakes, and only two interplate earthquakes. The relationship between 

magnitude and depth of the earthquakes is shown in Figure 2-3. Different Q-value was 

considered for each earthquake type in most of the previous GIT studies in order to 

accurately evaluate the propagation path effects. However, Salazar et al. [41] pointed out 

that almost same SAFs were obtained from data observed in subduction and crustal 

earthquakes. Since the main purpose of the GIT was to extract reliable site amplification 

factors from larger number of observation records, the records from all the earthquake 

events were analyzed in the GIT. 
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Figure 2-3. Relationship between magnitude and depth of earthquakes used in our GIT. Symbols 

for type B, I and C indicate interpolate, intraplate and crustal earthquake, 

respectively. 
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The simultaneous equations were solved by giving the theoretical amplification 

factors at reference sites as constraint conditions in the GIT. Takeda et al. [38,39] selected 

five KiK-net sites as the references where PS-logging data up to almost VS=3000 m/s (the 

seismic bedrock) were obtained and the seismic bedrock depth is comparatively shallow. 

Figure 2-4 shows the S-wave velocity structure models for each site and the theoretical 

amplification factors at surface from outcropping bedrock obtained from the S-wave 

velocity structure models. 

 

The target frequency range was from 0.3 to 20 Hz, and 200 frequency increments 

were given with equal intervals in the logarithmic scale by resampling the data. By 

applying the GIT, the source spectra, Q-value in the propagation path of the seismic 

bedrock and site amplification factors from the seismic bedrock to ground surface were 

obtained. The derived frequency-dependent Q-value in the target area is shown by Eq. 

(2-4). 

D
ep

th
 (m

)

Vs (m/s)

HRSH11
HRSH12
SMNH01
SMNH09
YMGH01

0 1000 2000 3000

0

50

100

A
m

pl
ifi

ca
tio

n

Frequency (Hz)

HRSH11
HRSH12
SMNH01
SMNH09
YMGH01

1 10

1

10

100

Figure 2-4. S-wave velocity structures and theoretical amplification factors at surface from 

outcropping bedrock used as constraint conditions in our GIT. 
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 𝑄𝑄(𝑓𝑓) = 360𝑓𝑓0.53 (2-4) 

 

Figure 2-5 shows the comparison of Q-1 in this study with the results in the region 

four (see Figure 2-2) by Nakano et al. [8] and Kawase and Matuo [40]. The Q-1 in this 

study was slightly smaller than the values by the previous studies probably because 

locally smaller Q-1 was expected in Chugoku district than in other western Japan region 

from the previous three-dimensional tomography analysis of seismic records. 

 

 

The SAFs of each site obtained from the above analysis can be considered to 

represent the amplification of S-waves at ground surface from the outcropping seismic 

bedrock. Figure 2-6 shows the comparison of SAF at TTRH02 and OKY005 estimated in 

Figure 2-5. The comparison of the Q-1 estimated in this study with that of Nakano et al. [8] and Kawase 

et al. [40] for region four (C4). 
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our GIT and that estimated in Kawase and Matsuo (2004) and Nakano et al. (2019), 

respectively. As shown in Figure 2-6, we confirmed that our obtained SAFs show good 

agreement with those in the previous studies despite different datasets were analyzed in 

these GITs. The SAFs obtained in our GIT were used in the following analysis. 

 

 

2.2.3. Microtremor H/V Spectral Ratios (MHVRs) in Chugoku Region, Japan 

The authors observed microtremors at the target sites from 2012 to 2020. The 

GEODAQS-2S3D (Figure 2-7) velocimeters developed by ANET Inc., Japan were used 

for the observations. The sensor covers the period of ambient motions of up to 2 s 

(frequency of 0.5 Hz). We observed the microtremors at the free grounds near K-NET 

and KiK-net stations by 100 Hz sampling.  

For the microtremor records, first all-time history waveforms are visually inspected. 

Once it has been determined that the effect of local time-varying noises (e.g., traffic and 

artificial noises) are less, the observation recordings are split from the observed records 
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Figure 2-6. Comparison of site amplification factors at TTHR02 and OKY005 estimated in our GIT 

and those estimated by GIT. 
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into 10 recording segments of 20.48 s. Then, MHVR is calculated from the horizontal and 

vertical amplitude Fourier spectra as Eq. (2-5). 

 

 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓) =
�𝐴𝐴𝑝𝑝𝑁𝑁𝑆𝑆2(𝑓𝑓) + 𝐴𝐴𝑝𝑝𝐸𝐸𝐸𝐸2(𝑓𝑓)

𝐴𝐴𝑝𝑝𝑈𝑈𝑈𝑈(𝑓𝑓)  
(2-5) 

 

 

Here, FS indicates the Fourier spectral amplitude, and the subscripts of NS, EW and 

UD indicate the horizontal (north-south and east-west) and vertical (up-down) 

components, respectively. The Fourier spectra were calculated by smoothing with Parzen 

window of 0.3 Hz bandwidth. The average and one standard deviation of MHVRs from 

10 retained recording segments are calculated. Since peak frequency of MHVRs used for 

analysis are in 1.0 - 20.0 Hz range, the 10 recording segments of 20.48 s correspond to 

the recommended recording duration suggested in the guideline by Bard [42]. 

In this study, we used the microtremor observation data obtained at 105 sites in the 

Chugoku district. The observed MHVRs at six sites are illustrated in Figure 2-8, showing 

clear peaks identified in these MHVRs. However, the shapes of the MHVRs at 25 sites 

Figure 2-7. The GEODAQS-2S3D velocimeters developed by ANET Inc. 
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out of 105 sites were flat and no significant peaks were observed within the target 

frequencies (0.3 – 20.0 Hz). Since peak frequency of MHVR (fM) played a very pivotal 

role in estimating site amplifications, it would be difficult to accurately estimate 

amplification factors from such MHVRs. The MHVRs with peak values less than a factor 

of 2.0 were excluded in the following analysis. Peak frequency of MHVR at each site was 

defined as the frequency where the largest MHVR value within 0.3 to 20.0 Hz was 

observed. Figure 2-8 also shows the SAFs obtained at the sites in our GIT. As introduced 

in the previous studies [6–8], the peak frequencies of the MHVRs show good agreement 

with those of the SAFs.  

 

 

Figure 2-8. Comparison of observed MHVRs and SAFs by GIT at six sites. Average and one standard 

deviation of observed MHVRs from 10 retained recording segments are shown by dashed 

line and gray area, respectively. 
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Figure 2-9 shows the relationship of peak frequencies between SAFs and MHVRs 

at 80 sites. We found strong correlation between the two peak frequencies since the 

correlation coefficient is higher than 0.90. As shown in Figure 2-9, we need to pay 

attention to the fact that the coverage of fM is 1.0 – 20.0 Hz in our dataset. 

 

 

The correlation coefficient (r) is 0.905, which shows the strong linearity of the 

relationship between the two peak frequencies. Using the least squares method, the linear 

equation between the two was calculated as shown in Eq. (2.5). Here x represents log(fM) 

and y represents log(fA).  

 

 𝑦𝑦 = 0.993𝑒𝑒 + 0.012 (2-6) 

 

2.2.4. Relationship between SAFs and MHVRs 

In order to discuss the possibilities of H/V spectral ratio technique in estimating 

SAFs, the relationships between theoretical and observed values of SAF, EHVR and 

fM of MHVR (Hz)
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Figure 2-9. Comparison of predominant frequency between MHVRs (fM) and site amplification 

factors (fA). 
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MHVR are examined. The number of sites where S-wave velocity profiles reach the 

seismic bedrock is limited even in the KiK-net sites. Besides, one-dimensional theoretical 

transfer functions obtained from the S-wave velocity profiles of KiK-net did not match 

observed amplification factors at more than two-third of the sites due to uncertainties of 

the velocity models and multi-dimensional effects [3]. We selected HRSH18 as the target 

site since the S-wave velocity structure up to approximately the seismic bedrock 

(VS=2,530 m/s) was obtained in the PS-logging. Theoretical one-dimensional transfer 

function for SH-wave was calculated from the S-wave velocity structure. The density of 

i-th layer was provided from the S-wave velocity shown in Eq. (2-7), and the Q-value of 

each layer was given by Eq. (2-8) [43]. 

 

 𝜌𝜌𝑖𝑖 = 1400 + 670�
𝐻𝐻𝑉𝑉𝑖𝑖

1000
 (2-7) 

 

 𝑄𝑄𝑖𝑖 = 19.05𝑓𝑓0.52 (2-8) 

 

Figure 2-10 (a) shows the comparison of the theoretical transfer function (1D-SH) 

and the observed SAFs by the GIT, indicating that the predominant frequencies are almost 

identical. However, the theoretical amplification factor is slightly smaller than the 

observed value probably due to uncertainties of damping factors in the layers. 

Figure 2-10 (b) shows the comparison of the observed and theoretical earthquake 

H/V spectral ratio (EHVR) at the site. The observed EHVRs was obtained from the S-

wave parts in the seismic records used in the GIT as is the analysis based on Eq. (2-6). 

Mean values ± the standard deviation are illustrated in the figure. The theoretical EHVR 

was calculated from the ratio of transfer function of S-wave to transfer function of P-

wave with the S-wave and P-wave velocity at the bottom layer based on the DFC theory 

[30]. The theoretical EHVR shows good agreement with the observed value, and the 
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predominant frequencies of the EHVRs also correspond to those of the transfer function. 

The results confirm that EHVR could be a powerful tool to assess the site amplification 

factor and/or to estimate velocity structure model through inversion technique as 

discussed in the previous studies [3,27,31,35]. 

Figure 2-10 (c) shows the comparison of the observed and theoretical MHVR at the 

site. The theoretical MHVR was calculated from the velocity structure based on the DFC 

theory [26], by using the HV-Inv [44]. Although the spectral shape of the theoretical value 

is similar to the observed value, the theoretical value is much larger than the observed 

value. One of the reasons for the discrepancy would be that the HV-Inv neglects damping 

in site response. If the damping factors of the soil layers are properly provided in the 

theoretical calculation of MHVR, the theoretical value would be close to the observed 

MHVR. It suggests that there still remains uncertainty in applying the DFC theory to the 

inversion of MHVR, and it is still difficult to estimate the S-wave velocity structure 

accurately only by MHVR without a priori soil information. 

 

Figure 2-10. Comparison of theoretical and observed values for (a) SAF, (b) EHVR, and (c) MHVR 

at HRSH18. (a) Comparison between observed SAF derived by GIT and 1D theoretical 

amplification of SH-wave, and S-wave velocity profile, (b) Comparison of observed 

EHVRs of seismic recordings and theoretical EHVR calculated by DFC, (c) Comparison 

of observed MHVR and theoretical MHVR calculated by DFC. 
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2.3. Methods 

2.3.1. Deep neural network model 

The neural network, which is the basis of deep learning, is described.  

In deep learning, a neuron is actually a computational unit. Figure 2-11 is the 

functional flow of a standard neuron. 

a) A neuron is a computational unit that needs to receive several input values to 

start the computation. Here n values (x1, x2 … xn) are input. 
b) Each input xi (i=1~n) has a corresponding weight wi. All the input values are 

then multiplied by the corresponding weights and then summed. 

c) An activation function in the neuron converts the ‘∑ x𝒊𝒊𝒘𝒘𝒊𝒊 𝒏𝒏
𝒊𝒊=𝟏𝟏 + 𝒃𝒃𝒊𝒊𝒃𝒃𝒃𝒃’ into an 

output value (yj), and the output value (yj) calculated with this function is used 

as input value to subsequent neurons. 
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Figure 2-11. Schematic diagram of a neuron. 
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Neural networks are a conceptual imitation of human neuronal networks and are the 

basis for deep learning. In a neural network, multiple neurons are combined to form a 

single layer, consisting of input layer, hidden layer and output layer. Multiple inputs are 

passed through several layers of neurons and finally become multiple outputs. Through 

repeated training and learning of various input values, the neural network gradually grows 

to be able to return an appropriate output value for any input value. 

 

 

Figure 2-12 shows the schematic diagram of forward and backward propagations of 

neurons in input, hidden and output layers of deep neural network (DNN) model. As 
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Figure 2-12. Schematic diagram of propagations of neurons in input, hidden and output layers for 

deep neural network. Here, n, k and m indicate the number of neurons in each layer. 
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shown in Figure 2-12, DNN is a neural network that contains input layer, multiple hidden 

layers and output layer. Each layer of the neural network has several neurons. Neurons 

between layers are connected, while neurons within layers are not connected, and neurons 

in the next layer connect all neurons in the previous layer. This type of neural networks 

that have connections between all neurons in the adjacent layers are known as fully 

connected neural networks. The typical steps of the neural network are as follows: 

forward propagation to find the error using the multiple layers, then followed by 

backward propagation to update the weights of the hidden layer, and finally repeated 

given times (epoch) to find the minimum error. Since DNNs can fit almost any function, 

the nonlinear fitting ability has been considered to be generally excellent. 

 

2.3.2. Evaluation metrics for goodness-of-fit 

In general, goodness-of-fit metrics are to measure how well the observed data 

correspond to the assumed model. As in linear regression, in essence, goodness-of-fit 

metrics compares the observed values to the estimated values. 

To numerically assess the estimation accuracies of the models in this study, 

goodness-of-fit metrics were calculated using the observed and estimated values. Table 

2-1 shows the formulas and descriptions of the metrics analyzed in this study.  

We calculated Pearson correlation coefficients, r, between the estimated and 

observed values for each site. The value range of r is from -1 to +1, the closer to 0 that 

represents the worse correlation, and +1 and -1 represent positive correlation and negative 

correlation, respectively. However, the Pearson correlation coefficient can only evaluate 

the spectral shape difference between the observed values and the estimated values. Thus, 

in addition to the spectral shape, the index of agreement (d) and the mean absolute error 

(MAE) between the estimated and observed values were also calculated to assess the 

proximities of the amplitudes in absolute and relative values, respectively. Here, d takes 

in the range from 0 to 1, and larger value represents smaller difference between the 

variables. On the contrary, smaller MAE represents the better accuracy. In the previous 
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study [3], it was suggested that for better evaluation accuracy, the double evaluation 

metrics were recommended to be used together (one for evaluating the spectral shape and 

one for evaluating the amplitude differences). 

 

Table 2-1. Evaluation metrics used in this study. 

Evaluation 

metrics 
Formula Range Annotation 

Pearson 

correlation 

coefficients, 

R 

∑  𝑛𝑛
𝑖𝑖=1 (𝑒𝑒𝑖𝑖−�̅�𝑒)(𝑦𝑦𝑖𝑖−𝑦𝑦�)

�∑  𝑛𝑛
𝑖𝑖=1 (𝑒𝑒𝑖𝑖 − �̅�𝑒)2�∑  𝑛𝑛

𝑖𝑖=1 (𝑦𝑦𝑖𝑖−𝑦𝑦�)2
 (-1:1) 

Closer to 0 that 

represents worse 

correlation, +1 and -

1 represent positive 

and negative 

correlation. 

Index of 

Agreement, 

d 

1 −
∑  𝑛𝑛
𝑖𝑖=1 (𝑒𝑒𝑖𝑖−𝑦𝑦𝑖𝑖)2

∑  𝑛𝑛
𝑖𝑖=1 (|𝑦𝑦𝑖𝑖 − �̅�𝑒| + |𝑒𝑒𝑖𝑖 − �̅�𝑒|)2 (0:1) 

Lager d represent 

smaller differences 

between the 

variables. 

Mean 

absolute 

error, MAE 

∑  𝑛𝑛
𝑖𝑖=1 |𝑦𝑦𝑖𝑖 − 𝑒𝑒𝑖𝑖|

𝑛𝑛
 (0:∞) 

Smaller MAE 

represents better 

accuracy. 

Note: n: sample size, x: observed site amplification factor, y : pseudo amplification factor, 

i : frequency increment. 
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2.4. Construction of DNN model for prediction 

2.4.1. Architecture of DNN model 

The DNN model used in this study was determined by comparing the different 

results obtained by changing different variables, layers or parameters in the neural 

network. This chapter describes in detail the comparison of the results of models 

employing different variables. 

 

 

Figure 2-13 shows the adopted DNN architecture in this study. In the fully connected 

neural network, the hidden layers basically consist of a combination of Affine and 

nonlinear activation layers. The log layer is used to process the input data (MHVR) in a 

logarithmic calculation to make the values uniformly distributed. Affine layer is the layer 

that performs the affine transformation used in the matrix product performed in the 

Input
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Dropout

Affine2
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Selu3
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Mean
Absolute
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Figure 2-13. DNN architecture adopted in this study. Affine layers control weights of input data, and 

SELU layers indicate nonlinear activation functions. 
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forward propagation of the neural network. The input neurons are transferred by Affine 

layer represented as the Eq. (2-10). 

 

 𝑦𝑦𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏𝑖𝑖 (2-9) 

 

Here, x and y indicate the neurons in the current and following layer, and the 

subscript i and j mean the number of current neurons and out shape in the following layer, 

respectively. And w and b indicate the weight and constant term, respectively. The Affine 

layer controls the weights of the input training data. The weights and constant term were 

optimized by backpropagation of errors during training process. 

Nonlinear activation layer represents the activation function to increase the weight 

in computing necessary data and to suppress the weights for unnecessary data. Since the 

logarithmic scale was used for data preprocessing as described later, some negative values 

appear in the hidden layer that may be favorable to the results. Therefore, Scaled 

Exponential Linear Unit (SELU) [45] was used as the activation function. The SELU 

activation function is expressed in Eq. (2-10) and enables to output a certain range of 

negative values while suppressing the appearance of very small negative values in the 

hidden layer, as shown in Figure 2-14. 

 

 𝑦𝑦′𝑖𝑖 = �
𝜆𝜆𝑦𝑦𝑖𝑖              ,  𝑦𝑦𝑖𝑖 > 0
𝜆𝜆𝜆𝜆(𝑒𝑒𝑦𝑦𝑗𝑗 − 1)  ,  𝑦𝑦𝑖𝑖 ≤ 0 (2-10) 

 

Here y and y’ are the input data and output result, respectively. We used 1.67 and 1.05 for 

the parameters 𝜆𝜆 and 𝜆𝜆, respectively, as introduced by Klambauer et al. [45]. 
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Dropout [46] was applied in the first hidden layer., which is a learning method that 

suppresses overlearning by randomly removing neurons. Figure 2-15 shows the 

schematic concept of dropout. Dropout refers to temporarily turn off a portion of the 

network nodes during the training round, and in principle the neurons removed are 

randomized. This has been commonly used to suppress the overfitting in deep learning. 

Figure 2-14. Scaled Exponential Linear Unit (SELU) activation function. 

Dropout

Figure 2-15. The schematic concept of Dropout 
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The neurons to be removed are chosen randomly in each training session. This makes 

it possible to train a different model each time. During evaluation, the signals of all 

neurons are transmitted, and the output of each neuron is multiplied by the percentage of 

neurons eliminated during training to obtain the average value of the model. In other 

words, dropout can suppress overlearning by training multiple models in a single pseudo-

network. 

In this model, Mean Absolute Error (MAE) shown by Eq.(2-11) was used as the loss 

function, which is the sum of the absolute values of the deviation between the target 

values, z and predicted values, zp. Here, nd means the total number of training or validation 

samples. 

 

 MAE =
1
𝑛𝑛𝑑𝑑

� |𝑧𝑧𝑙𝑙 − 𝑧𝑧𝑙𝑙
𝑝𝑝|

𝑛𝑛𝑑𝑑

𝑙𝑙=1

 (2-11) 

 

2.4.2. Cross-validation techniques 

In employing the DNN, the dataset was divided into the training set, validation set 

and test set. Training set is the set of data used to learn and fit the model. Validation set is 

the set of data used to evaluate while refining the model and selecting features. Test set 

(also called external test set) is the set of data used to evaluate generalization performance 

once the optimal model has been decided. A separate validation set sometimes does not 

provide a sufficiently clear evaluation especially when the data is limited, therefore a 

popular method is to use k-fold cross-validation [47] to tune the model hyperparameters 

rather than a separate validation set. Since it is generally difficult to know the best values 

of hyperparameters for a given issue, the authors searched optimal hyperparameters for 

this issue by trial and error through the cross-validation. We tuned the hyperparameters 

such as number of layers, neurons in hidden layers, learning rate, and number of epochs. 

In the method, the dataset (training set and validation set) is divided into k parts to test 
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the effect of the model. One of the parts is used as validation set, and the remaining k-1 

parts are used as the training set during the training process, and it repeats k times by 

changing the validation and training sets. As shown in Figure 2-16, the model is tuned by 

k-fold cross-validation to get the optimal model, and then a separate external test set is 

used to evaluate the generalization performance of the optimal model. In this study, we 

split the data of 80 sites into training set, validation set and test set in 8:1:1 scale. Table 

2-2 shows validation sets of the sites for 9-fold cross validation and test set. We manually 

selected eight sites in test set and each validation set to equally contain the sites with low 

and high peak frequencies. Meanwhile four K-net and four KiK-net were selected for use 

as test sets. Nine times trainings and validations were performed by changing the 

combination of the training and validation datasets for the 9-fold cross validation. 

Figure 2-16. General flowchart used for k-fold cross validation on training sets and validation sets, 

and evaluation of generalization performance on test set. 
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Table 2-2. Validation set of 9-fold cross validation and test set. 

Fold 1  Fold 2  Fold 3  Fold 4  Fold 5 

site fM  site fM  site fM  site fM  site fM 

SMN005 0.94   HRS013 1.13   HRS018 1.29   TTR004 1.29   TTR008 1.29  

YMG012 1.84   OKY012 1.92   YMG001 2.00   YMG016 2.00   YMG011 2.05  

OKY011 2.58   YMG014 2.64   HRSH07 2.69   YMG015 2.75   YMG013 2.87  

SMN006 3.19   HRSH06 3.54   TTR003 3.78   TTR005 3.78   HRS012 3.94  

YMG003 5.07   OKY014 5.29   YMGH08 5.29   OKY005 5.52   HRS010 5.64  

HRS009 6.13   YMG006 6.54   HRSH13 6.67   YMG007 6.96   YMGH13 7.11  

OKYH11 9.16   YMGH02 9.16   YMGH09 9.16   OKYH12 9.76   HRSH02 9.97  

OKYH02 12.31   HRS021 13.11   OKYH04 15.20   HRSH08 16.54   HRS017 16.89  
              

Fold 6  Fold 7  Fold 8  Fold 9  Test set 

site fM  site fM  site fM  site fM  site fM 

YMG018 1.34   TTR002 1.46   HRS015 1.62   YMG017 1.80   YMG002 1.37  

HRS019 2.18   SMN002 2.18   HRS014 2.23   YMGH17 2.28   HRSH05 3.33  

YMGH14 2.93   HRS020 2.99   SMN004 3.06   SMN013 3.12   OKYH01 4.38  

OKY013 3.94   HRS011 4.38   SMN015 4.76   OKY006 4.86   HRSH18 4.47  

HRS001 5.88   HRS005 5.88   HRSH16 5.88   YMG008 6.01   OKY008 7.90  

OKY007 8.24   YMGH10 8.42   HRS008 8.60   SMN001 8.78   HRS003 8.97  

SMNH14 10.40   HRSH01 10.85   OKY004 11.08   TTR006 12.05   OKY009 9.76  

HRS016 16.89   HRS002 17.25   YMG005 18.00   SMN011 20.00   OKYH13 18.00  
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2.4.3. Input and output data 

The input and output combinations were determined by trial and error approach. 

When only MHVR(fi) was used as input data, strongly smoothed spectra were obtained. 

As shown in Figure 2-17, the pSAF when using five-values of i±2 steps as the input data 

is significantly better than single-value (i step) especially at high frequencies. Here, the 

subscript i indicates the target frequency number (from 1 to 200). To match the frequency 

number of the site amplifications shown above, the number of frequencies of the MHVRs 

was set to 200 by resampling the frequency interval from 0.3 to 20 Hz.  

 

 

To accurately reproduce the shapes of the amplification factors, different 

combinations of input and output dataset (i±1, i±2, i±3, i±5, i±7, i±9 steps) were analyzed 

in this study.  

The i±2 step means that we used the target frequency fi, the peak frequency of 
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Figure 2-17. Comparison of observed and pseudo SAFs estimated from five-values (i±2 steps) and 

single-value (i step) as the input data at YMG016. 
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MHVR fM, MHVR(fi-2), MHVR(fi-1), MHVR(fi), MHVR(fi+1), and MHVR(fi+2) as the input 

data for the training. Here, the subscript i indicates the target frequency number (from 1 

to 200). To match the frequency number of the site amplifications shown above, the 

number of frequencies of the MHVRs was set to 200 by resampling the frequency interval 

from 0.3 to 20 Hz. We also used the ratios of SAF to MHVR (as AMR), AMR(fi-2), AMR(fi-

1), AMR(fi), AMR(fi+1) and AMR(fi+2) as the output data to be trained. When i±2 is smaller 

than 0 or larger than 201, the MHVR and AMR values at step i were given in the analysis. 

Table 2-3 summarizes the combination of the input and output dataset with some 

examples. In the same way, the i±1, i±3, i±5, i±7, i±9 steps also represent the same input 

and output dataset handling as above. 

 

Table 2-3. Example of input and output dataset for training. 

Input data (x) Output data (y) 

fi fM 
MHVR

(fi-2) 

MHVR

(fi-1) 

MHVR

(fi) 

MHVR

(fi+1) 

MHVR

(fi+2) 

AMR 

(fi-2) 

AMR 

(fi-1) 

AMR 

(fi) 

AMR 

(fi+1) 

AMR 

(fi+2) 

0.300 1.06 2.80 2.80 2.80 2.83 2.86 1.34 1.34 1.34 1.28 1.23 

0.306 1.06 2.80 2.80 2.83 2.86 2.89 1.34 1.34 1.28 1.23 1.17 

0.312 1.06 2.80 2.83 2.86 2.89 2.93 1.34 1.28 1.23 1.17 1.12 

0.319 1.06 2.83 2.86 2.89 2.93 2.96 1.28 1.23 1.17 1.12 1.07 

0.326 1.06 2.86 2.89 2.93 2.96 2.99 1.23 1.17 1.12 1.07 1.02 

0.333 1.06 2.89 2.93 2.96 1.06 0.33 1.17 1.12 1.07 1.02 1.01 

0.340 1.06 2.93 2.96 2.99 1.06 0.34 1.12 1.07 1.02 1.01 1.00 

0.348 1.06 2.96 2.99 3.00 1.06 0.35 1.07 1.02 1.01 1.00 0.98 

 

For the different datasets mentioned above, the same DNN model was used for 
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training. The model used is shown in Figure 2-13. Batch size, which refers to the number 

of training examples utilized in one iteration, was set to 1,600. Number of epochs was set 

to 1,000, and learning rate was set to 0.001 since we confirmed in our preliminary analysis 

that the loss functions of the training and validation samples were not significantly 

reduced for larger than 1,000 epochs. 

The output data of this DNN model is the correction factor from MHVR to 

amplification factor (AMR) for observed MHVR that corresponds to the EMR × VHbR in 

Eq. (2-1). The pSAF can be estimated using AMR and observed MHVR at each frequency 

fi as shown in Eq. (2-12). 

 

 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖) = 𝐴𝐴𝑀𝑀𝐻𝐻(𝑓𝑓𝑖𝑖) × 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖) (2-12) 

 

Equation (2-12) means that the AMR can be derived from the proposing model by 

simply giving observed MHVR, and consequently SAF can be estimated only from the 

MHVR even at sites where seismic velocity structure is unknown and seismic observation 

records are not available. 

For different input and output datasets, outshapes of the layers are set differently in 

the above DNN model due to the different number of input and output layers. Outshapes 

of the layers represents the number of neurons. Table 2-4 shows the hyperparameters and 

outshape of the layers when used the different dataset. As the number of input layers 

increases, the number of hidden layers also increases. The reason for this is that fewer 

layers cannot accurately train a larger number of input data. 
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Table 2-4. Hyperparameters and outshape of the layers when used the different dataset. 

Layer Hyperparameters 
i±1 i±2 i±3 i±5 i±7 i±9 

Outshape Outshape Outshape Outshape Outshape Outshape 

Input  5 7 9 13 17 21 

Log  5 7 9 13 17 21 

Affine1  10 16 16 32 32 48 

Selu1 α=1.67, λ=1.05 10 16 16 32 32 48 

Dropout 0.5 10 16 16 32 32 48 

Affine2  10 16 16 32 32 48 

Selu2 α=1.67, λ=1.05 10 16 16 32 32 48 

Affine3  10 16 16 32 32 48 

Selu3 α=1.67, λ=1.05 10 16 16 32 32 48 

Affine4  3 5 7 11 15 19 

Mean Absolute error  3 5 7 11 15 19 

 

With confirming that no overfitting had occurred, the pseudo site amplification 

factor (pSAF) was calculated using Eq. (2-12). Since cross-validation was used, all 

pseudo site amplification factor are the results of the validation dataset that was not 

involved in the training. 

Several evaluation metrics used to validate the accuracy of the pseudo site 

amplification factors for the above models were described in detail in Section 2.3.2. To 

numerically assess the estimation accuracies of the different models, goodness-of-fit 

metrics were calculated using the observed and pseudo site amplification factor. 

Following the definition of good match, the accuracies of the pseudo site amplification 

factors were compared using two goodness-of-fit metrics with varying thresholds. And r 

was adopted for evaluating the spectral shape. Both d and MAE were calculated for 

evaluating the amplitude. 
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Following the definition of good match, the accuracies of the models were compared 

using two evaluation metrics with varying thresholds. And r was adopted for evaluating 

the spectral shape. Both d and MAE were calculated for evaluating the amplitude. Table 

2-5 lists the percentages of good match sites when used the different datasets under 

different thresholds of the evaluation metrics. The accuracy of the DNN model used the 

i±2 dataset was highest than those of the other datasets especially at the threshold of r > 

0.65 and MAE < 0.20. Therefore, we confirmed that the i±2 dataset used was quite 

successful in the model for estimating the site amplification factors from MHVRs. 

 

Table 2-5. Success rates under different definitions of evaluation metrics. 

dataset r>0.60 
r>0.60& r>0.65& r>0.60& r>0.65& 

d>0.60 d>0.65 MAE<0.25 MAE<0.20 

i±1 0.875 0.875 0.850 0.813 0.650 

i±2 0.875 0.875 0.850 0.838 0.700 

i±3 0.888 0.888 0.825 0.825 0.638 

i±5 0.875 0.875 0.825 0.825 0.650 

i±7 0.863 0.863 0.825 0.813 0.663 

i±9 0.875 0.875 0.825 0.813 0.600 
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2.5. Results 

2.5.1. Result of validation sets 

Through the above analysis, we adopted total amount of the input training samples 

was 12,800 (200 frequencies/site × 8 sites/fold × 8 folds). Batch size, which refers to the 

number of training examples utilized in one iteration, was set to 1,600. Number of epochs 

was set to 1,000, and learning rate was set to 0.001 since we confirmed in our preliminary 

analysis that the loss functions of the training and validation samples were not 

significantly reduced for larger than 1,000 epochs. The numbers of data in the input and 

output layers were set to 7 and 5, respectively, as mentioned above. Since we have divided 

each site data into 200 arrays in terms of frequency, the process needs to be calculated 

200 times (i =1 - 200) in order to obtain the complete pSAF spectra. The number of the 

input and output data, and hyperparameters of the developed DNN architecture are 

summarized in Table 2-6. 

 

Table 2-6. Hyperparameters and outshape of the layers in the DNN model. 

Layer 
Hyper-

parameters 

  Outshape 
(Number of 

neurons) 
Layer 

Hyper-
parameters 

Outshape 
(Number of 

neurons) 

Input    7 Selu2 α=1.67, λ=1.05 16 

Log    7 Affine3  16 

Affine1    16 Selu3 α=1.67, λ=1.05 16 

Selu1 α=1.67, λ=1.05   16 Affine4  5 

Dropout 0.5 

  

16 

Mean 

Absolute 

Error 

 5 

Affine2    16    

 

Figure 2-18 shows the loss functions (MAE) for the training and validation data 
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during the training process. Each line indicates the result for each fold in the cross 

validations. Since the validation set was randomly selected according to fM, and the model 

may reach a local minimum of the error at one or several sites, likewise one or several 

sites may not fit as well. Therefore, the validation error is more dispersed compared to 

the training error. However, both the training error and the validation error were 

converged to a certain value and stabilized, and the average values were 1.03 for the 

training error and 1.10 for the validation error, respectively. We also confirmed that all 

the loss functions for the training and validation data were well converged without 

overfitting. Since the model output was AMR, the final pSAF was calculated based on the 

Eq. (2-12).  
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Figure 2-18. Mean absolute error (MAE) for training (upper) and validation (lower) samples 

obtained from the 9-fold cross validation. Number in the figure indicates the fold 

number in each validation dataset. 
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The pSAF estimated by the DNN model in the validation result for the fold 3 are 

illustrated in Figure 2-19 with the comparison of the observed SAFs by the GIT. Even 

though the SAFs in Figure 2-19 was not used in the training process, the pSAF estimated 

by the DNN model shows good agreement with the observation at most sites, which 

suggests the usability of the DNN model. With the 9-fold cross validation, the estimates 

for all 72 sites were obtained (All the validation results including fold 1 to fold 9 are 

shown in the Section 2.7, Appendix). To assess the accuracies of the estimations, we 

calculated residuals in common logarithmic scale between the observed and estimated 

SAFs at each frequency as shown by Eq. (2-13). 

 

 

 Residual(𝑓𝑓𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) − 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) (2-13) 

 

The residuals were calculated at each site in each fold. Figure 2-20 shows the mean 

Figure 2-19. Comparison of observed SAFs by GIT and pSAFs estimated by the optimal DNN model 

and the double empirical correction (DEC) method based on EMRs and empirical VHbRs 

by Kawase et al. [32] for the test sites. 
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and one standard deviations of the residuals obtained from the validation results of the 9 

folds. Whereas the residuals in the frequencies higher than 10 Hz almost reach 0.4 which 

illustrates a negative bias at high frequencies, the residuals in other frequencies are 

smaller than 0.2. 

 

 

2.5.2. Result of test set 

The above results validate that the predictive ability of the selected optimal model 

can be considered well. However, the model validation by the internal cross validation 

techniques is not enough, as although the validation set is not used in training, it is 

incorporated into the process of tuning and selecting the model in k-fold cross validation 

session. Therefore, a completely training-independent external test set for evaluating the 

generalization performance of the final model is considered necessary [48]. 

The final model was developed using data from 72 sites on training set and validation 

set (i.e. 14,400 input data) which exclude the sites of test set, and hereafter we called it as 

the optimal model. Then the pSAFs for the test set at the eight sites were estimated by 

applying the developed optimal model. As shown in Figure 2-21, the generalization 
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Figure 2-20. Residuals in logarithmic scale between observed and pseudo SAFs. Mean value and 

standard deviation in each frequency are calculated for all validation data at 72 sites on 9-

fold cross validation. 
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performance of the DNN model on a completely unknown external test set was also 

excellent. However, for the SAF with very large peak values, such as HRSH18, the pSAF 

was not fully fitted with the observation. This could be explained by the fact that there 

were less similar site data with large peak values in the training set. Since the number of 

training samples that include large peaks in SAF was not enough, it would be difficult to 

extrapolate such large peak values from the current optimal model, which could be an 

existing drawback of the DNN model. We also calculated logarithmic residuals between 

the observed and pseudo SAFs at each frequency as shown in Figure 2-22. The result for 

the test set seems to be superior to the validation set especially on the low frequency range. 

One of the reasons for smaller residuals on the test set would be that the number of 

training data in the optimal model (14,400 input data at 72 sites) was increased compared 

to that in the previous model developed in the cross-validation process (12,800 input data 

at 64 sites). 

 

 

 

Figure 2-21. Comparison of observed SAFs by GIT and pSAFs estimated by the optimal DNN model 

on training-independent external test set for evaluating generalization performance. 
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2.5.3. Comparison with previous method 

To validate the performance of the DNN model even more, we compared the 

estimated pSAF by the DNN model with those by the double empirical correction (DEC) 

method by cc. By delineating the EMRs and the empirical VHbRs shown in Eq. (2-1) from 

the results in Kawase et al. [32], the DEC method was applied to the MHVRs at the test 

sites to calculate pSAFs. Figure 2-23 shows the comparison of the two pSAFs with the 

observed SAFs, indicating that the DNN model shows better agreement with the observed 

SAFs, especially at the lower frequency than 4.0 Hz. 

In order to discuss the applicability of the DNN model for other districts in Japan, 

we applied the DNN model to the MHVRs observed outside Chugoku district. Since 

Kawase et al. [32] introduced the MHVRs and SAFs at KGW003, EHM011, FKOH01 

and FKOH03, the SAFs were estimated by applying the DNN model to the delineated 

MHVRs. These sites were selected because the peak frequencies of the MHVRs are 

within the coverage of fM in our dataset (1.0 – 20.0 Hz). Figure 2-24 shows the comparison 

of the observed SAFs in Kawase et al. [32] and pSAFs estimated by the DNN model and 

the DEC method. Surprisingly the pSAFs by the DNN model also show better agreement 

with the SAFs than the those by the DEC despite the observed MHVRs and SAFs were 

fully derived in Kawase et al. [32]. 
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Figure 2-22. Residuals in logarithmic scale between observed and pseudo SAFs for test set. 
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We assessed the residuals between SAFs and two pSAFs for the test eight sites in 

Chugoku district and the four sites in non-Chugoku district. As shown in Figure 2-25, the 

average residual of the DNN model is significantly smaller than the DEC when using the 

test sites in Chugoku district. In contrast, when using the four sites from Kawase et al. 

Figure 2-23. Comparison of observed SAFs by GIT and pSAFs estimated by the optimal DNN model 

and the double empirical correction (DEC) method based on EMRs and empirical VHbRs 

by Kawase et al. [32] for the test sites. 

Figure 2-24. Comparison of observed SAFs by GIT and pSAFs estimated by the optimal DNN model 

and the DEC method at four sites (KGW003, EHM011, FKOH01 and FKOH03) located 

in non-Chugoku district introduced in Kawase et al. [32]. 
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[32], the difference between the two average residuals is relatively small. However, the 

residual of the DNN model seems smaller than that of the DEC. 

 

 

In order to comprehensively quantify the estimation accuracies, root mean square 

errors (RSMEs) between the observed SAFs and estimated pSAFs by the DNN model 

and the DEC were calculated for the validation and test datasets in Chugoku district and 

data at four sites in non-Chugoku district shown above based on the equation below. 

 

 𝐻𝐻𝑀𝑀𝑝𝑝𝐸𝐸 = �
1
𝑛𝑛
��(𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)))2
𝑛𝑛

𝑖𝑖=1

� (2-14) 
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Figure 2-25. Comparison of the average residual of SAF and pSAF between the DNN model and the 

DEC method. The upper figure shows the average residuals for the test sites, and the 

lower figure shows the average residuals for the sites in non-Chugoku district. 
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Figure 2-26 shows the distribution of the RMSE obtained at each site for (a) the 

validation sites, (b) the test eight sites and (c) the four sites in non-Chugoku district. In 

our results, the percentage of the number of sites in the validation set with RMSE below 

0.2 was 50 %, the percentage with RMSE below 0.3 was 92 %, and the percentage with 

RMSE below 0.4 was 99 %, there was only one site with the RMSE of 0.42. All the RMSE 

in the test sites and non-Chugoku district sites are smaller than 0.25. We confirmed that 

smaller RMSEs are found in the DNN not only for test sites but also for the sites in non-

Chugoku district. These results suggest that our proposed DNN model could be applicable 

not only for Chugoku district but also for other districts in Japan. 

 

 

We have to pay attention to that the number of available samples in the current DNN 

model is still limited, indicating the limitation of the current DNN model in expanding to 

estimations of nationwide or global site amplification factors. As described before, 

increase of training samples and expansion of variation of samples especially with lower 

peak frequencies (i.e. < 1 Hz) and large amplification factors (i.e. > 10) would be key for 

more accurate and robust estimation of site amplifications in future studies. 
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Figure 2-26. Distribution of the RMSE obtained at each site for (a) the validation sites, (b) the test 

eight sites and (c) the four sites in non-Chugoku district. 
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2.6. Conclusions 

In this study, we developed the deep neural network (DNN)-based method for 

estimating S-wave site amplification factors (SAFs) from microtremor H/V spectral ratios 

(MHVRs). We analyzed the site amplification factor derived by the generalized spectral 

inversion technique (GIT) and observed MHVRs at K-NET and KiK-net sites in Chugoku 

district, Japan. Excluding 25 site data where the observed MHVRs were flat or showed 

very small peaks, we confirmed that the peak frequencies of the MHVRs well agree with 

those of the site amplification factors at the 80 sites. 

The DNN model developed in this study consists of multiple Affine and nonlinear 

activation layers with dropout. After the observation data was divided to training set, 

validation set and test set, the supervised learnings which requires input data and desired 

output data were performed to the training set. The most appropriate input and output data 

were selected for cross-validation. The input and output data for i±2 steps were used to 

accurately reproduce the spectral shape of the observed SAF. In this study, 9-fold cross 

validation technique was applied to validate and select the developed DNN architecture. 

The results of the cross validation showed that the loss functions were well converged in 

the learning process without overfitting not only in the training samples but also in the 

validation samples. Then the pseudo SAF was computed with the trained optimal model 

for eight sites in the test set that was completely independent of the training and validation 

set. The generalization performance of the DNN model on a completely unknown external 

site was also excellent. Finally, we compared the model with the existing method and 

concluded that the DNN model showed better performance in either Chugoku district or 

non-Chugoku district.  

The developed DNN model does not require any hard-to-get data such as seismic 

velocity structures and damping models thus providing a significant cost-benefit. The 

DNN model can be easily developed as more records are collected and further improve 

accuracy compared to the conventional model such as regression-based approach. 

However, the number of the training samples analyzed in this study (80 sites) is still 
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limited, indicating the limitation of the current DNN model in expanding to estimations 

of nationwide or global site amplification factors. We expect that the model should be 

optimized with a larger dataset to get better performance in future studies. 
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2.7. Appendix 

Result of all validation sets including fold 1 to fold 9. (Black line: Site amplification 

factor by generalized spectral inversion technique (GIT), Dash line: Observed 

microtremor H/V spectral ratio (MHVR), Grey line: Pseudo site amplification factor 

estimated from MHVR by the developed DNN model) 

 

Figure S2-27. Result of validation for fold 1. 

Figure S2-28. Result of validation for fold 2. 
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Figure S2-29. Result of validation for fold 3. 

Figure S2-30. Result of validation for fold 4. 
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Figure S2-31. Result of validation for fold 5. 

Figure S2-32. Result of validation for fold 6. 
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Figure S2-33. Result of validation for fold 7. 

Figure S2-34. Result of validation for fold 8. 
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Figure S2-35. Result of validation for fold 9. 
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Chapter 3. Expanding MHVR-to-SAF Prediction to 

Data-Limited Areas Using Transfer Learning 

In the previous chapter, we introduced a simple and cost-effective method for 

estimating site amplification factors (SAFs) using a deep neural network (DNN) model 

and microtremor horizontal-to-vertical spectral ratios (MHVR). Since the previous DNN 

model was based on the observed SAFs and MHVRs within a limited district in Japan, 

the applicability of the previous model to non-source regions with different site conditions 

was limited. In this chapter, we explore the application of a transfer learning (TL) 

technique to adapt an existing (pre-trained) DNN model to new regions and a different 

database. We compiled SAFs obtained through the generalized spectral inversion 

technique (GIT) at seismic observation stations (K-NET and KiK-net) in Japan as the 

ground truth for site effects. MHVRs recorded at these stations across several districts in 

Japan were collected to construct a dataset for developing the TL model. We then 

constructed a TL model by leveraging the neural network layers and their weights from 

the pre-trained model while incorporating additional layers to enhance performance. 

Comparisons between the various models are also discussed to evaluate the 

improvements achieved through the TL approach. 
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3.1. Background 

Seismic ground motions are generally determined by source characteristics, 

propagation path characteristics, and site effects. Site effects, also known as site 

amplification factors (SAFs), significantly influence and modulate the amplitudes of 

seismic ground motions at the surface. This is because the subsurface ground conditions 

at a site can amplify incoming seismic waves. Theoretical and/or empirical approaches 

have been examined for evaluating SAFs. In the theoretical approaches, SAF at a target 

site can be obtained by multiple reflection theory based on subsurface seismic velocity 

structure model and damping factors [49,50]. The obtained theoretical SAF for S-wave is 

generally represented as a one-dimensional transfer function. However, this approach 

requires detailed seismic velocity structure down to a bedrock, and is limited in their 

applicability. Besides, accuracies of the transfer functions depend on the quantity of 

available soil information. Several studies have reported inconsistencies between the 

SAFs derived from theoretical approaches and the observed values at certain sites. These 

discrepancies are likely attributed to uncertainties in the velocity models and the complex 

nature of seismic wave propagation [51–54]. 

As presented in the above sections (see Section 1.2.1, Section 2.2.2), in empirical 

approaches, SAFs have been evaluated from seismic ground motion records by 

generalized spectral inversion technique (GIT). Source characteristics, propagation path 

effects and SAFs can be derived by the GIT from Fourier spectral data of seismic motion 

records at multiple sites [4,5]. The ability of GIT to operate without requiring detailed 

subsurface information at the observation sites has facilitated its application in a wide 

range of countries and regions [7,8,40,55–57]. However, the GIT based on strong seismic 

records does have the drawback that it is only a point-by-point estimation and cannot be 

applied to sites where strong seismic observations have not been observed. 

Recently, another approach based on horizontal-vertical spectral ratio (HVR) of 

observed ground motion has been discussed in estimating SAF [9,20,24,58]. The HVR is 

further distinguished into HVR of earthquake motions (EHVR) and HVR of microtremor 
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data (MHVR). According to the previous studies [11,25,30,31], the HVRs have the 

potential to reliably identify the predominant frequency of seismic ground motion at a 

site and can be used to infer the S-wave velocity structure of the subsurface. However, 

HVR itself tends to underestimate the actual SAF in terms of amplitude [59]. In order to 

develop an additional correction factor, Kawase et al. [32] proposed a double empirical 

correction method in estimating SAF from MHVR. 

On the other hand, machine learning (ML) techniques have been widely applied to 

seismological tasks in recent years; such as ground motion prediction [60,61], rapid 

seismic wave discrimination [62], etc. According to the review for applications of ML 

techniques in the seismic problems introduced by Mousavi and Beroza [63,64], the ML 

techniques, which can handle large amounts of high-dimensional data, can be a powerful 

tool for seismic analysis as the volume of seismic data continues to expand. In the task 

for evaluating SAF, Zhu et al. [65]compared the ML-based model for EHVR-estimated 

SAF with numerical simulations, and indicated that the ML model was superior to the 

conventional approach. In Chapter 2, we proposed a deep neural network model (DNN) 

for directly estimating SAF from MHVR using the spectral ratio between MHVR and 

SAF (amplification-to-microtremor ratio: AMR) as an intermediate medium [66]. These 

HVR-based approaches do not require large-scale subsurface structural profiles or large 

amounts of seismic motion data for inversion. Thus, the difficulty of estimating SAF at a 

target site can be greatly reduced. From an implementation point of view, MHVR is much 

easier and more cost-effective because microtremor data can be collected as part of a field 

survey, whereas EHVR still requires long-term observations and limited to seismically 

active regions. 

The limitation of the previous HVR-based approaches is that the results obtained 

from the methods are limited to the domain of the training data, and the applicability of 

the methods to other domains is not certificated. As Zhu et al. [65] pointed out, the ML-

based model based on a Japanese database did not yield satisfactory results in regions 

outside of Japan. Thus, in short, the task of estimating SAF from HVR still has the 
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following three impediments. 

1) How to transfer the already developed model from the used region to other new 

regions. 

2) How to extend the model to different databases collected. (Such as the difference 

in the GIT method used to obtain SAF). 

3) How to improve the accuracy of the model for different regions with limited SAF 

data. 

Transfer learning, one of the techniques in machine learning, has garnered 

significant attention and discussion due to its adaptability and effectiveness in diverse 

domains [67,68]. TL aims to adapt learned knowledge through domain similarity to new 

domains and tasks using the knowledge learned from source domains. The technique can 

be explained by transferring or fine tuning the parameters of a pre-trained model to a new 

domain to help improving the performance and generalization of the model. It makes the 

model to have better generalization ability and requires less training data [50,69–71]. 

Particularly, the TL is expected to be extremely valuable in some seismological 

applications for which the labeled data are limited. 

MHVR-based approaches would be simple and effective in evaluating SAFs 

particularly for regions with sparse seismic observation stations because MHVRs can be 

readily acquired at any location without earthquake records. Moreover, MHVR-derived 

SAFs could potentially facilitate simplified and more accurate ground motion evaluations 

and predictions. However, as mentioned earlier, the applicability of our previous DNN 

model was limited when applied to new regions. Additionally, reconstructing new models 

for these new regions requires a substantial amount of site data. In this study, in order to 

address these tasks, we delved into the utilization of the TL approach to construct 

estimation models applicable to new regions. We developed a new TL model based on 

the weight parameters trained in the previous DNN model by Chapter 2 (Pan et al. [66]). 

The site data for the previous model originated from the Chugoku district in western Japan, 
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while the new TL model utilized site data from other districts across Japan. A small 

portion of the new dataset was used for training and validation, and most of the remaining 

site data was used as the external test set. We employed k-fold cross validation cross-

validation strategy and residual analysis to evaluate the performance of the trained TL 

model on the test set. Additionally, we conducted further experiments to investigate the 

effects of different elements on the performance of the proposing TL model, including 

the comparison with the DNN models with extended training sets. 
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3.2. Data 

3.2.1. Location of MHVRs  

The sites located in regions completely different from Chapter 2 were used as the 

target in this study. As shown in Figure 3-1, we conducted microtremor observation at 

ground surfaces near K-NET and KiK-net sites, the nationwide seismic observation 

networks in Japan, which are operated by the National Institute for Earth Science and 

Disaster Resilience (NIED). The microtremor data in this study are distributed in the 

following four districts of central and eastern Japan: Chubu, Kanto, Tohoku, and 

Hokkaido (148 sites in total) whereas the sites by Chapter 2 were located only in the 

Chugoku district. 

After collecting the microtremor data, we followed the same processing as Chapter 

2. The Fourier spectra were calculated using a Parzen window smoothing with a 0.3 Hz 

bandwidth. We calculated the MHVR of the site using Eq. (2-5). Following Chapter 2, 

the average value and one standard deviation of the MHVR of the 10 recording segments 

of 20.48 s with less noise were calculated as the MHVR of the site. 

We set the criteria for the observed MHVRs in developing a TL model. The first 

criterion is that the maximum amplitude of MHVR is larger than a factor of two in order 

to identify predominant frequency [42,66]. The second criterion is that the predominant 

frequency of MHVR is found between 0.3 to 10 Hz. The frequency range for this study 

was determined based on the range of SAFs covered, as detailed in the following section. 

We excluded the data at 36 sites because the MHVRs at the sites did not satisfy the criteria. 

Totally, we used a total of 112 sites as target sites in the following analysis. Figure 3-2 

shows the average MHVR with one standard deviation and the MHVRs of 10 segments 

at AOM012 as a typical example. We can clearly identify the predominant frequency of 

around 1 Hz at the site. 
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Figure 3-1. Locations of the seismic observatories for the MHVR and SAF sites in this study 

(circles) and not used sites (diagonal crosses); and locations of the training set sites 

used in the DNN model constructed by Pan et al. (2022) (crosses). The colors 

represent the peak frequencies in Hz. 

Figure 3-2. Average (Black line) and standard deviation (Gray area) of observed MHVRs at 

AOM012. Gray thin lines indicate the MHVRs of 10 segments. 
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3.2.2. SAFs 

In this study, we used the SAFs obtained by the GIT in Nozu et al. [55] because they 

estimated the SAFs at all the K-NET and KiK-net sites in Japan whereas the SAFs in 

Chapter 2 were limited in the Chugoku district. Additionally, Nozu et al. [55] extracted 

the SAFs by analyzing long duration of the seismic motions including not only the S-

wave parts but also the subsequent phases. On the other hand, the SAFs in Chapter 2 

limited the amplifications of S-waves in the seismic motions. We aimed to extend the 

model to predict SAFs at different regions obtained by different GIT. 

The conditions and criteria in the assessment of SAF by GIT in Nozu et al. (2007) 

are described below. The Fourier spectra of the seismic motion observation record can be 

represented as Eq. (3-1) below.  

 

 𝑂𝑂𝑖𝑖𝑖𝑖(𝑓𝑓) = 𝑝𝑝𝑖𝑖(𝑓𝑓)𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓)𝐺𝐺𝑖𝑖(𝑓𝑓) (3-1) 

 

where O represents the observed spectra of seismic motion, S, P, and G represent the 

source characteristics, propagation path characteristics, and site effect, respectively; i and 

j are used to denote seismic events and observation sites. 

Considering the geometric attenuation (1/r) of the spherical diffusion of body waves 

from the epicenter, the propagation path properties can be expressed as Eq. (3-2).  

 

 𝑃𝑃𝑖𝑖𝑖𝑖(𝑓𝑓) =
1
𝐻𝐻𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝜋𝜋𝑓𝑓𝐻𝐻𝑖𝑖𝑖𝑖
𝑄𝑄𝐻𝐻𝑠𝑠

� (3-2) 

 

where R is the source distance, Vs is the S-wave velocity in the propagation path, and Q 

is the attenuation coefficient. A factor of one in SAFs at rock sites was used as given 

conditions in solving the simultaneous equations shown in Eq. (3-1). The time window 

for computing the Fourier spectra of the observed records was selected at 160 s from 
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arrivals of P-waves. The target frequency range was 0.3-10 Hz. The obtained SAFs 

represent site amplifications of seismic waves at the ground surface from the outcropping 

seismic bedrock with the S-wave velocity of approximately 3,000 m/s. 

 

3.2.3. Comparison of two SAFs 

As described above, different time windows for analyzing Fourier spectra were 

applied in the GITs of Chapter 2 and Nozu et al. [55]. The time window of 10.24 s was 

applied in Chapter 2 in order to extract the SAFs of S-waves whereas much longer time 

window of 160 s was applied in Nozu et al. [55] to evaluate the SAF of S-waves and 

subsequent phases of ground motions. Figure 3-3 shows the comparison of two SAFs at 

four representative sites in the Chugoku district. Since the SAFs by Nozu et al. [55] 

contain the amplification of the subsequent phases, the SAFs by Nozu et al. [55] are larger 

than those in Chapter 2. The residuals of the two SAFs were calculated for each site using 

Eq. (3-3). 

 

 𝐻𝐻𝑒𝑒𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙(𝑓𝑓𝑖𝑖) = log (𝑁𝑁𝑒𝑒𝑤𝑤𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) − log (𝑃𝑃𝑃𝑃𝑒𝑒𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) (3-3) 

 

Here, NewSAF refers to the SAFs by Nozu et al. [55], and PreSAF refers to the SAFs 

in Chapter 2. Figure 3-4 shows the average of the residuals and its standard deviation for 

the 80 sites in the Chugoku district. Positive residuals indicate that the SAFs by Nozu et 

al. [55] were larger than those in Chapter 2. Assessing the amplifications of later phases 

could be crucial for evaluating site effects in sedimentary basins, as basin-induced surface 

waves propagate within these basins and have been observed in the latter part of seismic 

records [54,72,73]. The use of the SAFs by Nozu et al. [55] indicates that the TL model 

developing in this study would expand the region for application. Additionally, the 

coverage of the previous DNN model was limited to sites with predominant frequencies 

of microtremors (fM) higher than 1.0 Hz whereas the sites with fM of around 0.3 Hz are 
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included in the study area as shown in Figure 3-1. It means that the proposed TL model 

can expand the coverage of predominant frequencies of microtremors. 

 

 

 

 

Figure 3-3. Comparison between the two SAFs located in the Chugoku region. Black and red lines 

represent the SAFs by Nozu et al. [55] and Chapter 2 (Pan et al. [66]), respectively. 

Figure 3-4. Residuals of the two SAFs (gray lines) at 80 sites in the Chugoku district. Black line and 

gray hatch indicate the average and that with the standard deviation, respectively. 
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3.3. Transfer learning model 

3.3.1. Transfer learning technique 

Transfer learning (TL) is a machine learning technique that involves applying 

knowledge gained from a source dataset to a different but related target dataset. 

Specifically, it refers to the process of leveraging or fine tuning a pre-trained model, 

which has learned representations of features from a large dataset, to a new problem or 

task with a smaller dataset. This approach aims to improve or expand the performance of 

the model on the new dataset by transferring the weights in different layers in the pre-

trained model. It is important to note that the term “source” in transfer learning does not 

refer to the source of an earthquake location in seismology, but rather to the source dataset 

from which knowledge is transferred. 

Based on the consistency between the feature space of the source and target dataset, 

TL can be categorized into homogeneous TL and heterogeneous TL [68]. Homogenous 

TL refers to the situation where the source and target dataset have the same input and 

output label space, but have different data distributions. In homogeneous TL, a common 

method is that the knowledge learned from the source dataset can be reused to the target 

dataset. As shown in Figure 3-5, the model constructed using the source dataset is called 

a pre-trained model. Then the knowledge is extended to a new target dataset, i.e. reuse 

the weights of layers. For the new model, most of these hidden layers are reused; a new 

fully connected layer is added, and only the weights of the newly added layer are updated 

during training. By leveraging the knowledge gained from the source dataset, TL can 

improve or expand the learning performance of the target dataset and reduce the need for 

additional data or computational resources. It is also because the number and the weights 

of layers to be trained in the new model are fewer than in the model of the source dataset. 

In this study, the DNN model proposed by Chapter 2 (Pan et al. [66]) was used as a pre-

trained model that was trained on the source dataset (Chugoku district shown in Figure 

1). The MHVRs and SAFs from other regions (Chubu, Kanto, Tohoku, and Hokkaido) 

were used as the target dataset. A new TL model was constructed by employing the above 
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strategy and training by the target dataset. Then the performance of the TL model was 

compared with the pre-trained model. 

 

 

3.3.2. Construction of TL models for prediction 

The pre-trained DNN model by Chapter 2 was a deep neural network that contains 

input layer, multiple hidden layers, and output layer as shown in Figure 3-6. The hidden 

layers basically consisted of a combination of affine (linear) and nonlinear activation 

layers. The weights of the hidden layer were optimized by backpropagation of errors 

Figure 3-5. Flow of homogeneous TL model adopted in this study. Italics represent the work 

of Chapter 2 (Pan et al. [66]). This method achieves transfer of the models by 

reusing the weights of the neural network layers from the pre-trained model to 

the TL model. 
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during the training process. The activation function used in the hidden layers was Scaled 

Exponential Linear Unit (SELU), which is a type of activation function that allows for 

negative output values [45]. The loss function used in the training process was mean 

absolute error (MAE), which is a metric that measures the average absolute difference 

between the target values and predicted values. 

 

 

Considering the fact that the complementary correction between MHVR and SAF is 

generally frequency dependent. At the peak frequency and higher, MHVR tends to 

Figure 3-6. Comparison of the TL model with the pre-trained DNN model. Affine denotes a linear 

transformation consisting of a matrix multiplication and addition of a bias term in a neural 

network layer; Selu represents an activation function; DropOut serves as a regularization 

technique, involving the random deactivation of neurons during training to mitigate 

overfitting. The mathematical representations for Affine, Selu and Mean absolute error 

(MAE) can be referred in Section 2.4.1. 
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underestimate SAF, and this difference is more pronounced than below the peak 

frequency. Therefore, the input of this pre-trained DNN model was frequency-dependent 

segmented values. In Chapter 2, we used the target frequency fi, the peak frequency of 

MHVR fM, MHVR(fi-2), MHVR(fi-1), MHVR(fi), MHVR(fi+1), and MHVR(fi+2) as the input, 

and the ratios of SAF to MHVR (as AMR), AMR(fi-2), AMR(fi-1), AMR(fi), AMR(fi+1) and 

AMR(fi+2) as the output data to be trained. Here, the subscript i refers to the target 

frequency number. In Chapter 2, we also pointed out that this type of input and output 

better reflected the complement of MHVR and SAF in terms of shape. Finally, the number 

of training datasets required to build the pre-trained DNN model was a total of 14,400 

sets from the Chugoku district as shown in Figure 3-1. These corresponded to the source 

dataset in Figure 3-5. 

In this study, the location of the data for our target dataset is shown in Figure 3-1 for 

the four districts, Chubu, Kanto, Tohoku, and Hokkaido. The target dataset has the same 

feature space as the source dataset, meaning that we used the same input and output 

strategies. This is consistent with the definition of homogeneous TL. Therefore, we 

construct a new TL model using the same strategy as in Figure 3-5. The comparison of 

the TL model with the pre-trained DNN model is shown in Figure 3-6. The hidden layers 

from the DNN model were reused and the hyperparameters of these hidden layers are 

frozen and not updated during the training process. Then we added a fully connected layer 

to the final layer and update the hyperparameters using the target dataset. One reason for 

these procedures is to leverage the additional correction effect of the pre-trained DNN 

model from the previous source dataset. It is expected that this correction would be 

effective to some extent and can be beneficial for constructing the new model. Then, to 

accommodate the difference between the source and target dataset, a new fully connected 

layer is added to the TL model, allowing the model to learn new representations specific 

to the target dataset. 

We used the data from 16 sites as the training set for the TL model. To ensure 

consistency, the same resampling strategy was employed to resample the MHVRs and 
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SAFs to the frequency range of 0.3-10 Hz (168 frequencies/site). Table 3-1 provides a 

detailed summary of the shape and hyperparameter settings for the developed TL model. 

The table includes information about the number of layers, the number of neurons per 

layer, the activation function used for each layer, and whether the weight used during the 

training of the TL model was frozen. Additionally, during the training process for the 

developed model, a learning rate of 0.001 was used along with a batch size of 2,688 and 

a maximum epoch of 1,000. It is critical to note these settings for replicating the TL model. 

Table 3-1. Hyperparameters and outshape of the layers in the TL model. 

Layer 
Hyper-parameters and weight 

setting 
Outshape (Number of neurons) 

Input  7 

Log  7 

Affine1 Weight freezing 16 

Selu1 α=1.67, λ=1.05 16 

Dropout 0.5 16 

Affine2 Weight freezing 16 

Selu2 α=1.67, λ=1.05 16 

Affine3 Weight freezing 16 

Selu3 α=1.67, λ=1.05 16 

Affine4 Weight updating 16 

Selu4 α=1.67, λ=1.05 16 

Affine5 Weight updating 5 

Mean Absolute 

Error 
 5 
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3.3.3. Cross-validation 

To verify the validity of the TL model when training data are limited, we used only 

the data collected at 16 sites as the training data for the target task. In addition, a separate 

validation set sometimes does not provide a clear enough evaluation, especially when 

number of sites is limited. Therefore, a k-fold cross-validation [47] was applied in this 

study. The process of cross-validation is shown in Figure 3-7. Firstly, the total 112 sites 

of the target dataset are divided into 7 folds, with each fold containing the MHVRs and 

SAFs data from 16 sites (a total of 2,688 sets for input and output). The specific sites 

included in each fold are given in Appendix. 

 

 

During the training process, one of the folds was utilized as the training set, while 

another fold was designated as the validation set to monitor the process of the model and 

prevent overfitting. The generalization capability of the TL model was assessed using an 

Figure 3-7. Cross-validation adopted in this study, and corresponding folds of the training, validation 

and external test sets. 
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independent external test dataset that was not involved in the training or validation 

processes. The external test set contained a total of 80 sites all except the training and 

validation sets, which is much larger than the number of sites used for training and 

validating. The ratio of the training set, validation set, and external test set was 1:1:5. This 

process was repeated seven times by changing the training and validation sets. Sites with 

both low and high peak frequencies were equally distributed among each fold to ensure 

that the dataset used for training, validation, and testing was representative of the overall 

target dataset. This approach helped to validate the robustness of the TL model and ensure 

that it could generalize well to new data. 
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3.4. Results 

3.4.1. Result of test set 

The estimated pseudo-SAFs (pSAFs) by the TL model on the external test set are 

presented in Figure 3-8, where CV+No. is used to indicate the results of each cross-

validation. It is important to note that all subsequent analyses are based solely on the 

results of the external test set, which was not involved in the training or validation process. 

Figure 3-8 shows the results of the CV 1. In addition, to demonstrate the differences 

between the TL model and the pre-trained DNN model in Chapter 2, we also compared 

the performance of the two models on the same external test set. 

 

 

The results in Figure 3-8 clearly show that the TL model outperforms the original 

DNN model on the external test set. In particular, the pSAFs by the DNN model tend to 

Figure 3-8. Comparison of SAFs by GIT, MHVRs and pSAFs estimated by the DNN model and TL 

model for test set of CV 1. The red line is the SAF estimated by using GIT, which can be 

considered as the ground truth for SAF. The dotted gray line is the MHVR measurements. 
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underestimate the observed SAF values especially in low frequency range, and the pSAFs 

by the DNN model are smaller than the peak values of the SAFs at the first-mode peak. 

The findings suggest that the influence of regional variations and methodological 

differences in the GIT approach should be carefully considered when employing the DNN 

model for MHVR-based SAF estimation. 

On the other hand, the pSAFs by the TL model exhibit superior fitting performance 

compared to the DNN model at almost all sites, particularly at peaks with low frequencies, 

as shown in FKS001 and MYG013. Furthermore, the TL model only requires data from 

16 sites in the training set, which is more practical than obtaining a larger dataset for 

constructing a new model and enhances the generalization performance of the model to 

target regions with limited data. 

 

3.4.2. Residual analysis 

The external test set contains data from a total of 80 sites. To quantitatively analyze 

the degree of fit of pSAFs for all the sites, we calculated the residuals in lognormal scale 

between the pSAFs and the observed SAFs using Eq. (3-4). 

 

 Residual(𝑓𝑓𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖)) (3-4) 

 

The average of the residuals was calculated for all the 80 sites along with their one 

standard deviation. The 7-fold cross-validation were performed using the completely 

unduplicated training sets. The residual of the external test set in each cross-validation 

are shown in Figure 3-9, including those of both the TL model and the DNN model. 

The average of the residuals for each frequency of the pSAF obtained by the TL 

model were around the zero line, with the standard deviations in the range of 0.2-0.4. All 

the results of the cross-validation showed consistency. In contrast, the averages of 

residuals for each frequency of pSAF by the DNN model were identical to the results 
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exhibited in Figure 3-8. The pSAFs were clearly underestimated in the low frequency 

range (0.3-2.0 Hz), with the average values around 0.2 and a maximum standard deviation 

of 0.6. Furthermore, the residual curves of the TL model showed a similar trend or shape 

to those of the DNN model. This could be attributed to the utilization of the weights from 

the DNN model's layers in the construction of the TL model's hidden layers. These 

weights provided the correction effects for the MHVR-derived SAF, which still had some 

influence on the results of the pSAFs. Then the new fully-connected layer added at the 

end of the TL model built on the additional effect by learning a new representation 

Figure 3-9. Residuals in logarithmic scale between observed SAFs and pSAFs on test sets of all CVs. 
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specific to the target dataset from the training set of 16 sites. This representation was 

intended to provide a correction effect for the previously mentioned regional variability 

and GIT method variability. These results were in line with our expected role for the TL 

model, which aimed to reuse the knowledge learned on the pre-trained model and then 

use the limited data to construct a new representation for the target task. 

The above results demonstrate the effectiveness of the TL model proposed in this 

study to enhance the pre-trained DNN model for non-source data regions and to improve 

the accuracy of pSAFs. Additionally, the cross-validation results suggest that the TL 

model can achieve consistent performance regardless of the selected 16 training sites. 
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3.5. Discussion 

3.5.1. Different number of training sets 

To investigate the effect of the size of the training set on the performance of the TL 

model, several comparative experiments were conducted. 

First, we considered whether the TL model could be successfully trained if the 

number of training set was further reduced. Therefore, the 16 sites in the training set were 

reduced by half to eight sites. The specific strategy adopted here was to divide the 112 

sites equally into 14 folds (14 folds × 8 sites). Then, the same cross-validation strategy 

was used, with one fold used for training, one fold used for validation, and all the 

remaining folds used as the external test set. The pSAFs from all external test sets were 

employed as the primary metric for model evaluation. The details regarding the specific 

sites included in each fold are provided in the supplementary material. 

The pSAFs obtained for the first CV (CV 1) are shown in Figure 3-10. The results 

indicate that the TL model for CV 1 still outperformed the DNN model, even with a 

reduced training set size. However, after completing all cross-validations, the results of 

several CVs did not perform as well as CV 1. The residual results of CV 1, CV 7, CV 8, 

and CV 14 are shown in Figure 3-11. The results of CV 7 and CV 8 suggest that the TL 

model was unable to learn any new corrections. In contrast, for CV 14, the TL model 

overcorrected, resulting in an average residual of -0.2, indicating that the model provided 

pSAFs that were larger than the observed SAF. This suggests that using only eight sites 

as the training set for the TL model is unreliable in practical applications, since it is often 

not possible to perform sufficient cross-validation to determine the most appropriate eight 

sites. Therefore, there is no guarantee that the new representation learned from these eight 

sites is correct. 

 

 

 



Chapter 3. Expanding MHVR-to-SAF Prediction to Data-Limited Areas Using Transfer Learning 

97 

 

 

 

 

Furthermore, we investigated the effect of using more sites as the training set for the 

TL model on its performance. We expanded the number of training sites from 16 to 32. 

The cross-validation strategy adopted was to use two folds from Section 3.3 as the training 

set, one fold as the validation set, and all remaining folds as the external test set. As shown 

Figure 3-10. Comparison of SAFs by GIT, and pSAFs estimated by the DNN model and TL model 

trained by 8 sites on test set of CV 1. 

Figure 3-11. Residuals in logarithmic scale between observed SAFs and pSAFs on test sets. Here the 

TL models were trained by 8 sites. 
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in Figure 3-12, the results of CV1 exhibit better performance than the DNN model. The 

average residuals of all test set sites in Figure 3-13 also show better performance. We 

confirmed that the residual results of all CVs (CV 1-7) were almost consistent. The 

residual results of all CVs are provided in the supplementary material. 

 

 

 

In addition, we conducted a visual analysis on the single site, FKS001. Figure 3-14 

shows the fitting performance of the TL model trained using 8, 16, and 32 sites on the 

pSAFs and SAF of FKS001. The results indicate that the TL model trained using eight 

Figure 3-12. Comparison of SAFs by GIT, and pSAFs estimated by the DNN model and TL model 

trained by 32 sites on test set of CV 1. 

Figure 3-13. Residuals in logarithmic scale between observed SAFs and pSAFs on test sets. Here 

the TL models were trained by 32 sites. We confirmed that the residual results of all 

CVs (CV 1-7) were almost consistent. 
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sites exhibits significant differences in pSAFs for different training set combinations. 

However, when trained using 16 sites, all pSAFs results are consistently maintained, with 

only a slight improvement observed when the number of sites is increased to 32. Hence, 

using 16 sites as the training set for the TL model in this study is reasonable. This provides 

useful insights into selecting the number of sites in practical applications. 

 

 

3.5.2. Comparison with DNN model with extended training set 

In practical applications, in addition to utilizing the TL model, the performance of 

one DNN model can be enhanced by augmenting the existing dataset with new data to 

create a larger training set compared to the source dataset. To evaluate whether the 

enhancement provided by the TL model surpasses that of the source DNN model with an 

expanded training set, we conducted the following comparative experiments. 

In this section, we used the training set from Chugoku district, Chapter 2, comprising 

14,400 sets, along with a fold (2,688 sets) from Figure 3-7 as the new training set for the 

new DNN model (DNN+). The DNN+ model was constructed using the layers of the TL 

model, but with all layer weights unfrozen and updated during training process. The 

Figure 3-14. Comparison of cross-validation results obtained from different TL models (trained by 8, 

16, 32 sites) for a single site according to FKS001. Here are all results when FKS001 is 

included as an external test set. 
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validation and external test sets followed the same strategy as in Figure 3-7. Cross-

validation was also performed using the same strategy, except for a different training set. 

Other settings were also kept consistent with the TL model. 

The fitness and residuals of the pSAFs for the external test set of the DNN+ model 

are presented in Figure 3-15 and Figure 3-16, respectively. The results for all sites are 

nearly identical to those of the DNN model, which are completely different from the TL 

model. Furthermore, after completing all cross-validations, the same conclusion was 

drawn that the DNN+ model failed to achieve the objective of enhancing the performance 

of the DNN model. The fit of the pSAFs to the SAF for all CVs is illustrated by Figure 

3-17. Although the DNN+ model demonstrated stability across all CVs, it was unable to 

learn new representations despite the addition of new data. 

 

 

The reason for this is that the DNN model tends to overfit to the training data and 

may struggle to improve its accuracy on SAF obtained by different methods in different 

regions, even when new training sites are added. In contrast, the TL model has 

demonstrated better performance in this regard. 

 

 

Figure 3-15. Comparison of SAFs by GIT, and pSAFs estimated by the DNN model and DNN+ model 

on test set of CV 1. 
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3.5.3. Prediction of sites outside the target peak frequency 

In training the TL model, we used the sites with peak frequencies of MHVRs (fM) 

within 0.3-10 Hz as the data set considering the frequency range of the SAFs in Nozu et 

al. [55]. However, there were 17 sites with the fM outside the range. On the other hand, 

Figure 3-16. Residuals in logarithmic scale between observed SAFs and pSAFs estimated by the 

DNN model and DNN+ model on test sets. We confirmed that the residual results of 

all CVs (CV 1-7) were almost consistent. 

Figure 3-17. Comparison of cross-validation results obtained from the DNN+ models for a single 

site according to FKS001. Here are all results when FKS001 is included as an 

external test set. 
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the pre-trained DNN model by Chapter 2 used the fM up to 20 Hz. Therefore, this section 

discusses whether the TL model would be valid for the sites where the peak frequencies 

are not in the range of 0.3-10 Hz 

We applied the trained TL model (16 sites) with CV 1 for estimating the pSAFs of 

the sites with the fM outside the range of 0.3-10Hz. Figure 3-18 shows the comparison of 

the observed SAFs and pSAFs estimated from the TL model and the pre-trained DNN 

model. The pSAFs by the TL model shows better agreement with the SAFs at most sites 

than those by the DNN model. However, the pSAF of either the DNN or TL model at 

MYGH12 whose fM is over 20 Hz differs significantly from the SAF. The reason for the 

discrepancy is speculated to be because the training dataset of both the TL and the pre-

trained DNN models also does not contain sites with fM above 20 Hz, which leads to the 

fact that the TL model that reuses some of the weights of the DNN model is not effective 

for such sites either. The averages of residuals with its standard deviation from the SAFs 

and pSAFs at 17 sites are shown in Figure 3-19. We can confirm that the TL model shows 

better accuracies in estimating SAFs than the DNN model even for the sites whose fM are 

outside the target frequency. These findings suggest that the developed TL model has the 

potential to be utilized for evaluating site amplifications at arbitrary sites and may 

contribute to more detailed seismic hazard predictions. 
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Figure 3-18. Comparison of SAFs by GIT, and pSAFs estimated by the DNN model and TL model 

on the sites where the fM are not in the range of 0.3-10 Hz. 

Figure 3-19. Residuals in logarithmic scale between observed SAFs and pSAFs estimated by the DNN 

model and TL model on the sites where the fM are outside the range of 0.3-10 Hz. 
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3.6. Prospect 

This section discusses geophysical applications of the proposed method, particularly 

its prospect for seismic ground motion evaluation and prediction. The TL technique would 

facilitate the model development for estimating SAFs based on MHVRs over a wider 

geographic area, even when site-specific data are limited. The model inputs exclusively 

require microtremor data obtained from sensor-based measurements, obviating the 

necessity for extensive site investigations or long-term seismic observations. This allows 

for efficient derivation SAFs for target sites with minimal data requirements, which is 

expected to lead to the development of a global predictive model for site effects as data 

are collected for a wider area. 

In some countries and cities with well-developed seismic observation networks, 

distributions of seismic intensities can be estimated immediately after significant 

earthquakes, and published as ShakeMaps in order to rapidly identify severities of ground 

shakings and to gauge the extent of affected areas [74]. These maps are typically based 

on recorded ground motions at seismic stations and site amplification factors estimated 

from site proxy data such average S-wave velocity in upper 30 m (VS30). Although the 

ShakeMaps are useful for evaluating seismic intensity distributions, frequency-dependent 

spectral amplitudes have not been rarely evaluated because of the lack of spectral 

information in such site proxies. Microtremor-derived pSAF can be used as a more 

adequate site proxy in the seismic motion evaluations instead of VS30 because the pSAF 

purely represents the spectral amplification of seismic waves at the site. If pSAFs are 

available by the TL model not only at seismic observation sites but also at arbitrary sites 

with different ground conditions, the spectral amplitudes at the arbitrary sites can be 

estimated from the ground motion record at the observation site and the pSAFs at both 

sites, which is probably more accurate than using VS30. 

Microtremor-derived pSAFs can be applied also in ground motion prediction at a 

specific site in earthquake scenarios. One of the critical tasks in the ground motion 

predictions is lack of detailed site condition at a target site. If pSAF is available at the 
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target site, the spectral amplitudes at the ground surface of the site can be estimated by 

multiplying the pSAF with the Fourier spectrum at the seismic bedrock simulated by the 

stochastic approach [75,76]. This method does not require geophysical investigations 

other than microtremor observation, making it a simple and cost-effective way to simulate 

and predict seismic ground motions. 

We need to pay attention to the fact that the pSAFs obtained from this method do 

not include nonlinear site response during strong shakings because the SAFs analyzed in 

this study represent linear site amplifications during weak and moderate motions. 

Nonlinear site amplification can be typically expressed as shift to lower frequency of 

spectral peaks and low-amplitude effect [77]. Since the degree of nonlinear site effect 

strongly depends on seismic intensities on the bedrock, such nonlinear site amplifications 

need to be evaluated by observed or predicted strong shaking data with nonlinear site 

response analysis. However, it is beyond the scope of this study. Empirical or analytical 

approaches for evaluating nonlinear site responses in SAFs would be discussed in future 

studies. 
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3.7. Conclusions 

In this Chapter, we have explored the applicability of TL model in improving the 

performance of the pre-trained DNN model for estimating SAFs in new regions. The 

result showed that the TL model trained using 16 sites (2,688 sets of inputs and outputs) 

exhibits better fitting performance than the original DNN model. Furthermore, the cross-

validation results using 80 sites as the test set demonstrated that the TL model can 

effectively generalize the prediction of SAFs for new sites outside the original dataset.  

In addition, we conducted further experiments to investigate the effects of different 

elements on the performance of the proposed TL model, including the size of the training 

sets and the comparison with the original DNN model using the extended training set. 

The result suggested that 16 sites can be used as the training set, and the SAFs obtained 

from cross-validation were stable. Even though the number of sites was increased to 32, 

only a slight improvement was observed. And the TL model trained with eight sites 

showed significant differences in pSAFs among different training set combinations. We 

also constructed a DNN model with an extended training set and compared its results with 

the TL model. The proposed TL model still outperformed the DNN model with an 

extended training set. The comparison of the residuals also demonstrated the effectiveness 

of the TL model in extending the applicability of the MHVR-estimated SAF to new 

regions, which is informative for practical applications. Finally, we used the trained TL 

model at 17 sites with peak frequencies of MHVR that were not within the peak frequency 

range of the training set. The results show that the TL model can still effectively improve 

the performance of the pre-trained DNN model at such sites. 

In practical scenarios, it is anticipated that the field of MHVR-estimated SAF can be 

extended to countries and regions where the number of seismic observatories is 

inadequate. For regions with limited data or unique geological features, such as some 

developing countries, constructing an appropriate TL model based on limited data can 

improve the accuracy of SAFs estimated with MHVRs. 

However, there are also limitations in this study. Firstly, the proposed TL model may 
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be influenced by the number of regions used. The dataset used in this study consists of 

sites from four different regions. More comprehensive research is needed to further 

investigate the impact of data between different regions on the performance of the TL 

model. In particular, it is worth exploring whether better fitting can be achieved by 

training the TL model using data from only one region. Secondly, we only considered the 

application of the TL model to improve the performance of a single DNN model. In 

addition to this DNN model, future research can explore the application of TL model to 

improve the performance of other machine learning models or techniques in the 

estimation of SAF by MHVR. 

In summary, this study demonstrates the potential of TL model in improving the 

performance of the MHVR-estimated SAFs to new regions. Our results provide insight 

into the selection of training sites for the TL model, which has important implications for 

the practical application of the MHVR-estimated SAFs. Future research would include 

further investigation of the application of alternative machine learning models and 

methods as well as the inclusion of nonlinear site effects in the SAFs estimated by 

MHVRs. 

 

3.8. Appendix 

This part provides the selection of the sites for each fold during cross-validation 

(Table S). It also includes the residual results for all cross-validations when using eight 

and 32 sites as the training set (Figure S). We also illustrate the comparison of observed 

SAFs, MHVRs, and pSAFs by the DNN and TL models. These are beneficial to help 

reproduce the work of the TL model. 
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Table S3-2. Sites included in each fold with their peak frequencies of MHVR (fM) when using 16 sites 

as the training set. Each fold included sites with high and low peak frequencies equally. 

  

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 

site fM site fM site fM site fM site fM site fM site fM 

SIT003 0.826 ISK007 0.826 ISK004 2.751 NIG022 2.091 NIG017 3.775 SIT010 1.287 SIT013 3.938 

SIT003 0.826 ISKH03 4.285 IWT010 0.439 IBRH07 0.683 FKSH16 0.728  SITH08 7.576 ISKH05 6.817 

IWTH20 0.487 SITH06 6.535 MYG017 1.11 AOM012 1.11 MYG006 1.02 TCG001 0.542 MYG016 0.589 

IBR006 1.842 IBR013 0.386 TCG013 1.461 IBR003 3.326 FKSH14 1.342 MYG010 0.88 IWT014 0.978 

HKD092 2.637 FKS011 2.091 IBR001 3.544 FKS008 3.619 FKS013 2.81 IBR005 2.637 FKS018 1.729 

FKSH12 4.196 IWT013 2.993 MYG004 4.376 TCG014 5.52 IWTH02 6.265 IWT007 3.619 KSRH09 2.181 

FKS031 4.762 IWT018 4.285 TCGH15 6.817 TCGH12 6.817 HKD100 6.535 FKSH09 4.47 TCGH13 4.376 

IBR002 7.263 IBR017 8.419 MYGH10 7.737 FKSH10 7.576 MYG008 8.419 FKS009 6.817 IWTH15 7.418 

IBRH15 8.969 SITH11 4.196 ISK005 1.234 NIG018 0.589 SZO016 0.498 SIT008 1.882 SZOH33 6.817 

SZO018 1.208 ISK006 6.535 SIT009 6.675 HKD091 1.183 SIT011 1.064 HKD096 0.628 MYGH09 0.628 

SIT002 1.524 FKS005 0.683 SIT014 8.419 FKS012 1.524 IBR012 1.342 FKS003 1.26 MYG013 0.775 

NIG020 8.071 TKCH07 1.208 TCG006 0.439 HKD086 2.424 FKS001 3.057 FKS017 2.228 FKSH11 1.589 

MYGH08 0.683 IWT020 1.623 MYG007 1.658 FKS019 3.775 TCG009 4.196 TCG005 3.856 IBRH11 2.582 

FKS015 3.257 IBRH13 2.694 FKSH19 3.257 FKS006 4.565 TCGH11 4.285 TCGH10 6.134 FKS002 3.775 

FKSH17 3.938 MYG014 5.292 FKSH18 4.285 FKS010 7.418 IBRH12 7.263 FKS016 6.675 IBRH18 5.292 

IBR007 5.073 IWTH27 7.576 TCGH16 4.762 IWT009 9.356 IBR018 7.737 MYG003 9.356 IBRH16 7.737 
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Table S3-3. Sites included in each fold with their fM when using eight sites as the training set. Each 

fold included sites with high and low peak frequencies equally. 

Fold e1 Fold e2 Fold e3 Fold e4 Fold e5 

site fM site fM site fM site fM site fM 

SIT003 0.826 ISK007 0.826 ISK004 2.751 NIG022 2.091 SIT013 3.938 

IWTH20 0.487 ISKH03 4.285 IWT010 0.439 IBRH07 0.683 ISKH05 6.817 

IBR006 1.842 SITH06 6.535 MYG017 1.11 AOM012 1.11 MYG016 0.589 

HKD092 2.637 IBR013 0.386 TCG013 1.461 IBR003 3.326 IWT014 0.978 

FKSH12 4.196 FKS011 2.091 IBR001 3.544 FKS008 3.619 FKS018 1.729 

FKS031 4.762 IWT013 2.993 MYG004 4.376 TCG014 5.52 KSRH09 2.181 

IBR002 7.263 IWT018 4.285 TCGH15 6.817 TCGH12 6.817 TCGH13 4.376 

IBRH15 8.969 IBR017 8.419 MYGH10 7.737 FKSH10 7.576 IWTH15 7.418 
          

Fold e6 Fold e7 Fold e8 Fold e9 Fold e10 

site fM site fM site fM site fM site fM 

SZO018 1.208 NIG017 3.775 SIT010 1.287 SITH11 4.196 ISK005 1.234 

SIT002 1.524 FKSH16 0.728 SITH08 7.576 ISK006 6.535 SIT009 6.675 

NIG020 8.071 MYG006 1.02 TCG001 0.542 FKS005 0.683 SIT014 8.419 

MYGH08 0.683 FKSH14 1.342 MYG010 0.88 TKCH07 1.208 TCG006 0.439 

FKS015 3.257 FKS013 2.81 IBR005 2.637 IWT020 1.623 MYG007 1.658 

FKSH17 3.938 IWTH02 6.265 IWT007 3.619 IBRH13 2.694 FKSH19 3.257 

IBR007 5.073 HKD100 6.535 FKSH09 4.47 MYG014 5.292 FKSH18 4.285 

IBRH17 7.418 MYG008 8.419 FKS009 6.817 IWTH27 7.576 TCGH16 4.762 
          

Fold e11 Fold e12 Fold e13 Fold e14  

site fM site fM site fM site fM   

SZOH33 6.817 SZO016 0.498 NIG018 0.589 SIT008 1.882   

MYGH09 0.628 SIT011 1.064 HKD091 1.183 HKD096 0.628   

MYG013 0.775 IBR012 1.342 FKS012 1.524 FKS003 1.26   

FKSH11 1.589 FKS001 3.057 HKD086 2.424 FKS017 2.228   

IBRH11 2.582 TCG009 4.196 FKS019 3.775 TCG005 3.856   

FKS002 3.775 TCGH11 4.285 FKS006 4.565 TCGH10 6.134   

IBRH18 5.292 IBRH12 7.263 FKS010 7.418 FKS016 6.675   

IBRH16 7.737 IBR018 7.737 IWT009 9.356 MYG003 9.356   
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Table S3-4. Cross-validation and corresponding folds of the training, validation and external test sets 

when using eight sites as the training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Cross Validation (CV) Training set Validation set External test set 

CV 1 Fold e1 Fold e14 All other folds 

CV 2 Fold e2 Fold e13 All other folds 

CV 3 Fold e3 Fold e12 All other folds 

CV 4 Fold e4 Fold e11 All other folds 

CV 5 Fold e5 Fold e10 All other folds 

CV 6 Fold e6 Fold e9 All other folds 

CV 7 Fold e7 Fold e8 All other folds 

CV 8 Fold e8 Fold e7 All other folds 

CV 9 Fold e9 Fold e6 All other folds 

CV 10 Fold e10 Fold e5 All other folds 

CV 11 Fold e11 Fold e4 All other folds 

CV 12 Fold e12 Fold e3 All other folds 

CV 13 Fold e13 Fold e2 All other folds 

CV 14 Fold e14 Fold e1 All other folds 
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Figure S3-20. Comparison of the residuals of the corresponding external test set for cross-validation 

with the original DNN model. Black represents the TL model using eight sites in this study and red 

represents the original DNN model. 
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Table S3-5. Cross-validation and corresponding folds of the training, validation and external test sets 

when using 32 sites as the training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Cross Validation (CV) Training set Validation set External test set 

CV 1 Fold 7 + Fold 1 Fold 2 All other folds 

CV 2 Fold 1 + Fold 2 Fold 3 All other folds 

CV 3 Fold 2 + Fold 3 Fold 4 All other folds 

CV 4 Fold 3 + Fold 4 Fold 5 All other folds 

CV 5 Fold 4 + Fold 5 Fold 6 All other folds 

CV 6 Fold 5 + Fold 6 Fold 7 All other folds 

CV 7 Fold 6 + Fold 7 Fold 1 All other folds 
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Figure S3-21. Comparison of the residuals of the corresponding external test set for cross-validation 

with the original DNN model. Black represents the TL model using 32 sites in this study and red 

represents the original DNN model (Pan et al., 2022). 
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Figure S3-22. Comparison of SAFs by GIT, MHVRs, and pSAFs estimated by the DNN model and 

TL model for all test sites (80 sites) of CV 1. 
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Figure S3-23. Comparison of SAFs by GIT, MHVRs, and pSAFs estimated by the DNN model and 

TL model for all test sites (80sites) of CV 1. 
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Figure S3-24. Comparison of SAFs by GIT, MHVRs, and pSAFs estimated by the DNN model and 

TL model for all test sites (80 sites) of CV 1. 
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Figure S3-25. Comparison of SAFs by GIT, MHVRs, and pSAFs estimated by the DNN model and 

TL model for all test sites (80 sites) of CV 1.    
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Chapter 4. Prediction of Earthquake HVR

（EHVR） from MHVR using DNN model 

In previous chapters, we detailed how to use deep neural networks and microtremor 

horizontal-to-vertical spectral ratio (MHVR) to estimate site amplification factors (SAF), 

as well as how to expand the developed model. In addition to those originating from 

microtremors, there is another type of horizontal-to-vertical spectral ratio (EHVR) 

derived from earthquake motion. It is generally considered that EHVR better reflects the 

true site effects during earthquakes, making it a more reliable indicator for simulating 

specific site seismic responses and improving existing ground motion prediction models. 

In recent years, EHVR has been widely used in fields such as site classification, site 

effects, and the acquisition of underground structures. However, at locations without 

seismic activity, it is obviously impossible to obtain EHVR, which significantly limits its 

broader application. In this chapter, we will delve into the development and validation of 

a DNN model designed for this purpose: using MHVR alone to estimate EHVR, to 

facilitate the use of MHVR to obtain pseudo-EHVR at locations where seismic records 

are unavailable, thereby enabling further applications such as site classification, site effect 

assessment, and earthquake intensity prediction. 
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4.1. Background 

The previous chapters primarily discussed the calculation of site effects using 

Microtremor Horizontal-to-Vertical Spectral Ratios (MHVR). Apart from originating 

from microtremors, another type of HVR is derived from earthquake motion, namely the 

Earthquake Horizontal-to-Vertical Spectral Ratio (EHVR) [27,78–80]. Both possess 

distinct characteristics. Microtremor measurements are non-invasive and can 

continuously collect data at low cost, thus offering advantages. In the previous chapters, 

MHVR has been used to estimate site effects[66,81], providing a passive method to infer 

the dynamic behavior of the ground during earthquakes. On the other hand, EHVR is 

measured directly during earthquakes, reflecting the actual response of the ground to 

seismic forces. There is also variability between MHVR and EHVR due to differences in 

energy and frequency content between ambient and earthquake vibrations. 

Fundamentally, MHVR is derived from ambient vibrations, typically of lower energy, 

and can be influenced by daily environmental factors such as traffic or wind. These 

measurements provide information such as the peak frequency for specific site 

characteristics. In contrast, EHVR captures the response of the soil during actual seismic 

events, involving significantly higher energy levels and typically broader frequencies. 

Ground motion during earthquakes entails complex wave propagation phenomena. 

EHVR is generally considered superior to MHVR in reflecting the true site effects 

during earthquakes. This advantage stems from its direct measurement during seismic 

events, capturing the actual dynamic properties and responses of soil layers under real 

earthquake stress conditions. Thus, EHVR data more closely represent true site effects, 

making EHVR a more reliable indicator for modeling site-specific seismic responses and 

for improving existing ground motion prediction models. In recent years, EHVR has been 

widely used in the fields of site classification, site effects, and obtaining underground 

structures. However, EHVR cannot be obtained at sites without seismic activity, which 

significantly limits its wider application. 

The application of deep learning in seismology offers a new pathway to address these 
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challenges. DNN models can learn complex non-linear relationships from large datasets, 

enabling the inference of EHVR from MHVR with greater accuracy. This approach 

allows for the integration of various types of data, including those from different 

geographic regions and geological settings, thereby enhancing the model's robustness and 

generalizability. 

In this chapter, we delve into the development and validation of a DNN model 

designed for the purpose of estimating EHVR solely from MHVR, to facilitate the use of 

MHVR for obtaining pseudo-EHVR at locations where seismic records are unavailable. 

This enables further applications such as site classification, site effect assessment, and 

earthquake intensity prediction. The model is trained on a comprehensive dataset that 

combines MHVR and EHVR measurements from multiple sites, encompassing a wide 

range of soil types and seismic activity levels. The goal is to develop a reliable predictive 

model that will contribute to more accurate seismic risk assessment and ground motion 

prediction using EHVR in future studies. 
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4.2. Data 

4.2.1. Earthquake HVR  

The EHVR data were from an open source database developed by Zhu et al. [82], 

which includes station information and EHVRs from a total of 1,742 sites from K-NET 

and KiK-net in Japan. 

The EHVR curves in the discussed database are derived from earthquake recordings. 

Here’s a detailed summary of how these EHVR curves are obtained: 

(1). Data Collection: The database gathers seismograms recorded by the K-NET and 

KiK-net stations in Japan from a range of earthquake events. A total of 696,242 

seismograms (three components each) recorded between 1996 and 2019 are 

initially considered. 

(2). Data Filtering: Recordings with peak ground acceleration (PGA) less than 0.001 g 

and greater than 0.1 g are excluded to ensure that the remaining data are not 

significantly affected by soil nonlinearity. 

(3). Fourier Amplitude Spectrum (FAS): The Fourier amplitude spectrum of each 

component is computed using the entire waveform. This captures the influences of 

P-waves, S-waves, and surface waves. 

(4). Butterworth Filtering and Smoothing: Each FAS is then filtered using a 

Butterworth filter at cutoff frequencies of 0.1 and 30 Hz, which corresponds to the 

sensor high-cut frequency. The filtered spectra are smoothed using the Konno-

Ohmachi smoothing function with a coefficient of 20. 

(5). Calculation of EHVR: For each recording, the EHVR is calculated as the geometric 

mean of the smoothed FAS of the two horizontal components divided by the 

smoothed FAS of the vertical component. This process is repeated for all valid 

recordings at a site. 

(6). Averaging EHVR: The final EHVR curve for a site is obtained by calculating the 

geometric mean of the EHVRs from all eligible seismograms recorded at that site. 

(7). Peak Identification and Resonant Frequency Determination: The EHVR curve is 
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analyzed to identify significant peaks which represent potential site resonant 

frequencies. This involves determining the amplitude, frequency, width, and 

prominence of each peak. Peaks are selected based on a set of criteria including 

significance, prominence, and sharpness. 

(8). Automated Peak-Picking Scheme: An automated peak-picking scheme is 

employed to identify significant peaks from the EHVR curves. This method 

considers several statistical properties of the peaks and employs a threshold-based 

approach to ensure that only significant peaks are selected. 

 

4.2.2. Comparison of EHVR and MHVR 

We collected microtremor records from 248 sites in Japan and calculated MHVR. 

After resampling the data, we compared MHVR and EHVR, as shown in Figure 4-1. The 

primary peaks of MHVR and EHVR align closely, suggesting that MHVR can effectively 

capture the fundamental site frequency observed during earthquakes. However, the 

overall shape of the spectra may differ, highlighting the complex interaction of seismic 

waves with local geology. These difference may be due to the different nature of seismic 

energy involved in microtremors versus earthquake motions, or variations in local site 

conditions affecting the seismic wave propagation [15,27]. 

The comparison generally supports the reliability of MHVR in estimating site 

resonant frequencies, a crucial parameter in seismic hazard assessment and structural 

design. However, the differences in peak amplitudes and the presence of unique peaks in 

EHVR not mirrored in MHVR underscore the importance of using EHVR when available 

for precise seismic analysis. 

In Figure 4-2, the statistical assessment of the relationship between MHVR and 

EHVR at the same site is quantitatively analyzed using various goodness-of-fit (GOF) 

metrics. This comparative analysis aims to elucidate the degree of consistency between 

MHVR and EHVR. The correlation coefficients predominantly range between 0.25 and 

0.75, highlighting a moderate to strong positive linear relationship between MHVR and 
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EHVR measurements. The mean absolute error (MAE) values, mainly confined between 

0.1 and 0.3, represent the average magnitude of absolute errors between MHVR and 

EHVR. The relatively low MAE values suggest minor deviations between MHVR and 

EHVR, underscoring their comparative reliability. The mean squared error (MSE) and 

root mean squared error (RMSE) values, observed mostly between 0.1 and 0.3, measure 

the average of the squares of the errors and the square root of these squares, respectively. 

Similar to MAE, these low values indicate small squared differences, which point to the 

accuracy of MHVR in mirroring EHVR. A high index of agreement (d) suggests that 

MHVR not only correlates with EHVR but also agrees closely in terms of the magnitude. 

 

Figure 4-1. Comparison of EHVR and MHVR across multiple sites. 
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However, considering the potential errors that may arise during the collection of 

microtremor data, we have adopted the following two data selection strategies: 

[1]. Sites where the amplitudes of EHVR and MHVR are less than 2 have been 

excluded; refer to Chapter 2. 

[2]. Sites with peak frequencies below 0.2 Hz have been excluded. 

After implementing these strategies, we excluded data from a total of 18 sites. All 

Figure 4-2. Distribution of goodness-of-fit (GOF) metrics between EHVR and MHVR at the same 

site. 
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18 sites are listed in Figure 4-3. 

 

                               

Figure 4-3. Sites excluded from subsequent analyses. 
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4.3. Construction of DNN model for prediction 

After excluding the above 18 sites, we retained a total of 230 sites as a database for 

subsequent analysis. In this chapter, we still use the cross-validation strategy to split all 

data. In order to make each fold of data more balanced, we divided the data according to 

the peak frequency of MHVR (fM). As shown in Figure 4-4, all data are divided equally 

into Fold1-5 and an independent test set. 

 

 

Subsequently, the construction of the model first considers the same model as in 

Chapter 2, as shown in Figure 4-5. Using the same input and output strategy as in Chapter 

2, the final pseudo-EHVR (pEHVR) is then obtained using Eq. (4-1).  

 

 𝑝𝑝𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑙𝑙𝑅𝑅𝑜𝑜𝑝𝑝𝑅𝑅𝑜𝑜 (4-1) 

 

Figure 4-4. Distribution of cross validation folds based on MHVR peak frequencies. 
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The model is validated using the training-validation set of CV1. After confirming 

that the model is not overfitting, all sites in the CV1 validation set are calculated, and the 

residuals are calculated using Eq. (4-2).  

 

 𝐻𝐻𝑒𝑒𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙(𝑓𝑓𝑅𝑅) = log�𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓𝑅𝑅)� − log (𝑝𝑝𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓𝑅𝑅)) (4-2) 

 

The average and standard deviation of residuals for all sites in the CV1 validation 

set are shown in Figure 4-6. The red portion in the graph represents the average residual 

between the true values of MHVR and EHVR, while the gray portion represents the 

average residual between the EHVR and the pEHVR derived from the above model. In 

the low-frequency range, the model’s estimated accuracy is higher, with the average 

residual tending towards zero, and the standard deviation also decreasing. However, in 

the high-frequency range, the improvement effect of the model is not ideal, almost 
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Figure 4-5. Architecture of the DNN model for pEHVR from MHVR. This is a preliminary model 

design and was not the final model adopted for the study. 
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approaching the average residual between the two true values. Similar results were 

obtained for all CV validations, indicating that the model is not very adaptable to this 

topic. 

 

 

To address this issue, several alternative model constructions were attempted and 

compared. Ultimately, a neural network incorporating Batch Normalization was selected 

as the most effective solution. 

Batch Normalization is a technique designed to improve the training of deep neural 

networks by standardizing the inputs to a layer for each mini batch. This addresses the 

problem of internal covariate shift where the distribution of each layer’s inputs changes 

during training, as the parameters of the previous layers change [83,84]. This can make 

training slow and requires careful parameter initialization and a smaller learning rate. 

Batch Normalization helps to mitigate these issues by making the network training more 

stable and faster. 

The architecture of this improved DNN model is shown in Figure 4-7:  

Input Layer: The model begins with an input layer that receives the MHVR data, 

Figure 4-6. Comparison of average residuals and standard deviation between predicted and true 

HVR. Red regions depict the residuals between MHVR and EHVR values, while gray 

regions indicate residuals between the predicted pseudo-EHVR (pEHVR) and true 

EHVR. This figure corresponds to the model output of Figure 4-5. 
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with a feature size of 7, refers to Section 2.4.3 and Table 2-3. 

Affine Layers: These fully connected layers linearly transform the input features, 

with neuron counts decreasing progressively (64, 32, 16). 

Batch Normalization Layers: Following each affine layer, batch normalization layers 

normalize the inputs, stabilizing the learning process. 

SELU Activation Functions: The Scaled Exponential Linear Unit (SELU) 

activations are used to maintain the self-normalizing property of the network. 

Dropout Layer: A dropout layer with a rate of 0.5 is included to prevent overfitting 

Input

Affine 1

Batch
Normalization 1

Selu 1

Affine 2

Batch
Normalization 2

Selu 2

Affine 3

Batch
Normalization 3

Selu 3

Affine 4

Absolute Error

Dropout

Figure 4-7. Architecture of the improved DNN model for predicting pEHVR from MHVR. The 

model incorporates Affine transformations, Batch Normalization, SELU activations, 

and a Dropout layer to enhance prediction accuracy and stability. This architecture 

was selected as the final model. 
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by randomly setting a fraction of input units to zero during training. 

Output Layer: The final output layer computes the absolute error between the 

predicted pseudo-EHVR and the true EHVR values. 

The number of neurons in each layer is shown in Table 4-1. The other important 

parameters are set as follows: Max epoch is 1000, learning rate is 0.001, and Batch size 

is set to full batch size. 

 

Table 4-1. Number of neurons in the DNN model 

Layer Number of neurons 
Input 7 

Affine 1 + BN 1+ Selu 1 64 
Affine 2 + BN 2+ Selu 2 32 
Affine 3 + BN 3+ Selu 3 16 

Affine 4  5 
 

To evaluate the performance of the improved DNN model incorporating Batch 

Normalization, we conducted a residual analysis comparing the predicted pEHVR with 

the true EHVR values. Additionally, we compared the residuals between the true MHVR 

and EHVR values. The average and standard deviation of residuals for all sites in the CV1 

Figure 4-8. Comparison of average residuals and standard deviation between pEHVR and EHVR, 

MHVR and EHVR. This figure corresponds to the model output of Figure 4-7. 
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validation set are shown in Figure 4-8.  

The black line shows that the model’s residuals tend towards zero, indicating high 

prediction accuracy. The standard deviation is also low, indicating consistent performance. 

This also solves the problem of inaccuracy in the high frequency range shown in Figure 

4-9.  The results of all cross-validation sets, and the test set will be discussed in the next 

section. 
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4.4. Cross-validation and results 

4.4.1. Prediction of EHVR for cross-validation sets 

The DNN model in Figure 4-7 was adopted as the final model for predicting pEHVR 

using MHVR. Figure 4-9 presents the residual analysis of the final DNN model for 

predicting pEHVR from MHVR across all cross-validation (CV) folds. The analysis 

compares the residuals between the predicted pEHVR and the true EHVR values, as well 

as the residuals between the true MHVR and EHVR values for each CV fold. 

 

 

Figure 4-9. Residual analysis across all cross-validation folds 
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In the low-frequency range, the black line shows that the residuals tend towards zero, 

indicating high prediction accuracy. The standard deviation also shows a decreasing trend, 

indicating consistent performance across different CV folds. 

Similarly, in the high-frequency range, the average residuals also tend towards zero, 

and the standard deviation decreases, suggesting good model performance.  

 

 

Figure 4-10. Comparison of MHVR, EHVR, and predicted pEHVR across multiple sites on 

CV 1. 
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Figure 4-10 presents a series of sites comparing the MHVR, EHVR, and the 

predicted pEHVR generated by the DNN model across multiple sites. Each subplot 

represents a different site, providing a visual comparison of the three spectra. 

The alignment of the pEHVR (dashed line) with the EHVR (solid black line) 

indicates the accuracy of the model in predicting the spectral ratios at each site. In many 

sites, the pEHVR closely follows the EHVR, especially in the low-frequency range, 

indicating the model's high prediction accuracy in this range. Some discrepancies are 

observed in the high-frequency range, where the pEHVR may deviate from the EHVR, 

highlighting areas where the model's performance could be improved. 

In addition, the Goodness-of-Fit (GOF) of each site was also calculated. The 

validation sets of all CVs were summarized according to the average values of each metric. 

Table 4-2 summarizes the GOF metrics for the cross-validation (CV) sets, comparing the 

performance of Microtremor Horizontal-to-Vertical Spectral Ratios (MHVR) and the 

predicted pseudo-EHVR (pEHVR) against the true Earthquake Horizontal-to-Vertical 

Spectral Ratios (EHVR). The metrics include Correlation (R), Determination Coefficient 

(R², using Eq. (4-3)), Root Mean Squared Error (RMSE), and Index of Agreement (d). 

The delta values indicate the improvements achieved by using the predicted pEHVR over 

MHVR. 

 

 

Here n represents the number of periodic terms, which is equal to 46. Upper bar 

indicates a mean value of observed values. Higher R2 values indicate a stronger alignment 

between the predicted and observed spectral amplitude, indicating a better match in terms 

of spectral shape. 

The summarized GOF metrics across all CV sets show that the proposed DNN model 

 𝐻𝐻2 = 1 −
∑ (𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖 − 𝑝𝑝𝑃𝑃𝑒𝑒𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖 − 𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (4-3) 
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significantly enhances the prediction of EHVR from MHVR. The model consistently 

demonstrates higher correlation, higher determination coefficients, lower RMSE, and 

higher Index of Agreement, indicating improved accuracy and reliability in the 

predictions. These improvements validate the model’s robustness and effectiveness in 

predicting EHVR using MHVR data. 

 

Table 4-2. Summary of Goodness-of-Fit (GOF) metrics for cross-validation sets comparing MHVR, 

pEHVR, and EHVR. The values present the GOF metrics averaged across all validation 

sites within each CV set. 

  Correlation 

R 

Determination 

R2 
RMSE 

Index of 

Agreement 

d 

CV 1 

MHVR vs EHVR 0.695  0.535  0.197  0.750  

pEHVR vs EHVR 0.854  0.750  0.124  0.880  

Delta 0.159  0.215  -0.073  0.131  
      

CV 2 

MHVR vs EHVR 0.619  0.433  0.217  0.689  

pEHVR vs EHVR 0.823  0.691  0.125  0.869  

Delta 0.204  0.258  -0.092  0.180  
      

CV 3 

MHVR vs EHVR 0.657  0.483  0.208  0.730  

pEHVR vs EHVR 0.814  0.698  0.132  0.851  

Delta 0.157  0.215  -0.076  0.120  
      

CV 4 

MHVR vs EHVR 0.579  0.418  0.215  0.669  

pEHVR vs EHVR 0.806  0.667  0.128  0.852  

Delta 0.226  0.249  -0.086  0.183  
      

CV 5 

MHVR vs EHVR 0.630  0.448  0.232  0.692  

pEHVR vs EHVR 0.815  0.695  0.137  0.851  

Delta 0.185  0.248  -0.096  0.159  



Chapter 4. Prediction of Earthquake HVR（EHVR） from MHVR using DNN model 

136 

 

 

4.4.2. Prediction of EHVR for Test sets 

Given these significant improvements in CV 4, the model trained on CV 4 data was 

selected for further testing. This trained model was applied to the test set, which consists 

of all sites that were not included in the training or validation phases. The performance 

on the test set provides a robust assessment of the model’s generalizability and its ability 

to predict EHVR from MHVR across different, unseen sites. 

As shown in Figure 4-11, the residual analysis on the test set demonstrates that the 

average residuals tend towards zero across both low and high-frequency ranges. The 

standard deviation also shows a decreasing trend, indicating that the model generalizes 

well to unseen data and does not exhibit overfitting. Combined with Table 4-3, this robust 

performance confirms the model’s effectiveness in predicting EHVR from MHVR. A 

comparison of pEHVR, EHVR, and MHVR for some of the sites is shown in Figure 4-12.  

 

Table 4-3. GOF metrics for test set comparing MHVR, pEHVR, and EHVR. 

  Correlation 

R 

Determination 

R2 
RMSE 

Index of 

Agreement 

d 

Test set MHVR vs EHVR 0.580  0.410  0.223  0.650  

Figure 4-11. Residual of pEHVR and EHVR on the Test Set. 
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pEHVR vs EHVR 0.798  0.658  0.132  0.852  

Delta 0.217  0.248  -0.091  0.202  

Figure 4-12. Comparison of MHVR, EHVR, and predicted pEHVR across multiple sites 

on test set 
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4.5. Conclusions 

This study presented a comprehensive approach to predicting EHVR using MHVR. 

The primary goal was to develop a robust and reliable model capable of accurately 

estimating EHVR from MHVR data, thus providing a valuable tool for seismic risk 

assessment and structural design, particularly in regions where earthquake data are sparse. 

A DNN model incorporating Batch Normalization and SELU activation functions 

was developed and validated using cross-validation techniques. The model demonstrated 

significant improvements in prediction accuracy, as evidenced by the various goodness-

of-fit (GOF) metrics such as Correlation (R), Determination Coefficient (R²), Root Mean 

Squared Error (RMSE), and Index of Agreement (d).  

The trained model was applied to an independent test set to assess its generalizability. 

The residual analysis on the test set confirmed that the average residuals tend towards 

zero across both low and high-frequency ranges, with a decreasing trend in standard 

deviation. This suggests that the model generalizes well to unseen data and does not 

exhibit overfitting. 

The findings of this study underscore the effectiveness of using MHVR data to 

predict EHVR, offering a cost-effective and non-invasive method for seismic risk 

assessment. The developed model provides a reliable means to estimate site-specific 

seismic responses. 

Although the current model demonstrates strong performance, future research could 

focus on the following areas: 

Further improving the prediction accuracy in the high-frequency range where minor 

discrepancies still exist. Expanding the dataset to include a wider variety of geological 

conditions to validate the generalizability. Verifying the effectiveness of the predicted 

pEHVR for other applications in the field of seismology by combining it with other uses 

of EHVR. 
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Chapter 5. Ground Motion Prediction by DNN 

model using EHVR 

The previous chapters have detailed the relationships between microtremor 

horizontal-to-vertical spectral ratios (MHVR), earthquake horizontal-to-vertical spectral 

ratios (EHVR), and site effects, as well as the corresponding prediction models. Site 

effects play a crucial role in the prediction of ground motion during earthquakes. This 

chapter will focus on how EHVR can be used to enhance the accuracy of existing ground 

motion prediction model. This chapter proposed a deep-neural-network (DNN) model for 

seismic ground motion prediction by utilizing a unified strong motion database by the 

National Research Institute for Earth Science and Disaster Resilience, and EHVR 

database in Japan. The model aims to enhance the accuracy of predictions by 

incorporating the EHVRs for complementing site effects, and utilizing existing ground 

motion prediction equation (GMPE) as the base model for source and propagation path 

effects. The hybrid approach enables the prediction of peak ground accelerations (PGAs), 

peak ground velocities (PGVs) and 5% damped absolute acceleration response spectra 

(SAs). After classifying the training and test sets from the database, the trained DNN 

models were applied on the test set to evaluate the performance of the predicted results. 

The accuracy assessment by the residuals, R-squared (R2) and Root Mean Square Error 

(RMSE) between the predicted and observed values in the test set revealed the superior 

performance of the proposed model compared to the traditional GMPE with proxy-based 

site effects such as VS30 especially in predicting both the spectral amplitude and shape of 

SAs. 
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5.1. Background 

Ground motion models (GMMs) are key tools for predicting seismic ground motions 

in future earthquakes, and are also critical for regional disaster planning and seismic-

resistant building design. Most existing GMMs have been derived through empirical 

regression analysis of ground motion records induced by past earthquake events. This 

type of regression analysis, based on pre-defined equations, has been referred to as ground 

motion prediction equations (GMPEs). The functional form of GMPEs varies depending 

on the choice of the modeler, but typically includes factors such as moment magnitude 

MW, focal depth, earthquake type (crustal or subduction earthquake), and considering site 

effects and propagation path effects [85–91]. Reviewing the existing GMPEs [92], many 

seismologists have introduced proxies such as the VS30 (time-averaged shear-wave 

velocity in the upper 30 m) or site classification into the constructed GMPEs to evaluate 

the site effects on ground motion predictions. Additionally, these prediction models have 

been highly relevant to seismic safety assessment and design of local building structures 

and infrastructures. Therefore, researchers often use local or regional databases [93–95], 

as well as a global ground motion database NGA-West2 [96,97], to construct GMPEs. 

Recently, the National Research Institute for Earth Science and Disaster Resilience 

(NIED) has been developing a unified strong motion database to improve ground motion 

prediction equations in Japan [98] with the aim of developing models based on this 

unified database for further research. 

On the other hand, in recent years, ground motion prediction methods based on 

machine learning and deep learning models, also known as non-parametric models, have 

also been proposed. Non-parametric model is one of constructing prediction models by 

learning and analyzing large amounts of data that do not rely on specific mathematical 

equations. Derras et al. [99] proposed an artificial neural network model that used MW, 

focal depth, epicentral distance, site resonance frequency (f0), and VS30 as input variables. 

These five parameters correspond to the physical meanings of the source characteristics, 

propagation path effects, and site effects, respectively. Recently, researchers have 
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constructed non-parametric models using locations of epicenters and observation sites as 

input variables. Oana et al. [100,101] used parameters such as longitudes, latitudes, and 

source azimuths for epicenters and sites to construct machine learning models. 

Lilienkamp et al. [102] viewed ground motion prediction as an image processing task and 

used latitudes and longitudes of epicenters and observation sites as two-dimensional array 

information. They combined this information with other key parameters to construct a U-

Net model. In these studies, geographical information such as longitude and latitude are 

considered a convenient definition of propagation path effects. There are studies using 

source mechanisms or fault of earthquake events as input variables to represent source 

characteristics, and combined site and path characteristics to construct GMM models by 

machine learning technology [61,101,103,104]. All these studies indicate that the data-

driven models have better prediction accuracy than existing GMPEs. 

The advantage of non-parametric models is that they can more accurately reflect the 

interaction between different physical factors, and the prediction accuracy can be 

continuously improved as data accumulates [105,106]. Additionally, Kubo et al. [107] 

pointed out that using the ground motion database with significant bias can lead to 

substantial distortion in the trained machine learning model, particularly regarding the 

underestimation of the prediction of strong motions. This is because there are relatively 

fewer strong ground motion records available, which leads to the model training being 

biased towards weaker ground motion data. Kubo et al. [107] proposed a hybrid approach 

of combining machine learning and physics-based models to address this issue. 

Specifically, they combined physics-based model proposed by Morikawa and Fujiwara 

[90] with machine learning to ensure predictive performance for infrequent strong motion 

events, and the hybrid approach outperforms any single method applied alone. 

In general, the parameters such as VS30 [60,108], depth of seismic bedrock surface 

Dbase, and depth to the S-wave velocity layer of 1400 m/s (D1400) [101,107] have been 

often used as input for many GMMs to describe the site effects. However, considering 

that the site effects are frequency-dependent [109], such proxy values are difficult to 
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represent the effects of the entire frequency range comprehensively. Midorikawa [110] 

also indicated that the accuracy of GMPE strongly depends on site amplification effects. 

On the other hand, since the proposal of the horizontal-to-vertical spectral ratio 

(HVR) by Nakamura [9,20], the relationships between site effects and HVR have been 

discussed based on microtremor and earthquake observation data in various regions such 

as Japan and Mexico [15,21–24]. Recently, our team [66,81,111] proposed a deep-neural-

network model for direct estimation of the site effects based on the property that the 

microtremor H/V spectral ratios (MHVRs) approximates the site amplification factors. 

Kawase et al. [27,32] showed that although the MHVRs and earthquake H/V spectral 

ratios (EHVRs) are similar, the EHVRs are more representative of site effects and better 

reflect subsurface structure identification. Zaker et al. [112] developed data-driven 

models to predict site amplification using EHVRs, noting that EHVR proxies could 

replace common site condition proxies like VS30. Additionally, Zhu et al. [65] through 

comparison between traditional site effect assessment methods and EHVR-based site 

effect machine models, further validated the effectiveness of combining EHVR with 

machine learning models in predicting site amplification effects. These studies inspired 

us to explore whether EHVR could also improve the accuracy of prediction models for 

seismic parameters (e.g., peak ground accelerations), given the relationship between 

EHVR and site effects. As several studies have pointed out the usefulness of EHVRs as 

descriptor variables for site effects [31,65,113–115], the site-specific EHVR can be used 

as the input variables for GMMs. Compared to single proxy values such as VS30 and Dbase, 

the EHVRs have the potential to dramatically improve the accuracy of existing GMMs 

because of the full frequency-dependence to describe site effects. Recently, the EHVR 

database for K-NET and KiK-net stations across Japan has been established [82], 

providing a user-friendly analysis environment. 

In this study, we developed deep-neural-network (DNN) models for ground motion 

prediction. Leveraging two primary databases, the unified Strong Motion Database 

introduced by Morikawa et al. [98] and the EHVR database provided by Zhu et al. [82], 
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we aimed to utilize the inherent comprehensive frequency dependency within EHVRs as 

the supplement site terms for amplification factors to construct hybrid models. 

Specifically, we developed two distinct DNN models: one aimed at predicting peak 

ground accelerations (PGAs) and peak ground velocity (PGVs) at sites, and another 

focused on predicting 5% damped absolute acceleration response spectra (SAs) values 

across 46 periods ranging from 0.05s to 10s. Our methodology involved the existing 

GMPE by Morikawa and Fujiwara [90] abbreviated as MF13, as the base model. Initially, 

calculations based on the base model of MF13 are performed to obtain predictions 

considering source and propagation effect. Then the DNN models supplement the 

computed results by accounting for site effects. The description of source and propagation 

path effects was given by the existing GMPE. The utilization of the DNN models with 

EHVRs as input effectively characterizes site effects, overcoming the limitations of 

traditional site effect proxies in adequately capturing site complexity. To validate our 

proposed method, we conducted standard deviation analysis and compared observed and 

estimated SAs, achieving two commendable matching scores. 
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5.2. Data 

5.2.1. Ground motion database 

The ground motion database used herein was built on the basis of the unified strong 

motion database in Japan (Morikawa et al., 2020), which includes the public ground 

motion records of K-NET and KiK-net from 1996 to 2018 and consists of three sets of 

files: earthquake event data, station information data and ground motion record data. The 

main information included in the NIED strong motion database is summarized in Table 

5-1. The earthquake event data utilized in the database comprises source parameters 

obtained from JMA (Japan Meteorological Agency) and seismograph network of F-net, 

finite-fault rupture models, earthquake type, and fault parameters, and so on. Regarding 

the station information data, it encompasses VS10, VS20, and VS30 values. These values were 

derived from the station location, PS logging data, geomorphological classification map. 

The information also includes the top-surface depths of the main layers in the deep ground, 

and so on. The ground motion record data consists of various parameters, including PGAs, 

PGVs, measured seismic intensity in Japanese scale, and absolute acceleration response 

spectra (SAs). The SAs comprise 59 points covering periods ranging from 0.02 to 20 s 

with a damping factor of 5%. Furthermore, in addition to the horizontal motion 

components such as NS, EW, RotD000 to RotD100 [116], the vertical motion components 

(UD) were also incorporated. The distribution of the number of records by fault distance 

FD (also known as rupture distance, Rrup) and MW of the registered strong-motion data is 

shown in Figure 5-1. Here, the fault distance is defined as the minimum distance between 

the observation point and the earthquake fault. There is a large number of records where 

the MW is less than 5.0 and the FD is around 100 km. 
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Table 5-1. Main information included in the NIED strong motion database. 

Earthquake event data 

• Date and time of event  
• Location of source  
• Magnitude (JMA scale and Moment magnitude) 
• Fault length and width 
• Strike and dip 
• Depth 
• Earthquake type (Crustal, Inter-plate, Intra-plate) 
• etc. 

Station information data 

• Location of the observation site 
• Distance from volcanic front 
• Average shear-wave velocity in upper 10m, 20m and 30m (VS10, VS20, VS30) 
• Depth of seismic bedrock surface Dbase 
• Depth to layer with S-wave velocity of 1100 m/s D1100 (and D1400 , D1700 , D2100 ) 
• etc. 

Ground motion record data 

• PGA (Peak ground acceleration) 
• PGV (Peak ground velocity) 
• SA (5% damped spectral response acceleration; periods 0.02~20 s; 59 points) 
• Fault distance (FD) 
• etc. 

* PGAs and PGVs were obtained for NS, EW, UD, RotD000, RotD025, RotD050, RotD075, and 
RotD100 components. SAs of horizontal two components were obtained for RotD000, RotD025, 
RotD050, RotD075, and RotD100. 
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More specifically, five record selection strategies listed below were used to extract 

a subset from this database to serve as the basis dataset for developing the predictive 

model proposed in this study. The criteria of MW ≥ 5.5, FD ≤ 200 km and RotD100 were 

determined based on consistency with the base model selection strategy (Morikawa and 

Fujiwara 2013). This ensures that the range of data used in the proposed methodology is 

consistent with that of the base model database, thereby improving the comparability and 

reliability of the study. 

(1). Earthquake events with MW larger than or equal to 5.5. 

(2).  FD within 200 km. 

(3). At least five stations are available for ground motion recording of earthquake 

events. 

(4). Ground motion records only from surface free-field condition at K-NET and 

KiK-net stations. 

(5). Excluding records from subduction intra-plate earthquake events. 

We focused on the impact of site effects on the GMM model. In the case of intra-

plate earthquake events in Japan, ground motion records through the volcanic front in the 

propagation path are strongly influenced by anomalous seismic intensity distribution 

Figure 5-1. Distribution of the number of records included in the strong motion database. 
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[117,118]. Figure 5-2 displays the data distribution of the impact of different earthquake 

types and volcanic regions on ground motion. The upper part represents earthquake 

records where the propagation path from the source to the observation site does not pass 

through volcanic regions. Different colors represent different types of earthquakes. It can 

be observed that, regardless of whether it is a crustal, interplate, or intraplate earthquake, 

the source distance shows a high correlation with PGA. However, intraplate earthquakes 

exhibit deviations. 

The lower portion of the figure presents three plots that represent earthquake records 

where the propagation path from the epicenter to the observation site passes through 

volcanic regions. Crustal and interplate earthquakes still show high correlation. In 

contrast, intraplate earthquakes exhibit significant deviations, with a correlation 

coefficient of only -0.36. This indicates that the propagation path passing through 

volcanic regions has a significant impact on intraplate earthquakes. 
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To avoid learning errors caused by such anomalous seismic records during the 

learning process, only records of crustal and subduction inter-plate earthquakes were used. 

In the following analyses, we used the ground motion parameters corresponding to the 

two horizontal time domain components of the maximum rotated component (RotD100). 

The 352 earthquake events and 36,914 ground motion records obtained at 1,634 seismic 

observation stations were used as a database from the above selection strategy. 

 

5.2.2. EHVR database 

The EHVRs data were from an open source database developed by Zhu et al. [82], 

which includes station information and EHVRs from a total of 1,742 sites from K-NET 

and KiK-net in Japan. Figure 5-3 shows a comparison between the EHVRs in Zhu et al. 

[82] and the site amplification factors (SAFs) in Pan et al. [66] obtained from generalized 

Figure 5-2. Distribution of data on the effects of different earthquake types and Volcano on ground 

motions. 
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spectral inversion technique (GIT) at same sites. As noted in the previous studies 

[3,32,66], the peak frequencies and spectral shapes of the EHVRs are similar to those of 

the SAFs. Although SAFs are not readily available at a single observation site, EHVR can 

be obtained relatively easily from ground motion records. For this reason, EHVRs were 

used as the representative parameters for site effects. 

 

 

 

Figure 5-3. Comparison of the EHVRs in Zhu et al. [82] and site amplification factors (SAFs) in Pan 

et al. [66]. 
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5.3. Methods 

5.3.1. Ground motion prediction equation 

We aim to construct a hybrid model by exploiting the full frequency dependence of 

EHVRs as site proxies for spectral amplification factors. The approach proposed involves 

using the existing GMPE (Morikawa and Fujiwara [90], hereafter we referred as MF13) 

as base model. The base model was used to perform initial calculations, and the calculated 

values are subsequently corrected using a DNN model. The DNN model was based on 

EHVRs as input to accurately represent the site effects, which compensates for the 

inability of proxy values in fully describing the site effects, especially frequency-

dependent amplitudes. In contrast, the base model by MF13 was used to describe the 

effects of source and propagation paths. This approach was adopted due to the inherent 

pre-event uncertainties of explanatory variables such as MW and FD that are commonly 

used as source and propagation path effects. Deep learning technologies, which are often 

criticized for being a “black box”, are more susceptible to uncertainty in input variables 

than traditional GMPEs. This is mainly attributed to the complexity of deep learning 

model. Several factors contribute to this increased sensitivity: complex model 

architectures, nonlinearities and limited understanding of the inner workings. Deep 

learning models often have complex architectures containing many parameters and 

inherently involve nonlinear activation functions, enabling them to capture complex 

patterns and relationships within the data. However, the intricate interconnections and 

nonlinearity among these parameters make the models more sensitive to input variables. 

Furthermore, as noted by Kubo et al. [107], non-parametric models can be biased by the 

imbalanced distribution of MW and FD. 

The GMPE in MF13 was specifically designed to accommodate seismic records with 

MW values ranging from 5.5 to 9.0 in Japan. As shown in Eqs. (5-1) and (5-2), it predicts 

PGAs, PGVs and SAs for 46 periods from 0.05 to 10 seconds (0.1 to 20 Hz). These ground 

motion parameters correspond to the values of RotD100. 
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 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑃𝑃𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑙𝑙) = 𝑅𝑅(𝑀𝑀𝐸𝐸1′−𝑀𝑀𝐸𝐸1)2 + 𝑏𝑏𝑘𝑘 ⋅ 𝐴𝐴𝐹𝐹 + 𝑐𝑐𝑘𝑘 − 𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝐹𝐹 + 𝑅𝑅 ⋅ 10𝑏𝑏⋅𝑀𝑀𝑊𝑊1′) (5-1) 

 

 𝑀𝑀𝐸𝐸1′ = 𝑚𝑚𝑅𝑅𝑛𝑛(𝑀𝑀𝐸𝐸,𝑀𝑀𝐸𝐸01) (5-2) 

 

Here, pre is the predicted value, FD is the shortest distance to the fault, a, bk, ck, d 

and e are the regression coefficients, and MW1 (=16.0) and MW01 (=8.2) are the default 

correction values. The database used to construct the MF13 model contains earthquake 

records up to the end of 2011. To verify that the MF13 model maintains a stable predictive 

capability for the new database, we applied the MF13 model to the database used in our 

study. Figure 5-4 shows the predicted PGAs calculated from the base model in Eq. (5-1); 

the existing GMPE has good applicability to new ground motion record database 

compared to the standard deviation results in MF13. It is important to note that there is 

an underestimation of the predictions in Figure 5-4 which is partially due to the fact that 

the base model here only used the parameters representing the source and propagation 

characteristics, and did not yet include a correction for site effects. 
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5.3.2. Leveraging EHVRs as the representative parameters for site effects 

Figure 5-5 shows the flow chart of the analysis adopted in this study. The data for 

the following analyses were selected from the unified ground motion database. The 

EHVRs were resampled to the same period range as SAs. Predictions based on MW and 

FD were then calculated using the base model as shown in Eq. (5-1), which considers 

source and propagation path effects. A DNN model was constructed using the EHVRs 

and prebasemodel as input data to complement the effect of site effects on the predicted 

values of ground motions. Additionally, a complementary calculation was performed 

using the traditional correcting equation by VS30 and D1400 (MF13). The standard 

deviations and the goodness of fit of the SAs were then compared to verify the feasibility 

of the DNN model based on EHVRs. 

Figure 5-4. Comparison of observed and predicted PGAs (left) and standard deviations calculated 

from the base model (right). Here, NIED database is the new database used in this 

study. The standard deviation of MF13 is sourced from Morikawa and Fujiwara 

(2013). 
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Figure 5-5. Flowchart of analysis adopted in this study. 
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5.4. Structure of EHVR-based DNN model 

5.4.1. DNN model 

A DNN model is composed of multiple layers of artificial neurons that are trained 

using large datasets to recognize patterns and relationships within the data. The DNN 

model contains many hidden layers, which allows it to learn complex nonlinear 

relationships between the input and output variables. The DNN model uses a process 

called backpropagation to adjust the weights of the neurons in each layer, based on the 

error between the predicted output and the actual output, in order to improve the accuracy 

of its predictions. 

In the proposing method, the input variables consist of two components. One part of 

the input consists the base prediction values (prebasemodel in log10 logarithms) which were 

calculated using Eq. (5-1). The physical meaning of the base values represents the 

predicted values of ground motion considering the source effects and propagation path 

effects. Then, to account for site-specific effects on ground motion predictions, we used 

the site-specific EHVRs as another important input variables. The EHVRs were obtained 

by resampling the data to match the period (1/frequency) range of SA values in our 

database, spanning from 0.05s to 10 s with a total of 46 points. This selection of input 

variables aims to exclude proxy values such as MW and FD that represent source and 

propagation path effects from being directly used as inputs in the DNN model. Instead, 

the traditional and reliable GMPE was employed to determine the impact of source and 

propagation path effects on the final predicted values. The output variables of the DNN 

model are the correction values, denoted as CorrectDNN, applied to the base values (in 

log10 logarithms) to account for site effects. Hence, the final predictions of the proposed 

method, denoted as preDNN, were obtained by adding the CorrectDNN values to the base 

values as shown in Eq. (5-3). 

 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑃𝑃𝑒𝑒𝑈𝑈𝑁𝑁𝑁𝑁) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑃𝑃𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑙𝑙) + 𝐶𝐶𝑙𝑙𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑜𝑜𝑈𝑈𝑁𝑁𝑁𝑁 (5-3) 
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Then, nonlinear behaviors of ground motions can be found in the observed records 

of the large and near-source events in the database. Nonlinear site effect can be typically 

represented as increase of predominant period and change of site amplification compared 

with linear site effect in frequency domain due to decrease of shear modulus and increase 

of damping factor in the ground induced by strong shaking. Although such nonlinear 

effects were not explicitly considered in our DNN model shown in Eq. (5-3), both the 

training and test datasets include ground motion records influenced by nonlinear effects. 

This is because the input data of the developed model includes the prebasemodel from the 

base prediction equation, as well as EHVRs strongly related to site amplifications. It 

indicates that our DNN model can implicitly evaluate the nonlinear effects of strong 

ground motions obtained in the database by adjusting the EHVRs according to the 

intensities in the prebasemodel. 

The architecture of the DNN model was developed by trial-and-error approach 

considering the accuracies of the predicted values in preliminary analyses. We employed 

automated hyperparameter tuning techniques to acquire the optimal model architecture 

and hyperparameter settings. Batch size and Max epoch were set initially by adjusting 

them several times at the beginning of model construction, observing whether the loss 

function curve was steadily decreasing. Detailed hyperparameters for DNN construction, 

such as intermediate layer architecture, the number of neurons, activation function types, 

etc., were obtained through automatic hyperparameter tuning. By automatically changing 

a series of hyperparameter settings for DNN construction, we obtained the training error 

for each training session, as shown in Figure 5-6. The horizontal axis CostMultiplyAdd 

is an indicator used to represent the number of multiplication and addition operations 

(Multiply and Add) included in the entire edited neural network. CostMultiplyAdd can 

serve as a reference indicator for the computational complexity of the entire network. 

Computational complexity is a measure of the network's computational intensity. If the 

computational complexity is large, it indicates that the network may be handling a more 
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complex, computationally intensive task. However, this also comes with an increase in 

computational resource requirements. When CostMultiplyAdd increases, it indicates an 

increase in the computational complexity of the network, suggesting that more 

computational resources may be needed to execute the model. It can be observed that the 

architecture of the model used in this study is the one with the minimum training error, 

and even with further increases in computational complexity, it is challenging to further 

reduce the training error.  

 

 

Figure 5-7 shows the DNN model adopted in this study. The constructed DNN model 

consists of an input layer, hidden layers, and an output layer. The hidden layer follows the 

form proposed by Ioffe and Szegedy [83], such as Affine, Batch Normalization and ReLU 

(Rectified Linear Unit) layers. The Affine layer refers to a layer that performs an affine 

transformation on the input, with its output obtained through matrix multiplication and 

bias offset of the input. The Affine layer is commonly used in fully connected layers of 

neural networks, with the aim of predicting data by performing linear transformations and 

offsets on the input. In this layer, the weights are trainable parameters that can be learned 

Figure 5-6. Structure search and training error. 
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through backpropagation algorithm to minimize the loss function. The advantage of batch 

normalization is that it can effectively improve the accuracy of the model and increase 

the learning speed. ReLU was used as the activation function. The ReLU layer is a 

commonly used nonlinear activation function layer, with its output being the input value 

itself when the input value is non-negative, and zero when the input value is negative. 

The role of the ReLU layer is to introduce nonlinearity into the neural network, enabling 

the network to learn more complex and abstract feature representations. Compared with 

other activation functions, the ReLU layer has the advantages of fast computation speed 

and less gradient vanishing problem during training, and thus has been widely used in 

deep learning. Mean Absolute Error (MAE) was used as the loss function, which is the 

sum of the absolute values of the deviation between the target values. 

 

Figure 5-7. DNN architecture adopted in this study. 
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Considering that the influence of the site effects is different when predicting strong 

motion parameters, we constructed two models for predicting PG (PGA and PGV) and 

SA, respectively, with the number of neurons in each model shown in Table 5-2. 

 

Table 5-2. Number of neurons in the DNN model 

Layer Number of neurons 
Input 48 for PG / 92 for SA 

Affine 1 + BN 1+ ReLU 1 128 
Affine 2 + BN 2+ ReLU 2 64 
Affine 3 + BN 3+ ReLU 3 64 
Affine 4 + BN 4+ ReLU 4 64 
Affine 5 + BN 5+ ReLU 5 64 

Affine 6 2 for PG / 46 for SA 

Figure 5-8. Input and output patterns of the proposal models for PG (upper) and SA (lower), 

respectively. The outputs are the values CorrectDNN in Eq. (5-3). 
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The input and output patterns correspond to Figure 5-8. Regarding as the DNN 

model for PG, x1 and x2 are the predicted PGA and PGV of the base model, respectively, 

and x3 to x48 this represents the EHVRs of the site effects (0.1 Hz~20 Hz, 46 points). The 

output y1 and y2 are the corrections for the input PGA and PGV (CorrectDNN in Eq. (5-3)), 

respectively. Regarding as the model for SAs, x1 to x46 are the predicted SAs for a total of 

46 points from 0.05s to 10s. The values of x47 to x92 are the EHVRs. The outputs are the 

corrections of the corresponding SA (CorrectDNN in Eq. (5-3)). Figure 5-9 shows an 

example of the EHVRs for TCGH16 as inputs. 

 

5.4.2. Dataset division and loss functions 

As shown in Figure 5-10, the target data were divided into a training set and a test 

set by record year: 29,861 records from 1997 to 2013 (80.9% of the total data) were used 

as the training set and 7,053 records from 2014 to 2018 (19.1% of the total data) were 

Figure 5-9. Examples of EHVRs used for input, totaling 46 points. 
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used as the test set. Figure 5-11 depicts the distribution of the motion records in the 

training and test sets, presenting histograms illustrating the distribution of source depth 

and MW. Notably, there is no significant imbalance observed between the training and test 

sets in terms of these parameters. Batch size, which refers to the number of data samples 

used in each iteration of a machine learning algorithm during the training process, was 

set to 2,048. The number of training epochs was set to 500 and the learning rate to 0.0001. 

Figure 5-12 depicts the development of the loss function over the course of the training 

process for both the training and test sets. The loss functions for both sets exhibit good 

convergence to a stable value, suggesting that the learning process was successful without 

encountering underfitting or overfitting. 

 

 

 

 

Figure 5-10. Training and test sets divided by year of earthquake events. 
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Figure 5-11. Distribution of the number of ground motion records in the training and test sets, 

with histograms of source depth and MW showing no significant imbalance between 

the training and test sets. 
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Figure 5-12. Loss function for the training and test sets. Upper figure shows the model for 

predicting PGA and PGV, and lower figure shows the model for predicting SA. 
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5.5. Results of test set 

5.5.1. Predicted results of PGAs and PGVs for the test set 

For the DNN model predicting PGAs and PGVs, the input variables consist of two 

components. Firstly, the base prediction values (prebasemodel) for PGAs and PGVs, which 

were calculated using Eq. (5-1). And we used the site-specific EHVRs as another 

important input variables. Hence, the final predictions preDNN, were obtained by adding 

the CorrectDNN values to the base values as shown in Eq. (5-3). 

Subsequently, we applied the trained DNN model to all 7,053 records in the test set 

to derive the corresponding complementary values for PGAs and PGVs. The predicted 

values for both were then obtained separately using Eq. (3). A comparison of the predicted 

values (PrePGA (DNN), PrePGV (DNN)) with the observed values of the test set is 

shown in Figure 5-13. Additionally, we calculated the standard deviations of the residuals 

for both PGAs and PGVs. The standard deviation for PGAs was 0.339 and for PGVs was 

0.314. In comparison, the standard deviation of the base model was 0.403 for PGAs and 

0.362 for PGVs, indicating an improvement in the predicted accuracy when utilizing the 

DNN model. Here, the standard deviations of the base model were also the results from 

the same test set. Furthermore, Figure 5-13 also illustrates the normal distribution of the 

residuals between the observed and predicted values. The probability density function 

curves of the residual distributions reveal a notable tendency for the predicted values of 

the base model to underestimate the observed values, as no site amplification model was 

used for correction here. However, when corrected using the DNN model, this 

underestimation tendency is effectively reduced. 
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5.5.2. Predicted results of SAs for the test set 

For the model predicting SAs, the input variables consisted of the base prediction 

values prebasemodel (SAs for 46 points from 0.05 to 10 s) and the site-specific EHVRs. Each 

input contains 92 values, and the output consisted of 46 corrected values for the base 

values. Figure 5-14 illustrates the comparison between the predicted and observed values 

for SA at specific periods (0.05 s, 1.0 s, and 8.0 s) in the test set along with the normal 

Figure 5-13. Comparison of observed and predicted values for test set. And the residual 

distribution of the predicted values based on the base model and the DNN model, 

respectively. 



Chapter 5. Ground Motion Prediction by DNN model using EHVR 

164 

 

distribution of the residuals. Figures for the all 46 points are provided in Appendix. As 

depicted in Figure 5-14, the DNN model exhibited improved prediction accuracy 

compared to the base model across all periods. Particularly in the short-period range, the 

standard deviation results indicated the significant effectiveness of the corrections made 

by the DNN model. The base model shows a trend of decreasing standard deviation in the 

long-period components (around 8.0 s) compared to the short-period components (0.05 s 

and 1.0 s), Even so, the DNN model still made a corrective effect. 

 

 

Then, we explored the effects of five different ranges of EHVRs as inputs on the 

results. For a detailed view of the complete input combinations, please refer to Figure 5-8 

in the main text: 

• Case 1: Using EHVRs from 0.1 Hz to 0.25 Hz as inputs. 

• Case 2: Using EHVRs from 0.25 Hz to 1.0 Hz as inputs. 

Figure 5-14. Predicted results of SAs in 0.05 s, 1.0 s and 8.0 s for the test set. 
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• Case 3: Using EHVRs from 1.0 Hz to 5.0 Hz as inputs. 

• Case 4: Using EHVRs from 5.0 Hz to 20.0 Hz as inputs. 

• Case 5: Using EHVRs from 0.1 Hz to 30.0 Hz as inputs. 

These cases were evaluated against a consistent DNN model structure and a shared 

test set in the main text. The analysis, detailed in Figure 5-16, highlighted notable impacts 

of different EHVR ranges on the results. For instance, Case 1 influenced longer periods 

of SAs because of the input of low-frequency EHVRs. While Case 4, which uses EHVRs 

from 5.0 Hz to 20.0 Hz, notably improved accuracy for shorter-period SAs. The results 

suggest that the choice of EHVR ranges influences the accuracy of corresponding period 

numbers in the output SA. Notably, the superior characteristics of the proposed DNN 

model in the main text may be attributed to its holistic coverage of the entire spectral 

range within the input EHVRs, aligning well with predicted SA outputs. Even we 

extended the length of EHVRs up to 30.0 Hz in Case 5, there was no significant change 

in the results. Therefore, we selected the input combination shown in Figure 5-8 of the 

main text as the final solution. 

Figure 5-15. Comparison of the standard deviation of the residuals of the DNN models with 

those of the base model, including PGA, PGV and SA. 
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Figure 5-16. Comparison of the standard deviation of the residuals of the DNN model with those of 

Case 1 to 5. 



Chapter 5. Ground Motion Prediction by DNN model using EHVR 

167 

 

5.6. Comparison 

5.6.1. Comparison of the results based on GMPE 

The GMPE proposed in MF13 introduced a complementary formulation (Eq. (5-4)) 

to account for site effects based on proxy values, namely D1400 and VS30. 

 

 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑦𝑦) = 𝑝𝑝𝑑𝑑 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑚𝑚𝑅𝑅𝑒𝑒(𝐹𝐹𝑙𝑙𝑏𝑏𝑖𝑖𝑛𝑛 ,  𝐹𝐹1400)

𝐹𝐹0
� + 𝑝𝑝𝑠𝑠 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑚𝑚𝑅𝑅𝑛𝑛(𝐻𝐻𝑆𝑆𝑏𝑏𝑏𝑏𝑝𝑝 ,𝐻𝐻𝑆𝑆30 )
𝐻𝐻0

� (5-4) 

 

 

Here, pd, ps, D0 and V0 represent regression coefficients and Dlmin, VSmax are constant 

values. In accordance with Eq. (5-4), the parameter VS30 was a prerequisite for the analysis. 

However, in cases where VS30 was unavailable such as most of the K-NET sites, the 

estimated VS30 values derived from Eq. (5-5) by MF13 were utilized. Among the records 

included in the test set, a total of 4,807 instances had either VS20 or VS30 available. 

 

 𝐻𝐻𝑆𝑆30 = 1.13𝐻𝐻𝑆𝑆20 + 19.5 (5-5) 

 

To further evaluate the efficacy of the EHVR-based DNN models, ground motion 

predictions incorporating site effects were calculated based on proxy values using Eq. 

(5-6). 

 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑃𝑃𝑒𝑒𝐺𝐺) = 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑃𝑃𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏𝑙𝑙) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑃𝑃𝑒𝑒𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑦𝑦) (5-6) 

 

The comparison results with the DNN models are shown in Figure 5-17, which 

includes the standard deviation of the residuals for PGAs, PGVs, and SAs as well as the 

normal distribution. As depicted in the figure, the EHVR-based DNN models 
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demonstrates superior correction capabilities for short-period components compared to 

the Eq. (5-4), Eq. (5-5), Eq. (5-6) based on proxy values (D1400 and VS30). Morikawa and 

Fujiwara [90] have pointed out the limitations and ineffectiveness of proxy-based site 

effect correction for short periods (shorter than 0.3 s). The concentration of the correction 

effect from the proxy values primarily occurs around the 1.0 s. This concentration arises 

from the inherent limitations of the site proxies in extracting the full-period characteristics, 

resulting in a more pronounced correction within the sensitive period range (i.e., around 

1.0 s). For the long-period components, both the EHVR-based and proxy-based correction 

approaches yield comparable standard residuals. Furthermore, the standard deviation of 

the long-period components obtained using the base model is relatively smaller compared 

to the short-period components. This may be attributed to the dominant influence of 

source and propagation path effects on the long-period SAs, with the site effects playing 

a relatively smaller role. On the other hands, the SA values of the long-period component 

(8.0 s in Figure 5-14) exhibit significantly smaller amplitudes, thereby emphasizing the 

effect of the correction effect by the EHVR-based DNN models on the short-period 

component characterized by larger SA values. 

 

 

In addition, we generated box plots to visualize the distribution of errors between 

the true and predicted values at various periods. As shown in Figure 5-18, this figure 

includes the distribution results of prediction errors for PGA, PGV, and several periods. 

Figure 5-17. Comparison of the results based on the complementary formulation using D1400 and VS30 

with those of the EHVR-based DNN models. 
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The detailed explanation of the box plot is provided on the right side of the figure. The 

height of the box represents the degree of dispersion, with larger heights indicating greater 

dispersion. From Figure 5-18, it can be observed that the black boxes representing the 

DNN models exhibit noticeable trend of reducing dispersion compared to the other two 

groups. Moreover, the median values of the black box consistently tend towards a value 

closer to zero. The results validate the effectiveness of the DNN models in reducing the 

dispersion of prediction errors and confirm that EHVRs can serve as proxies for site 

effects and play a role in ground motion prediction.  

 

 

5.6.2. Comparison of the site-specific SA 

In addition to analyzing the standard deviations of SA values for individual period 

components, it is crucial to consider the predicted SA for the entire period of seismic 

records at each site, particularly focusing on the peak values and spectral shapes. Accurate 

estimations of peaks and shapes are essential for assessing the seismic safety of buildings, 

especially in the presence of potentially strong shakings. To evaluate the accuracy of SA 

prediction for the entire period, we conducted a comparison between the observed SAs 

of the Kumamoto earthquake (MW 7.1, occurred on April 16, 2016) and the prediction 

obtained from both the DNN model, the base model and the proxy-based correction. 

Figure 5-19 presents the comparison between the observed and predicted SAs for 

Median
(25th percentile)

Q3, Upper quartile
(75th percentile)

Q1, Lower quartile
(25th percentile)

Maximum
(Q3 + 1.5 * IQR)

Minimum
(Q1 - 1.5 * IQR)

IQR

Figure 5-18. Comparison of the error distribution. 
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the Kumamoto earthquake in and around Kumamoto prefecture. The base values 

(represented by the grey dotted line in Figure 5-19) were calculated using Eq. (5-1). The 

corrected values for the base values were determined using the EHVR-based DNN model 

and subsequently incorporated using Eq. (5-3) to obtain the final prediction (depicted by 

the red solid line in Figure 5-19). Eq. (5-4) was employed to obtain predictions based on 

the proxy values (shown by the grey dashed line in Figure 5-19). It is worth noting that 

none of the records used in this comparison were involved in the training process of the 

DNN model. Instrumental seismic intensities of 5.0 or greater were observed at all sites 

mentioned in the figure. 

As shown in Figure 5-19, the comparisons of the observed and predicted SA values 

Figure 5-19. Comparisons of observed and predicted SAs observed in the April 16, 2016 Kumamoto 

earthquake (MW 7.1). Here, FKO, KMM, MYZ, NGS, OIT and SAG represent Fukuoka, 

Kumamoto, Miyazaki, Nagasaki, Oita, and Saga prefecture, Japan, respectively. 
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reveal the improved performance of the corrected predictions obtained from the EHVR-

based DNN model. Notably, both the peak SA values and the overall shape of the spectral 

response exhibit a significantly better fit compared to the base model and the correction 

formulation based on the site proxies. This finding highlights the effectiveness of utilizing 

EHVR as an input variable in the DNN model to accurately extract the full-period spectral 

shape of SAs. Because by incorporating EHVR as the input variables, the model 

effectively provides complementary corrections to ground motion predictions that 

consider site effects. 

In addition, as depicted in Figure 5-19, the SA values associated with the long-period 

components (>2.0 s) are relatively small. The predictions obtained from the base model, 

the proxy-based correction formulation, and the DNN model demonstrate a considerable 

degree of consistency. On the short-period components, in the cases of FKO005, 

KMMH12 and SAGH04, the predictions by the DNN model exhibits a favorable 

alignment with the observations for the short- period components (particularly shorter 

than 1.0 s), and notable discrepancies emerge with the predictions by the base model or 

the proxy-based correction formulation. 

 

5.6.3. Good matching for the predicted SAs across all sites 

Good matching often implies that the predicted values closely align with the 

observed values. In this section, two evaluation metrics were employed to assess the 

quality of the predicted SAs by the models and determine the degree of good matching. 

The coefficient of determination, denoted as R-squared (R2), was computed for each 

record across all sites by comparing the predictions with the corresponding observations 

using Eq. (5-7).  

 

Here n represents the number of periodic terms, which is equal to 46. Upper bar 

 𝐻𝐻2 = 1 −
∑ (𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖 − 𝑝𝑝𝑃𝑃𝑒𝑒𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖 − 𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (5-7) 
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indicates a mean value of observed values. Higher R2 values indicate a stronger alignment 

between the predicted and observed spectral amplitude, indicating a better match in terms 

of spectral shape. 

Additionally, the Root Mean Square Error (RMSE) for each record across all sites 

was calculated to quantify the mean absolute difference between the predicted and 

observed amplitude values using Eq. (5-8). 

 

 𝐻𝐻𝑀𝑀𝑝𝑝𝐸𝐸 = �
1
𝑛𝑛
�(𝑙𝑙𝑏𝑏𝑉𝑉𝑖𝑖 − 𝑝𝑝𝑃𝑃𝑒𝑒𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5-8) 

 

A smaller RMSE indicates higher accuracy in extracting the amplitude variations. To 

achieve a comprehensive and accurate evaluation, it is recommended to utilize both 

evaluation metrics; one for assessing the spectral shape and the other for evaluating the 

amplitude differences, thus providing a more comprehensive assessment of the 

performance of the model. For the test set, evaluation metrics were calculated for a total 

of 7,053 site-specific SAs. Among these, a total of 4,807 items were available for the 

proxy-based correction formulation. 

Table 5-3 presents the percentages of the predicted SAs that satisfied the evaluation 

metrics. These percentages represent good matching scores. By the threshold for reducing 

the RMSE and increasing the R2, the comparison of good matches among the three 

methods is presented in the table. The DNN model consistently demonstrated superior 

performance compared to both the base model and the proxy-values correction 

formulation. Additionally, the utilization of the proxy-values correction also exhibited 

slightly better results than the base model. In particular, the high prediction accuracy 

percentage on the right-hand side of the table indicates that the DNN model achieves a 

good match for approximately half of the sites, providing further evidence of the 
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effectiveness of EHVR in predicting SAs. 

 

Table 5-3. Good matching for the SAs of each record. Here No. is number of records. 

VS30/VS20 is known: No. = 4,807 

Good matching 
RMSE ≤ 0.6 

& R2 ≥ 0.6 

RMSE ≤ 0.5 

& R2 ≥ 0.7 

RMSE ≤ 0.4 

& R2 ≥ 0.8 

RMSE ≤ 0.3 

& R2 ≥ 0.9 

By DNN 85.56 % 79.09 % 69.38 % 48.41 % 

By Base model 78.14 % 67.05 % 49.53 % 22.40 % 

By D1400 and VS30 83.73 % 74.62 % 58.19 % 29.00 % 

 

5.6.4. Assessment of nonlinear effects of strong ground motion 

It is important to evaluate nonlinear behaviors of ground motions during strong 

shakings for accurate ground motion predictions. As mentioned earlier, terms for 

nonlinear effects were not explicitly formulated in our proposed model. However, our 

model learned the characteristics of observed ground records not only for weak motions 

but also for strong motions affected by nonlinear effects. It means that such nonlinear 

effects during strong shakings were expected to be implicitly included in the model. To 

verify this, we analyzed the predicted SAs at KMMH16 where significant nonlinear 

ground response was observed in the 2016 Kumamoto, Japan earthquake [119]. 

Figure 5-20 (a) shows the comparisons of the observed and predicted SAs at 

KMMH16 for several earthquake events occurred after 2014, indicating that these 

observed data were not included in the training dataset. We can confirm that the predicted 

SAs by the DNN show good agreement with the observed SAs not only for weaker 

motions in MW 5.5 and 5.8 events but also strong motions in MW 7.1 event, the mainshock 

of the 2016 Kumamoto earthquake. Figure 5-20 (b) represents the predicted SAs at 

KMMH16 for eight different scale events. It can be seen that as the amplitudes of SAs 
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increase, the peak period shift to the longer period side as shown by gray dotted line. Such 

amplitude-dependent transition of peak periods in the predicted SAs could be caused by 

the nonlinear effect trained from the database. This result proved that the proposed DNN 

model can capture the long-period phenomena during strong shakings. 

 

  

(a)

(b)

Figure 5-20. (a) Comparison of predicted and observed and predicted SAs at KMMH16 for four 

different earthquake events. MW 7.1 event indicate the mainshock of the 2016 Kumamoto, 

Japan earthquake. (b) Predicted SAs at KMMH16 for different events. Gray dotted line 

indicates transition of peak periods in the predicted SAs. 
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5.7. Using predicted EHVRs from MHVRs as the 
representative parameters 

5.7.1. Using predicted EHVRs as input of the proposed DNN model 

In Chapter 4, a model is proposed to predict pseudo-EHVR (pEHVR) using MHVR. 

It is worth exploring whether the pseudo-EHVR can be used in the GMM model proposed 

in this chapter. For this reason, this section will discuss the accuracy and validity of using 

pEHVR instead of EHVR in this GMM model. 

In terms of data selection, the following two strategies need to be satisfied firstly. 

1. Sites are those in Testset of Chapter 4, Section 4.4.2 

2. Ground motion records are those during the years 2014-2017, corresponding 

to Figure 5-10. 

Based on these two points, a total of 282 data from 38 sites were used for subsequent 

analyses. 

Subsequently, the trained GMM model was used to replace the EHVR in it using 

pEHVR according to the input pattern in Figure 5-8. And the final results were calculated 

according to Eq. (5-3). All the predicted results containing the predicted values of PGA, 

PGV, and SA were obtained. 

 

5.7.2. Comparison of results 

We calculated the mean and distribution of the errors and plotted box plots to 

visualize the distribution of the errors between the true and predicted values for different 

periods. Figure 5-21 show the results of the base model, the DNN model using EHVR, 

and the DNN model using pEHVR. 

From the comparison of the three models, it can be observed that the mean errors of 

SA for most periods by using pEHVR are lower than those of the base model, although 

not as low as the DNN model using EHVR. On the other hand, for PGA and PGV, even 
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though the mean errors are lower than those of the base model, the deviation in their 

distribution is greater. This is a critical point that needs attention. In practical applications, 

caution should be exercised when predicting PGA and PGV. One possible reason for this 

deviation is that certain sites exhibit larger errors in the prediction of pEHVR. When such 

pEHVR values are used as inputs, the errors in the resulting ground motion parameters 

may also be significant. 

 

 

In addition, the GOF between the true and predicted values of SA at each site was 

calculated using the good matching evaluation method outlined in Section 5.6.3. The 

distributions of R² and RMSE for the three models are shown in Figure 5-22. The R² and 

RMSE values for the DNN model using EHVR show the highest distribution, indicating 

that this model explains the variance in the true SA values most effectively. The DNN 

model using pEHVR also demonstrates a higher R² and RMSE distribution compared to 

the base model, though it does not reach the level of the DNN model using EHVR. The 

comparison of R² and RMSE distributions clearly demonstrates that while the DNN model 

using pEHVR also improves prediction accuracy over the base model, it does not match 

the performance of the model using EHVR. In practical terms, while the pEHVR-based 

Figure 5-21. Distribution of errors between predicted and true values for the DNN model using 

EHVR, the DNN model using pEHVR and the basemodel. 



Chapter 5. Ground Motion Prediction by DNN model using EHVR 

177 

 

model offers a viable alternative when EHVR data is not available, the best results are 

achieved when EHVR data is used directly. 

 

 

As shown in Figure 5-23, the results indicate that for most sites, using pEHVR as 

the input for the DNN model produces an output SA that fits very closely with both the 

observed values and the results when using EHVR. However, there are still some sites 

where the fit is poor, particularly in the short-period range, such as IWTH15. The 

correction to the base model is not significant in these cases. Additionally, the good match 

rate for a total of 281 records in the test set was calculated, and the results are shown in 

Table 5-4. For the highest accuracy threshold, the DNN model using pEHVR, although 

not as accurate as the DNN model using EHVR directly, shows a significant improvement 

compared to the base model. This finding highlights the effectiveness of using pEHVR. 

Future research should focus more on improving the prediction accuracy of pEHVR 

in the short-period range. Additionally, it would be beneficial to discuss more about the 

types of sites where the accuracy of pEHVR predictions is lower. 

Figure 5-22. Distribution of R² and RMSE for SA predictions using different models. 
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Table 5-4. Good match rates for a total of 281 records in the test set, using pEHVR as input to the 

DNN model. 

Good matching 
RMSE ≤ 0.6 

& R2 ≥ 0.6 

RMSE ≤ 0.5 

& R2 ≥ 0.7 

RMSE ≤ 0.4 

& R2 ≥ 0.8 

RMSE ≤ 0.3 

& R2 ≥ 0.9 

By DNN 90.39 % 85.41 % 74.02 % 55.87 % 

By DNN (pEHVR) 85.77 % 77.58 % 69.04 % 44.48 % 

By Base model 86.12 % 78.29 % 58.36 % 26.33 % 

 

  

Figure 5-23. Comparison of SA results by DNN model using EHVR, pEHVR and base model. 
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5.8. Conclusions 

This study proposed a deep neural network (DNN) model for novel seismic ground 

motion prediction based on two powerful databases: a unified strong ground motion 

database by NIED and an earthquake H/V spectral ratio (EHVR) database. A hybrid 

approach combining the DNN models and traditional GMPE was employed. The 

proposed model utilizes EHVRs as input variables and produces correction values for 

ground motion prediction considering site effects. The comparisons were conducted with 

the correction formulation that consider site effects using D1400 and VS30. The following 

main findings can be drawn: 

1. The DNN models constructed using EHVRs outperforms the traditional GMPE in 

predicting PGAs, PGVs, and SAs. It also outperforms the site proxy-based correction 

formulation with D1400 and VS30. 

2. The correction formulation based on D1400 and VS30 exhibit limited ability in 

extracting full-period features of site effects, resulting in inadequate correction of 

SAs particularly for short-period components. In contrast, the DNN models based on 

full-period EHVRs as input, demonstrates superior performance in extracting full-

period features. Predictions for the SAs in each period component were significantly 

improved. Furthermore, we confirmed that the proposed DNN models can implicitly 

evaluate nonlinear effects of strong ground motions. 

3. The quality and good matching for the predicted SAs were comprehensively assessed 

using two evaluation metrics. The DNN models exhibits better performance than the 

base model and the proxy-based formulation. This indicates that the DNN models 

performs well in predicting the spectral amplitudes and shapes of SAs. 

4. The use of the pseudo-EHVR (pEHVR) obtained in Chapter 4 was equally effective 

in improving the prediction accuracy of the base model, especially for SA. However, 

there was a large bias on the prediction of PGA, which needs to be treated with 

caution in practical application. 

Nevertheless, it should be noted that there still exists a discrepancy between the 
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observed and predicted ground motion parameters, particularly with the proposed model 

showing less significant improvement in prediction accuracy for the long-period 

components of SA compared to the base model. Furthermore, the availability of EHVR 

data is restricted to locations where seismic observatories are operated and predictions 

from the base model (MF13) are required as inputs, thereby limiting the applicability of 

the model to arbitrary locations or outside the Japan region. However, considering the 

calculation method of EHVR and the fact that we used a date-based split for the training 

and test sets in this study, the EHVRs from the same locations appear in both the training 

and test sets, which may lead to data leakage. Considering that the training and validation 

sets used in this study are all from Japan, it is important to explore the applicability of 

this model in non-Japanese regions globally (such as China, Europe) in future research to 

further validate the model's applicability and to check for the potential data leakage. 
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Chapter 6. Conclusions 

6.1. Conclusions of previous chapters 

This thesis has presented a detailed study on the use of Horizontal-to-Vertical 

Spectral Ratios (HVR) to improve seismic risk assessment and ground motion prediction. 

The research aimed to develop robust models that leverage both Microtremor HVR 

(MHVR) and Earthquake HVR (EHVR) for enhanced predictive capabilities. 

In Chapter 2, a novel deep neural network (DNN) model was developed to estimate 

site amplification factors (SAFs) directly from MHVR data. We analyzed the site 

amplification factor derived by the generalized spectral inversion technique (GIT) and 

observed MHVRs at K-NET and KiK-net sites in Chugoku district, Japan. The 

performance of the DNN model was validated using a comprehensive dataset, 

demonstrating significant improvements over traditional methods. The developed DNN 

model does not require any hard-to-get data such as seismic velocity structures and 

damping models thus providing a significant cost-benefit. This established the foundation 

for using MHVR data in seismic assessments. 

Chapter 3 expanded on this foundation by incorporating transfer learning techniques 

to adapt the pre-trained DNN model for new regions with varying geological conditions. 

In practical scenarios, it is anticipated that the field of MHVR-estimated SAF can be 

extended to countries and regions where the number of seismic observatories is 

inadequate. For regions with limited data or unique geological features, such as some 

developing countries, constructing an appropriate TL model based on limited data can 

improve the accuracy of SAFs estimated with MHVRs highlighting the adaptability and 

potential of the proposed DNN model for broader application. 

Chapter 4 introduced a model to predict pseudo-EHVR (pEHVR) from MHVR, 

addressing the challenge of obtaining reliable EHVR data in regions without direct 

seismic measurements. The pEHVR predictions showed high accuracy, validating the 
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model’s utility in seismic risk assessments and emphasizing the feasibility of using 

MHVR data to infer EHVR. 

In Chapter 5, a more sophisticated DNN model was proposed to predict ground 

motion parameters, such as peak ground acceleration (PGA), peak ground velocity (PGV), 

and 5% damped absolute acceleration response spectra (SA), by integrating EHVR into 

existing ground motion prediction equations (GMPE). The model demonstrated superior 

performance in predicting both the amplitude and shape of the spectral response 

compared to traditional GMPEs that rely on proxy-based site effects like VS30. The use of 

the pseudo-EHVR (pEHVR) obtained in Chapter 4 was equally effective in improving 

the prediction accuracy of the base model, especially for SA. However, there was a large 

bias on the prediction of PGA, which needs to be treated with caution in practical 

application. 
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6.2. Future work and prospect  

Although the DNN models developed in this study have shown excellent 

performance, several avenues remain for improving their accuracy, applicability, and 

robustness in the future. For the models discussed in Chapter 2 and Chapter 3, one key 

area of improvement is expanding the dataset to include a broader range of geological 

conditions. This will help verify the generalizability of the models and ensure their 

applicability in various regional environments. 

Additionally, validating the effectiveness of the predicted pEHVR for other 

applications in seismology, such as site classification, site effect assessment, and 

earthquake intensity prediction, as discussed in Chapter 4, will provide a more 

comprehensive evaluation of the model's utility. 

Addressing the limitation of EHVR data availability in Chapter 5 is crucial for the 

wider adoption of these models. Innovative methods to generate reliable proxy data where 

direct measurements are not possible will be essential. Beyond using pEHVR as a proxy, 

it is worth exploring whether transfer learning techniques can further expand the model's 

applicability. 

Furthermore, extending the applicability of the models to global regions beyond 

Japan, such as China and Europe, will be essential to test their robustness and identify 

any potential issues related to data leakage or regional specificities. This global 

perspective will enhance the models' relevance and utility in international seismic risk 

assessment practices. By focusing on these areas, future research can build on the findings 

of this thesis, incorporating new technologies and exploring a wider range of applications. 

This will contribute to more accurate and reliable site effect assessments and ground 

motion predictions. 
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Chapter 7. Appendix 

7.1. Publicly available codes 

In this chapter, we will provide the usage methods for the deep neural network (DNN) 

models developed in this thesis, primarily focusing on utilizing several publicly available 

pre-trained models. These models will be implemented using Python, with code snippets 

guiding readers on how to use and evaluate the models on their respective datasets. The 

primary focus will be on the following DNN models: the DNN model from Chapter 2 for 

predicting site amplification factors (SAF) from microtremor horizontal-to-vertical 

spectral ratios (MHVR) and the transfer learning model from Chapter 3 for extending the 

applicability of the DNN model from Chapter 2; and the DNN model from Chapter 5 for 

improving ground motion prediction model (GMM) using EHVR. More detailed tutorials 

and examples can be found on my GitHub page. 

(1). The DNN model from Chapter 2 for predicting SAF from MHVR. 

https://github.com/pandafhg/MHVR-to-SAF.  

And the transfer learning model from Chapter 3 for extending the applicability of the 

DNN model from Chapter 2. 

https://github.com/pandafhg/MHVR-to-SAF-TL.  

 

1.import onnx 

2.import numpy as np 

3.import pandas as pd 

4.import onnxruntime as rt 

5.import os 

6. 

7.# Iterate through paths of all files in the folder (fname). And save as a

 list (s_file). 

8.def get_file(fname): 

9.    s_file = [] 

https://github.com/pandafhg/MHVR-to-SAF
https://github.com/pandafhg/MHVR-to-SAF-TL
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10.    for path,dirs,files in os.walk(fname): 

11.        for filename in files: 

12.            s_file.append(os.path.join(path,filename)) 

13.    return s_file 

14. 

15.# Retrieve DNN model file (model.onnx) from the current directory. 

16.if os.path.exists("%s/model.onnx" % os.getcwd()): 

17.    model_file = "%s/model.onnx" % os.getcwd() 

18.# If the model file does not exist in the current directory,  

19.# please input the full path of the model.onnx. 

20.else: 

21.    model_file = input("input the file path of model.onnx (/*.onnx):") 

22. 

23.# Set the save path. The default is the MHVR_SAF folder in the current di

rectory.     

24.if os.path.exists("%s/MHVR_SAF" % os.getcwd()): 

25.    y_folder = "%s/MHVR_SAF" % os.getcwd()  

26.    print("The result will be saved in this path: %s" % y_folder) 

27.else: 

28.    os.mkdir("%s/MHVR_SAF" % os.getcwd()) 

29.    y_folder = "%s/MHVR_SAF" % os.getcwd() 

30.    print("The result will be saved in this path: %s" % y_folder) 

31. 

32.# Input the path of folder containing MHVR data files. 

33.mhvr_loc = input("input the path of the folder containing MHVR data files

: ") 

34. 

35. 

36.for test_file in get_file(mhvr_loc): 

37.    X_test = pd.read_csv(test_file ,skiprows=1, sep = '¥s+|,', header =No

ne, engine='python') # encoding = "utf-8" 

38.    X_test = X_test.values 

39.     

40.    sess = rt.InferenceSession(model_file) 

41.    input_name = sess.get_inputs()[0].name 

42.    label_name = sess.get_outputs()[0].name 
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43. 

44.    Y_result = pd.DataFrame() 

45.    for row in X_test: 

46.        pred_onx = sess.run([label_name], {input_name: row.reshape(1,7).a

stype(np.float32)})[0] 

47.        Y_result = pd.concat([Y_result,pd.DataFrame(pred_onx)], ignore_in

dex= True) 

48. 

49.    Y_result.columns=["AMR(fi-2)", "AMR(fi-

1)", "AMR(fi)", "AMR(fi+1)", "AMR(fi+2)"] 

50.     

51.    X_temp = pd.read_csv(test_file, sep = '¥s+|,', engine='python') # enc

oding = "utf-8" 

52. 

53.    result = pd.concat([X_temp, Y_result], axis=1) 

54.    result["pSAF"] = result["%s" % X_temp.columns[4]] * result["AMR(fi)"] 

55.    result.round(6) 

56.     

57.    # Save by source filename.  

58.    name_file = os.path.basename(test_file) 

59.     

60.    if os.path.splitext(name_file)[1] == '.csv': 

61.        result.to_csv("%s/SAF_%s" % (y_folder, name_file), float_format =

 '%.6f', sep = ',',index=None) 

62.         

63.    else:      

64.        result.to_csv("%s/SAF_%s" % (y_folder, name_file), float_format =

 '%.6f', sep = '¥t',index=None) 

65.         

66.    print("Saved as %s/SAF_%s" % (y_folder, name_file)) 

67.input("   ") 
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(2). The DNN model from Chapter 5 for improving ground motion prediction model 

(GMM) using EHVR. 

https://github.com/pandafhg/Ground-motion-prediction-using-EHVR.  

 

1.import pandas as pd 

2.import numpy as np 

3.import os 

4.import onnxruntime as rt 

5. 

6.# Define a function to load an ONNX model from a specified file path 

7.def load_onnx_model(onnx_file): 

8.    # Get the current directory path 

9.    current_dir = os.getcwd() 

10.    # Create the full path to the ONNX model file 

11.    model_path = os.path.join(current_dir, onnx_file) 

12.     

13.    # Check if the model file exists at the path 

14.    if not os.path.exists(model_path): 

15.        # Prompt the user to enter the correct model path if not found 

16.        model_path = input("Please enter the path to the model.onnx: ") 

17.         

18.        # Raise an error if the model file still can't be found 

19.        if not os.path.exists(model_path): 

20.            raise FileNotFoundError(f"ONNX model not found at {model_path

}") 

21.     

22.    # Return the valid model path 

23.    return model_path 

24. 

25.# Prompt the user to input the name of the data file 

26.dt_file = input('Input the file:') 

27. 

28.# Read the input data file into a DataFrame 

29.dt = pd.read_csv(dt_file) 

https://github.com/pandafhg/Ground-motion-prediction-using-EHVR
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30.# Read another model parameter file into a DataFrame 

31.model1 = pd.read_csv('model1.csv') 

32. 

33.# Try to perform calculations on the DataFrame 

34.try: 

35.    # Iterate through each row of the model parameter DataFrame 

36.    for index_shallow, row_model1 in model1.iterrows(): 

37.        # Extract parameters needed for the calculation 

38.        pre = row_model1.parameter 

39.        sigma1 = row_model1.sigma1 

40. 

41.        # Iterate through each row of the data DataFrame 

42.        for index, row in dt.iterrows(): 

43.            # Extract parameters and perform calculations based on model 

formulas 

44.            a1 = row_model1['a1'] 

45.            Mw1_min = min(row['mw'], row_model1['Mw01'])  

46.            Mw1 = row_model1['Mw1'] 

47.            eq_type = row['eq_location_type_id'] 

48.            b1_k = row_model1[f'b1_{eq_type}'] 

49.            c1_k = row_model1[f'c1_{eq_type}'] 

50.            X = row['fault_dist'] 

51.            d1 = row_model1['d1'] 

52.            e1 = row_model1['e1']     

53. 

54.            # Store calculated result back into the DataFrame 

55.            dt.loc[index, f'Basemodel_{pre}'] = a1 * ((Mw1_min - Mw1) ** 

2) + b1_k * X + c1_k - np.log10(X + d1 * (10 ** (e1 * Mw1_min))) 

56. 

57.# Catch any exceptions that occur during the process 

58.except Exception as e: 

59.    print("Error reading specific columns:", e) 

60. 

61.# Ensure the output directory exists 

62.output_folder = os.path.join(os.getcwd(), 'result') 

63.os.makedirs(output_folder, exist_ok=True) 
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64.# Define the filename for the ONNX model 

65.onnx_file_pg = ('EHVR_RES_pg_MF2013.onnx') 

66. 

67.# Define the path to the input CSV file 

68.input_folder = ("MTE Database/GMM/all/pEHVR_test_pg.csv") 

69. 

70.# Load the ONNX model 

71.model_file = load_onnx_model(onnx_file_pg) 

72.sess = rt.InferenceSession(model_file) 

73.# Retrieve the model's input and output node names 

74.input_name = sess.get_inputs()[0].name 

75.output_name = sess.get_outputs()[0].name 

76. 

77.# Prepare the test data from the DataFrame 

78.X_test = dt[['Basemodel_PGA','Basemodel_PGV', 

79.      '0.100Hz', '0.105Hz', '0.111Hz', '0.118Hz', '0.125Hz', '0.133Hz',  

80.       '0.143Hz', '0.154Hz', '0.167Hz', '0.182Hz', '0.200Hz', '0.222Hz', 

81.       '0.250Hz', '0.286Hz', '0.333Hz', '0.400Hz', '0.455Hz', '0.500Hz', 

82.       '0.588Hz', '0.667Hz', '0.769Hz', '0.833Hz', '0.909Hz', '1.000Hz', 

83.       '1.111Hz', '1.250Hz', '1.429Hz', '1.667Hz', '2.000Hz', '2.222Hz', 

84.       '2.500Hz', '2.857Hz', '3.333Hz', '4.000Hz', '4.545Hz', '5.000Hz', 

85.       '6.667Hz', '7.692Hz', '8.333Hz', '9.091Hz', '10.000Hz', '11.111Hz'

, 

86.       '12.500Hz', '14.286Hz', '16.667Hz', '20.000Hz']].values 

87. 

88.# Create an empty DataFrame to store prediction results 

89.Y_result_PG = pd.DataFrame() 

90. 

91.# Iterate through each row of test data and make predictions using the ON

NX model 

92.for row in X_test: 

93.    # Run prediction and reshape the data as required by the model 

94.    pred_onx = sess.run([output_name], {input_name: row.reshape(1, 48).as

type(np.float32)})[0] 

95.    # Append predictions to the result DataFrame 
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96.    Y_result_PG = pd.concat([Y_result_PG, pd.DataFrame(pred_onx)], ignore

_index=True) 

97. 

98.# Set the column names for the prediction results 

99.Y_result_PG.columns = ['pre_DNN_PGA', 'pre_DNN_PGV'] 

100. 

101.# Re-read the complete CSV file to ensure all data is available 

102.X_temp = dt 

103. 

104.# Merge the prediction results with the original data 

105.result = pd.concat([X_temp, Y_result_PG], axis=1) 

106. 

107.# Specify another model file 

108.onnx_file_sa = ('EHVR_RES_sa_MF2013.onnx') 

109. 

110.# Load the second ONNX model 

111.model_file = load_onnx_model(onnx_file_sa) 

112.sess = rt.InferenceSession(model_file) 

113.input_name = sess.get_inputs()[0].name 

114.output_name = sess.get_outputs()[0].name 

115. 

116.# Define the test data file 

117.test_file = input_folder 

118.# Read the CSV file and prepare the test data 

119.X_test_sa = dt[['Basemodel_0.05', 'Basemodel_0.06', 'Basemodel_0.07', 'Ba

semodel_0.08', 'Basemodel_0.09', 'Basemodel_0.1',  

120.                'Basemodel_0.11', 'Basemodel_0.12', 'Basemodel_0.13', 'Ba

semodel_0.15',  'Basemodel_0.2', 'Basemodel_0.22',  

121.                'Basemodel_0.25', 'Basemodel_0.3', 'Basemodel_0.35', 'Bas

emodel_0.4', 'Basemodel_0.45', 'Basemodel_0.5',  

122.                'Basemodel_0.6', 'Basemodel_0.7', 'Basemodel_0.8', 'Basem

odel_0.9', 'Basemodel_1', 'Basemodel_1.1',  

123.                'Basemodel_1.2', 'Basemodel_1.3', 'Basemodel_1.5', 'Basem

odel_1.7', 'Basemodel_2', 'Basemodel_2.2',  

124.                'Basemodel_2.5', 'Basemodel_3', 'Basemodel_3.5', 'Basemod

el_4', 'Basemodel_4.5', 'Basemodel_5', 



Chapter 7. Appendix 

191 

 

125.                'Basemodel_5.5', 'Basemodel_6', 'Basemodel_6.5', 'Basemod

el_7', 'Basemodel_7.5', 'Basemodel_8',  

126.                'Basemodel_8.5', 'Basemodel_9', 'Basemodel_9.5', 'Basemod

el_10', 

127. 

128.                  '0.100Hz', '0.105Hz', '0.111Hz', '0.118Hz', '0.125Hz', 

'0.133Hz',  

129.                   '0.143Hz', '0.154Hz', '0.167Hz', '0.182Hz', '0.200Hz',

 '0.222Hz', 

130.                   '0.250Hz', '0.286Hz', '0.333Hz', '0.400Hz', '0.455Hz',

 '0.500Hz', 

131.                   '0.588Hz', '0.667Hz', '0.769Hz', '0.833Hz', '0.909Hz',

 '1.000Hz', 

132.                   '1.111Hz', '1.250Hz', '1.429Hz', '1.667Hz', '2.000Hz',

 '2.222Hz', 

133.                   '2.500Hz', '2.857Hz', '3.333Hz', '4.000Hz', '4.545Hz',

 '5.000Hz', 

134.                   '6.667Hz', '7.692Hz', '8.333Hz', '9.091Hz', '10.000Hz'

, '11.111Hz', 

135.                   '12.500Hz', '14.286Hz', '16.667Hz', '20.000Hz']].value

s 

136. 

137.# Create an empty DataFrame to store the prediction results for spectral 

accelerations 

138.Y_result_sa = pd.DataFrame() 

139. 

140.# Iterate through each row of test data for spectral accelerations and ma

ke predictions using the ONNX model 

141.for row in X_test_sa: 

142.    # Run prediction and reshape the data as required by the model 

143.    pred_onx = sess.run([output_name], {input_name: row.reshape(1, 92).as

type(np.float32)})[0] 

144.    # Append predictions to the result DataFrame 

145.    Y_result_sa = pd.concat([Y_result_sa, pd.DataFrame(pred_onx)], ignore

_index=True) 

146. 
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147.# Set the column names for the prediction results for spectral accelerati

ons 

148.Y_result_sa.columns = ['pre_DNN_0.05', 'pre_DNN_0.06', 'pre_DNN_0.07', 'p

re_DNN_0.08', 'pre_DNN_0.09', 'pre_DNN_0.1',  

149.                        'pre_DNN_0.11', 'pre_DNN_0.12', 'pre_DNN_0.13', '

pre_DNN_0.15',  'pre_DNN_0.2', 'pre_DNN_0.22',  

150.                        'pre_DNN_0.25', 'pre_DNN_0.3', 'pre_DNN_0.35', 'p

re_DNN_0.4', 'pre_DNN_0.45', 'pre_DNN_0.5',  

151.                        'pre_DNN_0.6', 'pre_DNN_0.7', 'pre_DNN_0.8', 'pre

_DNN_0.9', 'pre_DNN_1', 'pre_DNN_1.1',  

152.                        'pre_DNN_1.2', 'pre_DNN_1.3', 'pre_DNN_1.5', 'pre

_DNN_1.7', 'pre_DNN_2', 'pre_DNN_2.2',  

153.                        'pre_DNN_2.5', 'pre_DNN_3', 'pre_DNN_3.5', 'pre_D

NN_4', 'pre_DNN_4.5', 'pre_DNN_5', 

154.                        'pre_DNN_5.5', 'pre_DNN_6', 'pre_DNN_6.5', 'pre_D

NN_7', 'pre_DNN_7.5', 'pre_DNN_8',  

155.                        'pre_DNN_8.5', 'pre_DNN_9', 'pre_DNN_9.5', 'pre_D

NN_10'  ] 

156. 

157.# Merge the prediction results with the original data to get the final re

sult 

158.result = pd.concat([result, Y_result_sa], axis=1) 

159. 

160.# Prepare a list of frequencies to be used in final calculations 

161.fre_list = ['PGA', 'PGV', 

162.            '0.05', '0.06', '0.07', '0.08', '0.09', '0.1', '0.11', '0.12'

, '0.13', '0.15',  

163.            '0.2', '0.22', '0.25', '0.3', '0.35', '0.4', '0.45', '0.5', '

0.6',           

164.            '0.7', '0.8', '0.9', '1', '1.1', '1.2', '1.3', '1.5', '1.7', 

'2', '2.2',           

165.            '2.5', '3', '3.5', '4', '4.5', '5',          

166.            '5.5', '6', '6.5', '7', '7.5', '8', '8.5', '9', '9.5', '10'] 

167. 

168.# Perform the final calculation by adding the base model result to the pr

ediction result 
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169.for fre in fre_list: 

170.    result[f'Final_{fre}'] = result[f'Basemodel_{fre}'] + result[f'pre_DN

N_{fre}'] 

171. 

172.# Generate the output file name from the original data file name 

173.base_name = os.path.basename(dt_file) 

174.output_file_name = f"result_{base_name}" 

175.# Save the final result DataFrame to a CSV file in the specified output f

older 

176.result.to_csv(os.path.join(output_folder, output_file_name), index=False,

 float_format='%.6f') 

177. 

178.# Define the frequencies for the data transformation 

179.frequencies = [ 

180.    'PGA', 'PGV', '0.05', '0.06', '0.07', '0.08', '0.09', '0.1', '0.11', 

'0.12', '0.13', '0.15', 

181.    '0.2', '0.22', '0.25', '0.3', '0.35', '0.4', '0.45', '0.5', '0.6', 

182.    '0.7', '0.8', '0.9', '1', '1.1', '1.2', '1.3', '1.5', '1.7', '2', '2.

2', 

183.    '2.5', '3', '3.5', '4', '4.5', '5', 

184.    '5.5', '6', '6.5', '7', '7.5', '8', '8.5', '9', '9.5', '10' 

185.] 

186. 

187.# Prepare the transformed data 

188.output_data = [] 

189.for index, row in result.iterrows(): 

190.    base_info = row[['site_code', 'mw', 'fault_dist', 'eq_location_type_i

d']] 

191.    for freq in frequencies: 

192.        new_row = { 

193.            'site_code': base_info['site_code'], 

194.            'mw': base_info['mw'], 

195.            'fault_dist': base_info['fault_dist'], 

196.            'eq_location_type_id': base_info['eq_location_type_id'], 

197.            'fre': freq, 

198.            'Basemodel': row[f'Basemodel_{freq}'], 
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199.            'pre_DNN': row[f'pre_DNN_{freq}'], 

200.            'Final': row[f'Final_{freq}'] 

201.        } 

202.        output_data.append(new_row) 

203. 

204.# Convert to DataFrame 

205.output_df = pd.DataFrame(output_data) 

206.output_df_name = f"result_all_{base_name}" 

207.output_df.to_csv(os.path.join(output_folder, output_df_name), index=False

, float_format='%.6f') 

208. 

209.print(f"Results have been saved as {output_folder}/{output_file_name}") 

210.print(f"Results have been saved as {output_folder}/{output_df_name}") 

211.input() 
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