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Abstract

The Universal Seesaw Model is an extension of the Standard Model (SM) that aims

to explain the mass hierarchy problem between fermions by introducing heavy vector-

like fermions (VLFs). These VLFs mix with the SM fermions, providing a seesaw-like

mechanism that naturally explains the small masses of the light quarks and leptons

while accommodating the heavy masses of the third family quarks. In addition,

flavor-changing neutral currents (FCNC) are present at the tree level.

In this thesis, we present the study of the quark sector of the universal seesaw

model with SU(2)L × SU(2)R × U(1)Y′ gauge symmetry in the massless case of the

two lightest quark families. This model aims to explain the mass hierarchy of the

third family quark by introducing a vector-like quark (VLQ) partner for each quark.

In this model, we introduce SU(2)L and SU(2)R Higgs doublets.

We derive the Lagrangian of the model explicitly for the quark sector, Higgs sec-

tor, and kinetic terms of the gauge fields. Starting from a Lagrangian invariant under

SU(2)L × SU(2)R × U(1)Y′ , we systematically present the Lagrangian at each stage

of symmetry breaking. After the SU(2)R Higgs doublet acquires a non-zero vacuum

expectation value (vev), the Lagrangian becomes invariant under the SM gauge sym-

metry, and further breaking to U(1)em occurs when the SU(2)L Higgs doublet acquires

its vev. At each stage of the symmetry breaking, we present the Lagrangian with the

remaining gauge symmetry. Additionally, we investigate the flavor-changing neutral

currents (FCNC) of Higgs (h) and Z-boson in the interaction with the top, heavy

top, bottom, and heavy bottom quark.
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Chapter 1

Introduction

1.1 Background

The Standard Model (SM) of particle physics is the most successful framework for

describing the fundamental elementary particles and their interactions. The precision

test measurements conducted at the Large Hadron Collider (LHC), Large Electron-

Positron Collider (LEP), and other facilities have validated the model’s predictions to

an extraordinary degree of accuracy. The discovery of the Higgs boson by the ATLAS

[1] and CMS [2] experiments in 2012 confirmed the existence of all elementary particles

predicted by the SM.

Despite its successes, the Standard Model (SM) has limitations. Several phenom-

ena remain unexplained, such as the origin of neutrino mass. In the SM, neutrinos

are massless. However, experimental results of neutrino oscillation [3–6] indicate that

neutrinos have non-vanishing mass. Another mystery is the observational evidence

from phenomena such as galaxy rotation curves and gravitational lensing, which sup-

ports the existence of dark matter [7].

Moreover, the SM does not fully explain particle-antiparticle asymmetry [10].

Experiments such as Belle [8] and BaBar [9] have studied CP violation in B meson

decay to uncover the imbalance of particles and antiparticles. Another issue is the

fermion mass hierarchy, which leads to unnatural fine-tuning of the Yukawa couplings.

Consequently, many physicists attempt to address these issues by exploring theories

beyond the Standard Model.

One of the intriguing aspects is the quark mass hierarchy. The Particle Data

Group (PDG) provides recent data on quark masses [11]. Using the following tree-

1
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Table 1.1: Quark masses and their corresponding Yukawa couplings. The values of mu, md,
and ms are from MS at μ = 2 GeV, mc and mb are from MS at μ = m, and mt is from
direct measurement. v = 246.22 GeV is used. Data from Ref.[11].

Quark mass Yukawa coupling
mu = 2.16 MeV 1.24× 10−5

md = 4.70 MeV 2.7× 10−5

ms = 93.5 MeV 5.37× 10−4

mc = 1.273 GeV 7.31× 10−3

mb = 4.183 GeV 2.4× 10−2

mt = 172.57 GeV 0.99

level mass of quark (mq),

mq =
ySMq√
2
v, (1.1)

where q ∈ {u, d, c, s, b, t} and v is the vacuum expectation value of SM Higgs, one

can obtain the SM Yukawa coupling of quark q, denoted as ySMq . The list of Yukawa

couplings for the corresponding quark masses is given in Table 1.1. One can see that

the range of Yukawa couplings for each quark is very large.

The seesaw mechanism is a well-known approach to explain the smallness of neu-

trino masses [12–19]. It introduces heavy right-handed neutrinos that mix with left-

handed neutrinos, giving them a small mass. This inspired the construction of a

similar model, which can be applied to other cases. The universal seesaw model

(USM) [20–35], is an extension of the SM that applies a seesaw-like mechanism to

the quark sector to solve the mass hierarchy problem. For example, the small mass

of the up quark can be explained with a tiny ratio of SU(2)R breaking scale and a

vector-like quark (VLQ) with mass parameter MU [36]. The corresponding Yukawa

coupling for up quark is given by a seesaw-like formula,

ySMu =
yuL

vRyuR√
2MU

� vR√
2MU

� 10−5 (1.2)

where yuL
and yuR

are the Yukawa coupling between SM quark and the VLQ partner.

These Yukawa couplings are taken yuL
� yuR

� O(1). The top quark mass in the

seesaw model of quark has been studied in Ref [27–29]. From Eq.(1.2), introducing

vector-like quarks (VLQs) into this model is essential.
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VLQs have left- and right-handed components that transform identically under

some gauge group. Using this property, they can mix with SM quarks, resulting in

modified mass matrices that can be diagonalized and generate a tiny seesaw-like mass.

Various studies about the addition of VLQ to SM have been explored, for example,

introducing one down-type VLQ isosinglet [37], one up-type VLQ isosinglet [38, 39],

and both one up-type and down type VLQ isosinglet [40]. The presence of VLQs

also has implications for flavor physics, as they can introduce flavor-changing neutral

currents (FCNCs) [41] and weak-basis invariants have been analyzed to understand

the flavor structures [42, 43]. Effective field theory approaches to VLQs have been

studied to understand their contributions to low-energy observables [36, 44]. A review

of the theory and phenomenology of isosinglet VLQs can be found in Ref.[45].

From the background that has been pointed out above, we aim to study the quark

sector of the universal seesaw model with SU(2)L × SU(2)R × U(1)Y′ gauge symmetry,

focusing on the massless case of the two lightest quark families. This model aims to

explain the mass hierarchy of the third family quark by introducing a vector-like

quark (VLQ) partner for each quark. In our model, we introduce SU(2)L and SU(2)R

Higgs doublets.

We derive explicitly the Lagrangian for the quark sector, Higgs sector, and kinetic

terms of the gauge fields, starting from the Lagrangian, which is invariant under

SU(2)L × SU(2)R × U(1)Y′ gauge symmetry. At each stage of the symmetry breaking,

we present the Lagrangian with the remaining gauge symmetry. Additionally, we

investigate the flavor-changing neutral currents (FCNC) of Higgs (h) and Z-boson in

the interaction with the top, heavy top, bottom, and heavy bottom quark.

1.2 Outline of the Thesis

The outline of this thesis is as follows. In chapter 2, some parts of the Standard

Model (SM) is reviewed. In chapter 3, we reviewed the universal seesaw model. We

introduce the particle contents and the Lagrangian of our model in section 3.3 based

on Ref.[46].

After these chapters, we present our results based on Ref.[46]. Chapter 4 focuses

on the quark sector and Yukawa interactions. We explain the derivation of the La-

grangian of the kinetic terms and Yukawa interactions. Starting with the Lagrangian

which is invariant under SU(2)L × SU(2)R × U(1)Y′ , in each stage of the symmetry

breaking we present the Lagrangian with the remaining gauge symmtery. The quark

mass eigenvalues and the identification of FCNC within the massive third family
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quarks and their VLQ partners are discussed.

Chapter 5 discusses the Higgs sector of this model. The kinetic terms and Higgs

potential are also derived step by step. In the end, we classify the terms based on

the number of the fields in the term as linear, quadratic, cubic, and quartic, ensuring

a clear understanding of the interactions of the gauge sector. In addition, we also

provide the exact diagonal mass of Z − Z ′ bosons and h−H bosons.

The kinetic terms of gauge fields are discussed in Chapter 6. In the final deriva-

tion, we show the difference between our model and SM. In Chapter 7, we presented

our result about the hierarchy of VLQ’s mass parameters, the non-zero vacuum ex-

pectation value of SU(2)L Higgs doublet (vL), and the non-zero vacuum expectation

value of SU(2)R Higgs doublet (vR). In chapter 8 we analyze the interaction between

Higgs and Z-boson with the quarks. This leads to a discussion about flavor-changing

neutral currents in this model.



Chapter 2

Standard Model

In this chapter, the Standard Model (SM) is reviewed. The main part of the review

is the quark sector. For a more comprehensive review, see, e.g., Ref [47, 48]

2.1 Introduction

The SM is based on the gauge group SU(3)C × SU(2)L × U(1)Y. The SU(3)C de-

scribes the strong interaction with gluon as the corresponding gauge bosons. This

gauge group remains unbroken so that gluons are massless. This interaction binds

quarks together to form protons, neutrons, and other hadrons. SU(2)L × U(1)Y de-

scribes the electroweak interaction, which unifies the electromagnetic and weak in-

teractions. After this electroweak symmetry breaking, the gauge bosons mediating

the weak interactions, W± and Z bosons, become massive. On the other hand, the

gauge boson of the electromagnetic interaction, the photon, remains massless. This

spontaneous symmetry breaking is explained by the Higgs mechanism, which intro-

duces the Higgs field. This electroweak symmetry breaking also leads to a conserved

quantity: electromagnetic charge. The relation between electromagnetic charge (Q),

third component weak isospin (I3), and hypercharge Y is,

Q = I3 + Y. (2.1)

2.2 Particle Contents

The particle contents of the SM according to their transformation properties under

SM gauge groups are shown in Table (2.1). SM categorizes fermions into three gen-

erations, where each successive generation is heavier than the previous one. These

5
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Table 2.1: The particle content with their quantum numbers under the SM gauge groups.
The index i ∈ {1, 2, 3} denotes the generation of quarks. The index α ∈ {e, μ, τ} denotes
the flavor of charged leptons. The symbols Ga

μ,W
I
μ , and Bμ with a ∈ {1, . . . , 8}, I ∈ {1, 2, 3}

represent the SU(3)C, SU(2)L, and U(1)Y corresponding gauge bosons, respectively. The
symbol Φ represents the SU(2)L Higgs doublet.

Fields SU(3)C SU(2)L U(1)Y

qiL =

(
ui
L

diL

)
3 2 1/6

ui
R 3 1 2/3

diR 3 1 −1/3

Lα
L =

(
να
L

�αL

)
1 2 −1/2

�αR 1 1 −1

Φ =

(
φ+

φ0

)
1 2 1/2

Ga
μ 8 1 0

W I
μ 1 3 0

Bμ 1 1 0

fermions are called leptons and quarks. Leptons and quarks are both spin 1/2 par-

ticles, but they are distinguished by their interactions. Leptons do not interact with

gluons, so they do not have strong interactions. Quarks carry color charge (red, blue,

green) and interact via the strong interactions. The L and R subscripts denote the

left-handed and right-handed chirality components, respectively.

The left-handed components of both leptons and quarks transform as doublets

under SU(2)L gauge group, whereas their right-handed components are singlet under

this group. The three generations of leptons consist of the electron, muon, and

tau, which have an electromagnetic charge Q� = −1, along with their corresponding

neutrinos which is neutral. In the Standard Model, only left-handed neutrinos exist.

Both component of left-handed quarks carry non-zero electromagnetic charge. The

up-type quarks have Qu = 2/3, while the down-type quarks have Qd = −1/3.

Moreover, SM includes spin-1 vector bosons that mediated the fundamental inter-

actions. Each local gauge symmetry has corresponding gauge bosons whose number

matches the number of the symmetry’s generators, and they transform according to
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the adjoint representations of the corresponding gauge groups. The gauge bosons Ga
μ

correspond to the SU(3)C gauge group, where a ∈ {1, . . . , 8}, and are called gluons.

The gauge bosons W I
μ correspond to the SU(2)L gauge group, where I ∈ {1, 2, 3}.

Lastly, Bμ is the gauge boson corresponding to the U(1)Y gauge group. The SM also

includes a spin-0 particle known as the Higgs boson which is a part of the SU(2)L

Higgs doublet Φ. When the neutral component of the Higgs field acquires non-zero

vacuum expectation value (vev), it breaks the SU(2)L × U(1)Y symmetry down to

U(1)em. Through this spontaneous symmetry mechanism, the W I
μ and Bμ are mixed

and become the massive W± and Z bosons, and the massless spin-1 photon (γ).

2.3 Quark Sector of the Standard Model

The Lagrangian of the SM quark sector which is invariant under SM gauge groups is

as follows,

Lq
SM = Lq

kin + Lq
Yuk, (2.2)

where,

Lq,kin = qiLiγ
μDμq

i
L + ui

Riγ
μDμu

i
R + d

i

Riγ
μDμd

i
R (2.3)

Lq
Yuk = −qiL(y

SM
u )ijΦ̃uj

R − qiL(y
SM
d )ijΦdjR − h.c.. (2.4)

The covariant derivatives in Eq.(2.3) are defined as (excluding the SU(3)C part),

Dμq
i
L =

(
∂μ + igW I

μ

τ IL
2

+ ig′YqBμ

)
qiL (2.5)

Dμu
i
R = (∂μ + ig′YuR

Bμ) u
i
R (2.6)

Dμd
i
R = (∂μ + ig′YdRBμ) d

i
R, (2.7)

where g is SU(2)L gauge coupling, τ I is the Pauli matrix, g′ is U(1)Y gauge coupling,

Y ∈ {Yq, YuR
, YdR} are the corresponding hypercharge for each quark fields. The

charge conjugation of the Higgs field is defined as Φ̃ = iτ 2Φ∗. In Eq.(2.4), ySMu and

ySMd are 3×3 matrices for up-type and down-type Yukawa matrices, respectively. The

electroweak gauge bosons (W I
μ and Bμ) are not the physical eigenstates we observed.

Through the spontaneously symmetry breaking, W 1
μ and W 2

μ mix to form the charged
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W±
μ bosons which are defined as,

W±
μ =

1√
2
(W 1

μ ∓W 2
μ). (2.8)

W 3
μ and Bμ mix together to form the neutral Z boson and the photon Aμ with the

following transformation,(
W 3

μ

Bμ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Zμ

Aμ

)
, (2.9)

where θW denotes as weak mixing angle and is called as Weinberg angle. It has the

following expression with the weak gauge coupling g and g′,

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (2.10)

Furthermore, the electromagnetic coupling e is related to the gauge couplings g and

g′ as,

e = g sin θW = g′ cos θW . (2.11)

Therefore, using Eqs.(2.8),(2.9),(2.11), and (2.1), the covariant derivatives in Eqs.(2.5),

(2.6), and (2.7) are expressed as follows,

Dμq
i
L =

(
∂μ + ieQqLAμ + i

g√
2

(
W+

μ τ+ +W−
μ τ−

)
+i

g

2 cos θW

(
τ 3 − 2 sin2 θWQqL

)
Zμ

)
qiL (2.12)

Dμu
i
R =

(
∂μ + ieQuAμ − i

g

cos θW
sin2 θWQuZμ

)
ui
R (2.13)

Dμd
i
R =

(
∂μ + ieQdAμ − i

g

cos θW
sin2 θWQdZμ

)
diR, (2.14)

where,

QqL =

(
2
3

0

0 −1
3

)
, Qu =

2

3
, Qd = −1

3
, τ± =

1

2
(τ 1 ± iτ 2). (2.15)
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Finally, using Eqs.(2.12),(2.13), and (2.14), the Lagrangian in Eq.(2.3) becomes,

Lq,kin = uiiγμ∂μu
i + diiγμ∂μd

i

− e

(
2

3
uiγμui − 1

3
diγμdi

)
Aμ

− g√
2

(
ui
Lγ

μdiLW
+
μ + diLγ

μui
LW

−
μ

)
− g

2 cos θW

{(
ui
Lγ

μui
L − diLγ

μdiL

)
− 2 sin2 θW

(
2

3
uiγμui − 1

3
diγμdi

)}
Zμ,

(2.16)

where we define ui = ui
L+ui

R and di = diL+diR. The first line of Eq.(2.16) is the kinetic

terms of up-type and down-type quarks. The second line details the electromagnetic

interaction between quarks mediated by photon. The third line describes the charged

weak currents, where the left-handed up-type and down-type quarks interact with the

W± bosons. Finally, the fourth line explains the neutral weak currents, mediated by

Z boson.

We define electromagnetic and weak isospin current in the quark sector of SM as

jμem,q and jμ3,q with following expressions,

jμem,q =
2

3
uiγμui − 1

3
diγμdi (2.17)

jμ3,q = ui
Lγ

μui
L − diLγ

μdiL. (2.18)

By using Eqs.(2.17) and (2.18), the Lagrangian in Eq.(2.16) can be written as,

Lq,kin = uiiγμ∂μu
i + diiγμ∂μd

i − ejμem,qAμ

− g√
2

(
ui
Lγ

μdiLW
+
μ + diLγ

μui
LW

−
μ

)
− g

2 cos θW

(
jμ3,q − 2 sin2 θW jμem,q

)
Zμ. (2.19)

2.3.1 Generating Quark Masses

The symmetry breaking SU(2)L × U(1)Y into U(1)em occurs when the neutral com-

ponent of the Higgs field acquires non-zero vev with following form,

Φ =

(
φ+

φ0

)
→ 〈Φ〉 = 1√

2

(
0

v

)
. (2.20)
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The Yukawa interaction in Eq.(2.4) becomes,

Lq
Yuk → LSM

mass = −ui
L(mu)

ijuj
R − diL(md)

ijdjR − h.c., (2.21)

where,

(mu)
ij =

v√
2
(ySMu )ij (2.22)

(md)
ij =

v√
2
(ySMd )ij. (2.23)

The mass matrices in Eqs.(2.22) and (2.23) is diagonalized by changing from the

flavor eigenstate to physical mass eigenstate of quark fields using the following trans-

formations,

ui
L =

3∑
j=1

(KuL
)ij(um

L )
j, (2.24)

ui
R =

3∑
j=1

(KuR
)ij(um

R )
j, (2.25)

diL =
3∑

j=1

(KdL)
ij(dmL )

j, (2.26)

diR =
3∑

j=1

(KdR)
ij(dmR )

j, (2.27)

where KuL
, KuR

, KdL , and KdR are 3 × 3 unitary matrices. The diagonalization of

quark mass matrices in Eqs.(2.22) and (2.23) reads,

(K†
uL
)ji(mu)

ij(KuR
)jk = (mdiag

u )jjδjk, (2.28)

(K†
dL
)ji(md)

ij(KdR)
jk = (mdiag

d )jjδjk, (2.29)

where,

mdiag
u = diag(mu,mc,mt), (2.30)

mdiag
d = diag(md,ms,mb), (2.31)

are the physical up-type and down-type quark masses, respectively. Finally, after

changing from the flavor eigenstate to the mass eigenstate using Eqs.(2.24),(2.25),
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(2.26), and (2.27), respectively, the Lagrangian in Eq.(2.21) becomes,

LSM
mass = −(um

L )
j(mdiag

u )jj(um
R )

j − (dmL )
j(mdiag

d )jj(dmR )
j − h.c.

= −(um)j(mdiag
u )jj(um)j − (dm)j(mdiag

d )jj(dm)j, (2.32)

where by including the Hermitian conjugate terms, we define um = um
L + um

R and

dm = dmL + dmR .

2.3.2 Charged Currents

Extracting the charged current Lagrangian from Eq.(2.19) as follows,

Lq,kin ⊃ LSM,q
CC = − g√

2

(
ui
Lγ

μdiLW
+
μ + diLγ

μui
LW

−
μ

)
. (2.33)

Changing from the quark flavor eigenstate to the mass eigenstate using Eqs.(2.24)

and (2.26), the charged current Lagrangian in Eq.(2.33) becomes,

LSM,q
CC = − g√

2

(
(um

L )
jγμ(K†

uKd)
jk(dmL )

kW+
μ + (dmL )

jγμ(K†
dKu)

jk(um
L )

kW−
μ

)
= − g√

2

(
(um

L )
jγμ(V SM

CKM)
jk(dmL )

kW+
μ + (dmL )

jγμ(V SM†
CKM)

jk(um
L )

kW−
μ

)
, (2.34)

where j, k ∈ {1, 2, 3}. The mixing matrix in Eq.(2.34) is called Cabibbo-Kobayashi-

Maskawa (CKM) matrix which is defined as,

V SM
CKM = K†

uKd. (2.35)

In Eq.(2.34), the CKM matrix is a general 3 × 3 unitary matrix parameterized by

three mixing angles and six phases. However, we can remove the unphysical phases

of the CKM matrix.

One has the freedom to rephase the quark field in the mass basis, which leaves

the mass terms of quarks in Eq.(2.32) unchanged. We define the following phase

transformations,

(um
L )

j = eiφ
j
u(ûm

L )
j, (2.36)

(um
R )

j = eiφ
j
u(ûm

R )
j, (2.37)

(dmL )
j = eiφ

j
d(d̂mL )

j, (2.38)

(dmR )
j = eiφ

j
d(d̂mR )

j. (2.39)
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By applying Eqs.(2.36) and (2.38), the charged current in Eq.(2.34) becomes

LSM,q
CC = − g√

2

(
(ûm

L )
jγμ(V̂ SM

CKM)
jk(d̂mL )

kW+
μ + (d̂mL )

jγμ(V̂ SM†
CKM)

jk(ûm
L )

kW−
μ

)
, (2.40)

where V̂ SM
CKM is the rephased CKMmatrix. Considering the rephasing and the unitarity

of CKM Matrix, the number of parameters of the Ng ×Ng CKM matrix is,

Number of mixing angle =
1

2
Ng(Ng − 1) (2.41)

Number of physical phase =
1

2
(Ng − 1)(Ng − 2) (2.42)

where Ng is the number of generations. In SM with Ng = 3, the CKM matrix has

three mixing angles and one physical phase [49, 50].

2.3.3 Weak Neutral Currents

The electromagnetic and weak isospin current in Eqs.(2.17) and (2.18) transform into

the expression in mass basis using Eqs.(2.24)-(2.27) and are rephased using Eqs.(2.36)-

(2.39). They become,

jμem,q =
2

3
(ûm)iγμ(ûm)i − 1

3
(d̂m)iγμ(d̂m)i (2.43)

jμ3,q = (ûm
L )

iγμ(ûm
L )

i − (d̂mL )
iγμ(d̂mL )

i. (2.44)

The weak neutral current Lagrangian extracted from Eq.(2.19) is:

Lq,kin ⊃ LSM,q
NC = − g

2 cos θW

(
jμ3,q − 2 sin2 θW jμem,q

)
Zμ. (2.45)

By substituting Eqs.(2.43) and (2.44) into Eq.(2.45), we see that the weak neutral

current interaction does not involve any mixing of quark flavors. In the SM, flavor-

changing neutral currents (FCNCs) are absent at the tree level.

Moreover, the weak neutral current Lagrangian in Eq.(2.45) can be expressed in

the following forms,

LSM,q
NC = − g

2 cos θW

[∑
α

qαγμ
(
gαV − gαAγ

5
)
qα

]
Zμ, (2.46)

where α ∈ {(ûm)i, (d̂m)i}; gV and gA are the vector and axial-vector couplings, re-
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spectively. The definition of these couplings are as follows,

gαV = (τ 3L)
α − 2Qα sin2 θW , (2.47)

gαA = (τ 3L)
α, (2.48)

where τ 3L = 1/2 for α = (ûm)i and τ 3L = −1/2 for α = (d̂m)i. Qα is the electromagnetic

charge which is written in Eq.(2.15).



Chapter 3

Universal Seesaw Model (USM)

In this chapter, we explain the Universal Seesaw Model (USM). We begin by intro-

ducing the general framework of the USM. After that, we introduce our model.

3.1 Neutrino and the Seesaw Mechanism

Historically, the Standard Model (SM) includes only left-handed neutrinos and right-

handed anti-neutrinos [51–53]. This was consistent with early experimental observa-

tions, which did not indicate the presence of right-handed neutrinos [54–56]. However,

the discovery of neutrino oscillations, where neutrinos change flavor as they propa-

gate, provided clear evidence that neutrinos have a small but non-zero mass [3–6].

This observation required an extension of the SM, as the original framework could

not accommodate massive neutrinos.

One of the well-known explanations for the tiny masses of neutrinos is the seesaw

mechanism [12–19]. The type I Seesaw mechanism introduces heavy right-handed

neutrinos that is singlet under the SM gauge group, but can mix with the left-handed

neutrinos [19]. The mass matrix for neutrinos is then modified, and the smallness

of the observed neutrino masses is achieved through the large Majorana mass term

for the right-handed neutrinos. The large mass scale of these right-handed neutrinos

leads to a suppression of the neutrino masses, making them small.

3.2 USM: General Framework

The Universal Seesaw Model (USM) extends the seesaw mechanism to explain the

mass hierarchy of all fermions, including quarks and charged leptons. In this model,

14
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each fermion acquires its mass through interactions with heavy singlet fermions, anal-

ogous to the right-handed neutrinos in the Type I Seesaw mechanism. These heavy

singlet fermions are often referred to as Vector Like Fermions (VLFs) because they

have both left-handed and right-handed components that transform identically under

the gauge group. These VLFs are singlet under SM gauge group. The mass terms for

the SM fermions arise from mixing with these heavy VLFs, leading to a seesaw-like

suppression of their masses.

Additionally, the gauge symmetry in the USM is usually extended to include an

additional gauge group, such as SU(2)R and U(1)B−L, alongside the SU(2)L gauge

group [24]. An additional Higgs field is required to break the new gauge symmetries.

This additional Higgs field is a doublet under the new gauge group SU(2)R, which

is different from the traditional left-right symmetric model that introduces a Higgs

bi-doublet [57, 58]. The spontaneous breaking of this extended symmetry leads to

the mass generation for both the SM fermions and the heavy VLFs.

Our model follows this general framework but focuses on the third family of quarks

to address their mass hierarchy. We also investigate the flavor-changing neutral cur-

rents (FCNCs) in our model.

3.3 USM: The Third Family Quark Framework

We consider an extension of SM with SU(3)C×SU(2)L × SU(2)R × U(1)Y′ gauge sym-

metry in the massless case of the two lightest quark families. Alongside of the SU(2)L

SM Higgs doublet (φL), we introduce a SU(2)R Higgs doublet (φR). Additionally,

the model incorporates one up-type and one down-type isosinglet vector-like quark

(VLQ), labeled as T and B, respectively. The charge convention adopted in this

model is as follows,

Q = I3L + I3R + Y ′, (3.1)

where Q, I3L(R) and Y ′ represent the electromagnetic charge, left (right) weak isospin,

and U(1)Y′ hypercharge, respectively. The particle contents and their corresponding

charge assignments under the model’s gauge group are detailed in Table 3.1.
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Table 3.1: Quark and Higgs fields with their quantum numbers under the SU(3)C ×
SU(2)L × SU(2)R ×U(1)Y′ gauge groups, where i ∈ {1, 2, 3} is the family index.

Quark and Higgs Fields SU(3)C SU(2)L SU(2)R U(1)Y′

qiL =

(
ui
L

diL

)
3 2 1 1/6

qiR =

(
ui
R

diR

)
3 1 2 1/6

TL,R 3 1 1 2/3

BL,R 3 1 1 −1/3

φL =

(
χ+
L

χ0
L

)
1 2 1 1/2

φR =

(
χ+
R

χ0
R

)
1 1 2 1/2

The Lagrangian of this model (excluding the QCD part) is as follows,

L = Lq + LH + Lgauge, (3.2)

Lq = qiLiγ
μDLμq

i
L + qiRiγ

μDRμq
i
R + T iγμDTμT +BiγμDBμB

−
(
Y 3
uL
q3Lφ̃LTR + Y 3

uR
TLφ̃

†
Rq

3
R + qiLy

i
dL
φLBR +BLy

i∗
dR
φ†
Rq

i
R + h.c.

)
− TLMTTR − BLMBBR − h.c., (3.3)

LH = (Dμ
LφL)

†(DLμφL) + (Dμ
RφR)

†(DRμφR)− V (φL, φR), (3.4)

Lgauge = −1

4
F a
LμνF

aμν
L − 1

4
F a
RμνF

aμν
R − 1

4
B′

μνB
′μν , (3.5)

where,

V (φL, φR) = μ2
Lφ

†
LφL + μ2

Rφ
†
RφR + λL(φ

†
LφL)

2 + λR(φ
†
RφR)

2 + 2λLR(φ
†
LφL)(φ

†
RφR),

(3.6)

DL(R)μq
i
L(R) =

(
∂μ + igL(R)

τa

2
W a

L(R)μ + ig′1Y
′
qB

′
μ

)
qiL(R), (3.7)

DL(R)μφL(R) =

(
∂μ + igL(R)

τa

2
W a

L(R)μ + ig′1Y
′
φB

′
μ

)
φL(R), (3.8)

DTμT =
(
∂μ + ig′1Y

′
TB

′
μ

)
T, (3.9)

DBμB =
(
∂μ + ig′1Y

′
BB

′
μ

)
B, (3.10)
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F a
Lμν = ∂μW

a
Lν − ∂νW

a
Lμ − gLε

abcW b
LμW

c
Lν , (3.11)

F a
Rμν = ∂μW

a
Rν − ∂νW

a
Rμ − gRε

abcW b
RμW

c
Rν , (3.12)

B′
μν = ∂μB

′
ν − ∂νB

′
μ. (3.13)

The Lagrangian in Eq.(3.2) is divided into three parts. The first part is the kinetic

terms of quark doublet and isosinglet VLQs, Yukawa interactions, and mass terms

of isosinglet VLQs, which are contained in Eq.(3.3). The second part is the kinetic

terms and potential of Higgs doublet which are contained in Eq.(3.4). The third part

is the kinetic terms of the gauge fields, which are written in Eq.(3.5).

The first line of Eq.(3.3) is the kinetic terms of quark doublet and isosinglet VLQs

where the definition of the covariant derivatives are written in Eqs.(3.7), (3.9) and

(3.10) respectively, where gL(R) is SU(2)L(R) gauge coupling, τa is the Pauli matrix,

g′1 is U(1)Y′ gauge coupling and Y ′ is the corresponding U(1)Y′ hypercharge. For the

Yukawa interaction part, one can choose in a weak-basis where the Yukawa couplings

of up-type quark doublet (Y 3
uL

and Y 3
uR
) are real positive numbers. In contrast, the

Yukawa couplings of down-type quark are general complex vectors as shown in the

second line of Eq.(3.3). The derivation of this weak-basis is briefly explained in

Appendix A. The family index for SM quarks is denoted as i = 1, 2, 3, the charge

conjugation of Higgs fields is defined as φ̃L(R) = iτ 2φ∗
L(R). In the third line of Eq.(3.3),

MT and MB are isosinglet VLQs mass parameters that we take as real numbers.

The first two terms of Eq.(3.4) are the kinetic terms of Higgs doublet where the

definition of the covariant derivatives are written in Eq.(3.8). The third term is the

Higgs potential which is shown in Eq.(3.6), containing the mass terms and quartic

interactions of Higgs doublet. The interaction between φL and φR is also included

in this term. Later φR and φL acquire non-zero vacuum expectation values (vevs)

denoted as vR and vL that break SU(2)R and SU(2)L respectively. They satisfy the

hierarchy, vR 
 vL.



Chapter 4

Quark Sector and Yukawa

Interactions

In this chapter, we derived the kinetic terms of quark doublet and isosinglet VLQs,

Yukawa interactions, and mass terms of isosinglet VLQs, as written in Eq. (3.3).

Once the SU(2)R Higgs doublet acquires non-zero vev, we obtain the Lagrangian

which is invariant under SM gauge symmetry. Furthermore, the SM gauge group is

subsequently broken down to U(1)em after SU(2)L Higgs doublet acquires non-zero

vev. Finally, we obtain the masses of top and bottom quarks, their heavy partners,

Z,Z ′, h, and H. Additionally, the derivation also accounts the flavor-changing neutral

currents (FCNCs) and the CKM matrix to be generated.

4.1 SU(2)R ×U(1)Y′ → U(1)Y

In this stage, the neutral scalar component of SU(2)R Higgs doublet acquires non-zero

vev and is expanded around the vev as follows,

φR =

(
χ+
R

χ0
R

)
=

1√
2

( √
2χ+

R

vR + hR + iχ3
R

)
, (4.1)

where vR is the non-zero vev. hR is the neutral CP-even state and χ3
R is the neutral

CP-odd state. The charged component is denoted as, χ+
R = 1√

2
(χ1

R+iχ2
R). In addition,

we rotate the gauge fields with the following transformation,(
B′

μ

W 3
Rμ

)
=

(
cos θR − sin θR

sin θR cos θR

)(
Bμ

ZRμ

)
, (4.2)

18
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where the mixing angle,

sin θR =
g′1√

g2R + g′21
, cos θR =

gR√
g2R + g′21

. (4.3)

We also define the SM U(1)Y gauge coupling as,

g′ = g′1 cos θR = gR sin θR. (4.4)

After this spontaneously symmtery breaking, the Lagrangian in Eq.(3.3) become,

Lq = qiLiγ
μDSMμq

i
L + TLiγ

μDSMμTL +BLiγ
μDSMμBL

+ ui
Riγ

μDSMμu
i
R + diRiγ

μDSMμd
i
R + TRiγ

μDSMμTR +BRiγ
μDSMμBR

− gR√
2
ui
Rγ

μdiRW
+
Rμ − h.c.

+ g′ tan θR

(
qiLγ

μYqq
i
L +

2

3
TLγ

μTL − 1

3
BLγ

μBL

)
ZRμ

−
{

gR
2 cos θR

(ui
Rγ

μui
R − diRγ

μdiR)− g′ tan θR

(
2

3
(ui

Rγ
μui

R + TRγ
μTR)

−1

3
(diRγ

μdiR +BRγ
μBR)

)}
ZRμ

− Y 3
uL
q3Lφ̃LTR − Y 3

uR

vR√
2
TLu

3
R − TLMTTR − h.c.

− Y 3
uR
TL

(
1√
2
u3
R(hR + iχ3

R)− d3Rχ
+
R

)
− h.c.

− qiLy
i
dL
φLBR − BLy

i∗
dR

vR√
2
diR − BLMBBR − h.c.

− BLy
i∗
dR

(
1√
2
diR(hR − iχ3

R) + ui
Rχ

−
R

)
− h.c., (4.5)

where i ∈ {1, 2, 3} is the family index and the SM covariant derivatives have following

expressions,

DSMμq
i
L =

(
∂μ + igL

τa

2
W a

Lμ + ig′YqLBμ

)
qiL, (4.6)

DSMμfu =

(
∂μ +

2

3
ig′Bμ

)
fu, (4.7)

DSMμfd =

(
∂μ − 1

3
ig′Bμ

)
fd, (4.8)
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where fu ∈ {ui
R, TL,R} and fd ∈ {diR, BL,R}. At this stage, U(1)Y hypercharge can

be obtained as following Eq.(3.1), Y = I3R + Y ′. In Eqs.(4.7) and (4.8), we write

the U(1)Y hypercharge of the corresponding fields explicitly. Next, we follow several

steps to reach the Lagrangian invariant under SU(2)L × U(1)Y gauge symmetry.

• Step 1: Rotate diR by the following transformation,

diR = (VdR)
ij(d′R)

j, (4.9)

where VdR is 3 × 3 unitary matrix, which related to Yukawa coupling parame-

terization as shown in Eq.(A.3),

ydR =

⎛⎜⎝ sin θdR sinφd
Re

iα1
dR

sin θdR cosφd
Re

iα2
dR

cos θdRe
iα3

dR

⎞⎟⎠Y 3
dR

= edR3
Y 3
dR
, (4.10)

VdR =
(

edR1
edR2

edR3

)
. (4.11)

If we multiply Eq.(4.11) by the Hermitian conjugate of Eq.(4.10) from the left,

it can be shown that the terms in Eq.(4.5) which proportional to complex vector

y∗dR are replaced by a real positive number Y 3
dR

multiply with δ3j. Then we can

extract the mass terms from the Lagrangian as follows,

Lq ⊃ Lmass = −TL

(
Y 3
uR

vR√
2

MT

)( u3
R

TR

)
− h.c.

− BL

(
Y 3
dR

vR√
2

MB

)( (d′R)
3

BR

)
− h.c. (4.12)

After doing transformation in Eq.(4.9), VdR appears as CKM-like matrix in the

right-handed charged current term,

Lq ⊃ LRCC = − gR√
2

3∑
i,j=1

ui
Rγ

μ(VdR)
ij(d′R)

jW+
Rμ − h.c. (4.13)

From Eq.(4.12), we can see that the first and second families are decoupled

from the Yukawa coupling. This lead to the fact that we have freedom to do

another U(2) transformation for the right-handed quark fields. This rotation

should keep the third family unchanged.
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• Step 2: Rotate ui
R and (d′R)

i by the following transformations,

ui
R =

3∑
j=1

(ŨuR
)ij(ũR)

j, (4.14)

(d′R)
i =

3∑
j=1

(W̃dR)
ij(d̃′R)

j, (4.15)

where ŨuR
and W̃dR are 3 × 3 unitary matrix and written in matrix form as

follows,

ŨuR
=

⎛⎜⎝ 0
UuR 0

0 0 1

⎞⎟⎠ , (4.16)

W̃dR =

⎛⎜⎝ 0
WdR 0

0 0 1

⎞⎟⎠ , (4.17)

with UuR
andWdR are 2×2 unitary matrices that rotate (u1

R, u
2
R) and ((d′R)

1, (d′R)
2),

respectively. By applying the transformations in Eqs.(4.14) and (4.15) to the

charged current in Eq.(4.13), we further define

ṼdR = Ũ †
uR
VdRW̃dR . (4.18)

As shown in Eq.(B.6), by choosing ŨuR
and W̃dR properly, the unphysical phases

and angles in VdR are removed and ṼdR has the following matrix form,

ṼdR =

⎛⎜⎜⎜⎝
1 0 0

0 cos θdR sin θdRe
i
α3
dR
2

0 − sin θdRe
i
α3
dR
2 cos θdRe

iα3
dR

⎞⎟⎟⎟⎠ . (4.19)

The details of the parameterization and the procedure for the removal of un-

physical phases and angles of VdR are shown in Appendix B.

• Step 3: Rotate (ũR)
α and (d̃′R)

α by the following transformations

(ũR)
α =

4∑
β=1

(W̃TR
)αβ(ũ′

R)
β, (4.20)
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(d̃′R)
α =

4∑
β=1

(W̃BR
)αβ(d̃′′R)

β, (4.21)

where α = {1, 2, 3, 4}, (ũR)
4 = TR, and (d̃′R)

4 = BR. The 4× 4 unitary matrices

W̃TR
and W̃BR

are expressed as follows,

W̃TR
=

(
I2 02

02 WTR

)
, (4.22)

W̃BR
=

(
I2 02

02 WBR

)
, (4.23)

where I2 and 02 are the 2 × 2 identity matrix and zero matrix, respectively.

The 2 × 2 submatrices WTR
and WBR

rotate ((ũR)
3, (ũR)

4) and ((d̃′R)
3, (d̃′R)

4),

respectively by following expressions,

(ũR)
i =

4∑
j=3

(WTR
)ij(ũ′

R)
j, (4.24)

(d̃′R)
i =

4∑
j=3

(WBR
)ij(d̃′′R)

j, (4.25)

where i ∈ {3, 4}. The explicit matrix form of WTR
and WBR

are as follows,

WTR
=

(
cos θTR

sin θTR

− sin θTR
cos θTR

)
, (4.26)

WBR
=

(
cos θBR

sin θBR

− sin θBR
cos θBR

)
, (4.27)

where the mixing angles have the following expressions,

cos θTR
=

MT

mu4

, sin θTR
=

Y 3
uR

mu4

vR√
2
, cos θBR

=
MB

md4

, sin θBR
=

Y 3
dR

md4

vR√
2
,

mu4 =

√
(Y 3

uR
)2v2R
2

+M2
T , md4 =

√
(Y 3

dR
)2v2R
2

+M2
B. (4.28)

By using Eqs.(4.24) and (4.25), the mass terms in Eq.(4.12) transform into,

Lq ⊃ Lmass = −mu4TL(ũ
′
R)

4 −md4BL(d̃
′′
R)

4 − h.c. (4.29)
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The right-handed charged current in Eq.(4.13) becomes,

Lq ⊃ LRCC = − gR√
2

4∑
α,β=1

(ũ′
R)

αγμ(V CKM
R )αβ(d̃′′R)

βW+
Rμ − h.c., (4.30)

where

(V CKM
R )αβ =

3∑
i,j=1

(W̃ †
TR
)αi(ṼdR)

ij(W̃BR
)jβ; α, β ∈ {1, 2, 3, 4} (4.31)

is 4 × 4 “intermediate” right-handed CKM-like matrix. We call this matrix

intermediate because it is not the final expression of the right-handed CKM-

like matrix. The explicit matrix form of V CKM
R is shown in Eq.(D.1).

In addition, we define the right-handed weak isospin current in Eq.(4.5) as

jμ3R ≡ ui
Rγ

μui
R − diRγ

μdiR. (4.32)

Then, by following steps 1 to 3, Eq.(4.32) is transformed into,

jμ3R =
2∑

i=1

(ũ′
R)

iγμ(ũ′
R)

i +
4∑

j,k=3

(ũ′
R)

jγμ(ZTR
)jk(ũ′

R)
k

−
2∑

i=1

(d̃′′R)iγ
μ(d̃′′R)

i −
4∑

j,k=3

(d̃′′R)jγ
μ(ZBR

)jk(d̃′′R)
k (4.33)

where the tree-level FCNC couplings are generated with the following defini-

tions,

(ZTR
)jk ≡ (W †

TR
)j3(WTR

)3k, (4.34)

(ZBR
)jk ≡ (W †

BR
)j3(WBR

)3k, (4.35)

where j, k ∈ {3, 4}. Furthermore, Eqs.(4.34) and (4.35) can be expressed ex-

plicitly in 2× 2 matrix form as follows,

ZTR
=

(
cos2 θTR

sin θTR
cos θTR

sin θTR
cos θTR

sin2 θTR

)
, (4.36)

ZBR
=

(
cos2 θBR

sin θBR
cos θBR

sin θBR
cos θBR

sin2 θBR

)
. (4.37)
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These tree-level FCNC couplings are generated due to mixing between the third

flavor of up and down quark with their corresponding isosinglet right-handed

VLQ.

After following steps 1 to 3, the Lagrangian in Eq.(4.5) becomes,

Lq = qiLiγ
μDSMμq

i
L + TLiγ

μDSMμTL +BLiγ
μDSMμBL

+ (ũ′
R)

αiγμDSMμ(ũ
′
R)

α + (d̃′′R)αiγ
μDSMμ(d̃

′′
R)

α

− gR√
2

4∑
α,β=1

(ũ′
R)

αγμ(V CKM
R )αβ(d̃′′R)

βW+
Rμ − h.c

+ g′ tan θR

(
qiLγ

μYqq
i
L +

2

3
TLγ

μTL − 1

3
BLγ

μBL

)
ZRμ

−
{

gR
2 cos θR

(jμ3R)− g′ tan θR

(
2

3
(ũ′

R)
αγμ(ũ′

R)
α − 1

3
(d̃′′R)αγ

μ(d̃′′R)
α

)}
ZRμ

− Y 3
uL
q3Lφ̃L

(
4∑

j=3

(WTR
)4j(ũ′

R)
j

)
−mu4TL(ũ

′
R)

4 − h.c.

− mu4

vR
TL

[(
4∑

j=3

(ZTR
)4j(ũ′

R)
j

)
(hR + iχ3

R)−
√
2

(
4∑

β=2

(V CKM
R )4β(d̃′′R)

β

)
χ+
R

]
− h.c.

− qiLy
i
dL
φL

(
4∑

j=3

(WBR
)4j(d̃′′R)

j

)
−md4BL(d̃

′′
R)

4 − h.c.

− md4

vR
BL

[(
4∑

j=3

(ZBR
)4j(d̃′′R)

j

)
(hR − iχ3

R) +
√
2

(
4∑

β=2

(V CKM†
R )4β(ũ′

R)
β

)
χ−
R

]
− h.c.

(4.38)

where i = {1, 2, 3}, α = {1, 2, 3, 4} and the definition of WTR
,WBR

,mu4 ,md4 , V
CKM
R ,

ZTR
, and ZBR

are written in Eqs.(4.26),(4.27),(4.28),(D.1),(4.36), and (4.37) respec-

tively. One can show that Lagrangian in Eq.(4.38) is invariant under SU(2)L × U(1)Y

gauge symmetry.
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4.2 SU(2)L ×U(1)Y → U(1)em

In this stage, the neutral scalar component of SU(2)L Higgs doublet acquires non-zero

vev and is expanded around vev’s as follows,

φL =

(
χ+
L

χ0
L

)
=

1√
2

( √
2χ+

L

vL + hL + iχ3
L

)
, (4.39)

where vL is the non-zero vev, hL is the neutral CP-even state and χ3
L is the neutral

CP-odd state. The charged component is defined as, χ+
L = 1√

2
(χ1

L+ iχ2
L). In addition,

we rotate the gauge fields with the following transformation,(
Bμ

W 3
Lμ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
Aμ

ZLμ

)
, (4.40)

where the mixing angles are defined as,

cos θW =
gL√

g2L + g′2
, sin θW =

g′√
g2L + g′2

. (4.41)

We also define the electromagnetic U(1)em gauge coupling as,

e = g′ cos θW = gL sin θW . (4.42)

After this breaking, the Lagrangian in Eq.(4.38) becomes

Lq = ui
Liγ

μDemμu
i
L + TLiγ

μDemμTL + diLiγ
μDemμd

i
L +BLiγ

μDemμBL

+ (ũ′
R)

αiγμDemμ(ũ
′
R)

α + (d̃′′R)αiγ
μDemμ(d̃

′′
R)

α

− gL√
2
ui
Lγ

μdiLW
+
Lμ − h.c.

−
(

gL
2 cos θW

(jμ3L)− e tan θW (jμem)

)
ZLμ

− gR√
2

4∑
α,β=1

(ũ′
R)

αγμ(V CKM
R )αβ(d̃′′R)

βW+
Rμ − h.c

−
{

gR
2 cos θR

(jμ3R)− g′ tan θR

(
(jμem)−

1

2
(jμ3L)

)}
ZRμ

− Y 3
uL

vL√
2
u3
L

(
4∑

j=3

(WTR
)4j(ũ′

R)
j

)
−mu4TL(ũ

′
R)

4 − h.c.
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− Y 3
uL

(
1√
2
u3
L

(
4∑

j=3

(WTR
)4j(ũ′

R)
j

)
(hL − iχ3

L)− d3L

(
4∑

j=3

(WTR
)4j(ũ′

R)
j

)
χ−
L

)
− h.c.

− mu4

vR
TL

[(
4∑

j=3

(ZTR
)4j(ũ′

R)
j

)
(hR + iχ3

R)−
√
2

(
4∑

β=2

(V CKM
R )4β(d̃′′R)

β

)
χ+
R

]
− h.c.

− yidL
vL√
2
diL

(
4∑

j=3

(WBR
)4j(d̃′′R)

j

)
−md4BL(d̃

′′
R)

4 − h.c.

− yidL

(
1√
2
diL

(
4∑

j=3

(WBR
)4j(d̃′′R)

j

)
(hL + iχ3

L) + ui
L

(
4∑

j=3

(WBR
)4j(d̃′′R)

j

)
χ+
L

)
− h.c.

− md4

vR
BL

[(
4∑

j=3

(ZBR
)4j(d̃′′R)

j

)
(hR − iχ3

R) +
√
2

(
4∑

β=2

(V CKM†
R )4β(ũ′

R)
β

)
χ−
R

]
− h.c.,

(4.43)

where the covariant derivatives are,

Demμf
′
u =

(
∂μ +

2

3
ieAμ

)
f ′
u, (4.44)

Demμf
′
d =

(
∂μ − 1

3
ieAμ

)
f ′
d. (4.45)

The left-handed weak isospin current and electromagnetic current are

jμ3L = ui
Lγ

μui
L − diLγ

μdiL, (4.46)

jμem =
2

3

(
ui
Lγ

μui
L + TLγ

μTL + (ũ′
R)

αγμ(ũ′
R)

α
)

− 1

3

(
diLγ

μdiL +BLγ
μBL + (d̃′′R)

αγμ(d̃′′R)
α
)
, (4.47)

where f ′
u ∈ {ui

L, (ũ
′
R)

α, TL}, f ′
d ∈

{
diL, (d̃

′′
R)

α, BL

}
, i ∈ {1, 2, 3}, α ∈ {1, 2, 3, 4} and

the right-handed weak isospin current jμ3R is written in Eq.(4.33). Our main goal is to

obtain the mass eigenvalues of the top and bottom quarks and their heavy partners.

The following steps outline our approach: (the number of counting steps continues

from the previous section)

• Step 4: Rotate diL by following transformation,

diL = (VdL)
ij(d′L)

j, (4.48)

where VdL is 3 × 3 unitary matrix, associated with the parameterization of
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Yukawa couplings as demonstrated in Eq.(A.3),

ydL =

⎛⎜⎝ sin θdL sinφ
d
Le

iα1
dL

sin θdL cosφ
d
Le

iα2
dL

cos θdLe
iα3

dL

⎞⎟⎠Y 3
dL

= edL3
Y 3
dL
, (4.49)

VdL =
(

edL1
edL2

edL3

)
. (4.50)

If we multiply Eq.(4.49) by the hermitian conjugate of Eq.(4.50) from the left,

it can be shown that the terms in Eq.(4.43) that proportional to the complex

vector ydL are replaced by the product of a real positive number Y 3
dL

and δj3.

The mass terms can be extracted from the Lagrangian and written as follows,

Lq ⊃ Lmass =−
(

u3
L TL

)( Y 3
uL

vL√
2
(WTR

)43 Y 3
uL

vL√
2
(WTR

)44

0 mu4

)(
(ũ′

R)
3

(ũ′
R)

4

)
− h.c.

−
(

(d′L)3 BL

)( Y 3
dL

vL√
2
(WBR

)43 Y 3
dL

vL√
2
(WBR

)44

0 md4

)(
(d̃′′R)

3

(d̃′′R)
4

)
− h.c.

(4.51)

Additionally, an important outcome of the transformation in Eq.(4.48) is that

VdL appears as CKM-like matrix in the left-handed charged current term,

Lq ⊃ LLCC = − gL√
2

3∑
i,j=1

ui
Lγ

μ(VdL)
ij(d′L)

jW+
Lμ − h.c. (4.52)

From Eq.(4.51), we have freedom to do another U(2) transformation to the

left-handed quark fields with keep the third family unchanged.

• Step 5: Rotate ui
L and (d′L)

i by the following transformations

ui
L =

3∑
j=1

(ŨuL
)ij(ũL)

j, (4.53)

(d′L)
i =

3∑
j=1

(W̃dL)
ij(d̃′L)

j, (4.54)

where ŨuL
and W̃dL are 3× 3 unitary matrices and written in the matrix form
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as follows,

ŨuL
=

⎛⎜⎝ 0
UuL 0

0 0 1

⎞⎟⎠ , (4.55)

W̃dL =

⎛⎜⎝ 0
WdL 0

0 0 1

⎞⎟⎠ , (4.56)

with UuL
and WdL are 2 × 2 unitary matrices which rotate (u1

L, u
2
L) and

((d′L)
1, (d′L)

2), respectively. By applying the transformations in Eqs.(4.53) and

(4.54) to the charged current in Eq.(4.52), we further define

ṼdL = Ũ †
uL
VdLW̃dL . (4.57)

By properly choosing ŨuL
and W̃dL , the unphysical phases and angles in VdL

are eliminated, resulting in ṼdL , which has the same matrix form as Eq.(4.19),

with the R index replaced by L.

• Step 6: Rotate (ũL)
α, (ũ′

R)
α, (d̃′L)

α, and (d̃′′R)
α into the mass basis by the

following transformations,

(ũL)
α =

4∑
β=1

(K̃TL
)αβ(um

L )
β, (4.58)

(ũ′
R)

α =
4∑

β=1

(K̃TR
)αβ(um

R )
β, (4.59)

(d̃′L)
α =

4∑
β=1

(K̃BL
)αβ(dmL )

β, (4.60)

(d̃′′R)
α =

4∑
β=1

(K̃BR
)αβ(dmR )

β, (4.61)

where α ∈ {1, 2, 3, 4}, (ũL)
4 = TL and (d̃′L)

4 = BL. The 4× 4 unitary matrices

K̃TL
, K̃TR

, K̃BL
, and K̃BR

are expressed as follows,

K̃TL
=

(
I2 02

02 KTL

)
, (4.62)
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K̃TR
=

(
I2 02

02 KTR

)
, (4.63)

K̃BL
=

(
I2 02

02 KBL

)
, (4.64)

K̃BR
=

(
I2 02

02 KBR

)
, (4.65)

where I2 and 02 are the 2 × 2 identity matrix and zero matrix, respectively.

The 2 × 2 unitary submatrices KTL
, KTR

, KBL
, and KBR

rotate ((ũL)
3, (ũL)

4),

((ũ′
R)

3, (ũ′
R)

4), ((d̃′L)
3, (d̃′L)

4) and ((d̃′′R)
3, (d̃′′R)

4) pairs, respectively where the ex-

plicit forms are written in Eqs.(C.19), (C.20), (C.24), and (C.25).

We denote the top and bottom quarks as the third component of the fields in the

mass basis, while the heavy top and bottom quarks are the fourth component.

We can diagonalize the mass matrices in Eq.(4.51), which are defined as

Mt ≡
(

Y 3
uL

vL√
2
(WTR

)43 Y 3
uL

vL√
2
(WTR

)44

0 mu4

)
, (4.66)

Mb ≡
(

Y 3
dL

vL√
2
(WBR

)43 Y 3
dL

vL√
2
(WBR

)44

0 md4

)
, (4.67)

by using the appropriate submatrices in Eqs.(4.58) - (4.61) resulting in:

K†
TL
MtKTR

= (mdiag
t ) = diag(mt,mt′), (4.68)

K†
BL

MbKBR
= (mdiag

b ) = diag(mb,mb′). (4.69)

From this diagonalization process, we obtain,

mt(b) = −
√

M2
T (B) + (mu(d)R −mu(d)L)

2

2
+

√
M2

T (B) + (mu(d)R +mu(d)L)
2

2
,

(4.70)

mt′(b′) =

√
M2

T (B) + (mu(d)R −mu(d)L)
2

2
+

√
M2

T (B) + (mu(d)R +mu(d)L)
2

2
,

(4.71)

where mt(b) and mt′(b′) are mass of top(bottom) and heavy-top(bottom) exact

mass eigenvalues, respectively. The definitions of muL
,muR

,mdL , and mdR are
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shown in Eqs.(C.16) and (C.23). The diagonalization procedure is explained in

Appendix C. The mass eigenvalues for t and t′ in Eqs.(4.70) and (4.71) agree

with Eq.(10) of Ref.[36].

Moreover, the left-handed and right-handed charged currents in Eqs.(4.52) and

(4.30), now become

Lq ⊃ LCC = LLCC + LRCC

= − gL√
2

4∑
α,β=1

(um
L )

αγμ(VCKM
L )αβ(dmL )

βW+
Lμ − h.c.

− gR√
2

4∑
α,β=1

(um
R )

αγμ(VCKM
R )αβ(dmR )

βW+
Rμ − h.c., (4.72)

where

(VCKM
L )αβ =

3∑
i,j=1

(K̃†
TL
)αi(ṼdL)

ij(K̃BL
)jβ, (4.73)

(VCKM
R )αβ =

4∑
ρ,η=1

(K̃†
TR
)αρ(V CKM

R )ρη(K̃BR
)ηβ (4.74)

are the left-handed and right-handed CKM-like matrices. The matrix forms are

shown in Eqs.(D.3) and (D.5), respectively. However, there are some unphysical

phases which can be eliminated from the left-handed and right-handed CKM-

like matrices. We have the freedom to rephase the quark fields with the following

transformations,

(um
L(R))

α = (θuL(R)
)αδαβ(ûm

L(R))
β, (4.75)

(dmL(R))
α = (θdL(R)

)αδαβ(d̂mL(R))
β, (4.76)

where,

θuL(R)
= diag(e

iθuL(R)1 , e
iθuL(R)2 , eiθu3 , eiθu4 ), (4.77)

θdL(R)
= diag(e

iθdL(R)1 , e
iθdL(R)2 , eiθd3 , eiθd4 ). (4.78)

After rephasing the quark fields, the left-handed and right-handed CKM-like

matrices become the final versions denoted as V̂CKM
L and V̂CKM

R , whose matrix
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forms are as follows,

V̂CKM
L =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 cθdL sθdLcφBL
−sθdLsφBL

0 −cφTL
sθdL cφTL

cθdLcφBL
−cφTL

cθdLsφBL

0 sφTL
sθdL −sφTL

cθdLcφBL
sφTL

cθdLsφBL

⎞⎟⎟⎟⎟⎠ , (4.79)

V̂CKM
R =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 cθdR −sθdRcβBR
ei

δ
2 sθdRsβBR

ei
δ
2

0 cβTR
sθdRe

i δ
2 cβTR

cθdRcβBR
eiδ −cβTR

cθdRsβBR
eiδ

0 −sβTR
sθdRe

i δ
2 −sβTR

cθdRcβBR
eiδ sβTR

cθdRsβBR
eiδ

⎞⎟⎟⎟⎟⎠ , (4.80)

where

cθdL = cos θdL, sθdL = sin θdL, cφTL
= cosφTL

,

sφTL
= sinφTL

, cφBL
= cosφBL

, sφBL
= sinφBL

,

cθdR = cos θdR, sθdR = sin θdR, cβTR
= cos βTR

,

sβTR
= sin βTR

, cβBR
= cos βBR

, sβBR
= sin βBR

,

βTR
= θTR

− φTR
, βBR

= θBR
− φBR

, δ = α3
dR

− α3
dL
. (4.81)

The number of CP violating phase in this model is one. This agrees with the

result in Ref.[30] for the N = 1 case. The details of the rephasing process is

explained in Appendix D.

In addition, the final expression of the left-handed FCNC couplings, which

appears in the left-handed weak isospin current in Eq.(4.46), are defined as

follows,

(ZTL
)ij ≡ (K†

TL
)i3(KTL

)3j, (4.82)

(ZBL
)ij ≡ (K†

BL
)i3(KBL

)3j, (4.83)

where i, j ∈ {3, 4}. These have explicit matrix form as follows,

ZTL
=

(
cos2 φTL

− sinφTL
cosφTL

− sinφTL
cosφTL

sin2 φTL

)
, (4.84)

ZBL
=

(
cos2 φBL

− sinφBL
cosφBL

− sinφBL
cosφBL

sin2 φBL

)
. (4.85)
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Similarly, for the right-handed weak isospin current from Eq.(4.33), the inter-

mediate right-handed FCNC couplings transforms into the final expressions as,

(ZTR
)ij ≡

4∑
k,l=3

(K†
TR
)ik(ZTR

)kl(KTR
)lj, (4.86)

(ZBR
)ij ≡

4∑
k,l=3

(K†
BR

)ik(ZBR
)kl(KBR

)lj, (4.87)

where i, j ∈ {3, 4}. These can be expressed in matrix form as follows,

ZTR
=

(
cos2 βTR

− sin βTR
cos βTR

− sin βTR
cos βTR

sin2 βTR

)
, (4.88)

ZBR
=

(
cos2 βBR

− sin βBR
cos βBR

− sin βBR
cos βBR

sin2 βBR

)
. (4.89)

with βTR
= θTR

− φTR
and βBR

= θBR
− φBR

.

Finally, we obtain the expression of the Lagrangian for the quark and Yukawa

interaction after following all steps as follows,

Lq =
4∑

α=1

(ûm)αiγμDemμ(û
m)α +

4∑
α=1

(d̂m)αiγμDemμ(d̂
m)α

− gL√
2

(
4∑

α,β=1

(ûm
L )

αγμ(V̂CKM
L )αβ(d̂mL )

βW+
Lμ + h.c.

)

−
(

gL
2 cos θW

(jμ3L)− e tan θW (jμem)

)
ZLμ

− gR√
2

(
4∑

α,β=1

(ûm
R )

αγμ(V̂CKM
R )αβ(d̂mR )

βW+
Rμ + h.c

)

−
{

gR
2 cos θR

(jμ3R)− g′ tan θR

(
(jμem)−

1

2
(jμ3L)

)}
ZRμ

−
4∑

j=3

(mdiag
t )jj(ûm)j(ûm)j −

4∑
j=3

(mdiag
b )jj(d̂m)j(d̂m)j

− 1

vL

4∑
k,i=3

(
(ZTL

mdiag
t )ki(ûm

L )
k(ûm

R )
i + (mdiag

t ZTL
)ki(ûm

R )
k(ûm

L )
i

+(ZBL
mdiag

b )ki(d̂mL )
k(d̂mR )

i + (mdiag
b ZBL

)ki(d̂mR )
k(d̂mL )

i
)
hL
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−
√
2

vL

[
4∑

k=3

4∑
α=2

(
(ûm

L )
α(V̂CKM

L mdiag
b )αk(d̂mR )

k − (ûm
R )

k(mdiag
t V̂CKM

L )kα(d̂mL )
α
)
χ+
L + h.c.

]

+
1

vL

4∑
k,i=3

(
(ZTL

mdiag
t )ki(ûm

L )
k(ûm

R )
i − (mdiag

t ZTL
)ki(ûm

R )
k(ûm

L )
i

−(ZBL
mdiag

b )ki(d̂mL )
k(d̂mR )

i + (mdiag
b ZBL

)ki(d̂mR )
k(d̂mL )

i
)
iχ3

L

− 1

vR

4∑
k,i=3

(
((1−ZTL

)mdiag
t ZTR

)ki(ûm
L )

k(ûm
R )

i + (ZTR
mdiag

t (1−ZTL
))ki(ûm

R )
k(ûm

L )
i

+((1−ZBL
)mdiag

b ZBR
)ki(d̂mL )

k(d̂mR )
i + (ZBR

mdiag
b (1−ZBL

))ki(d̂mR )
k(d̂mL )

i
)
hR

−
√
2

vR

[
4∑

k=3

4∑
α=2

(
(ûm

R )
α(V̂CKM

R mdiag
b (1−ZBL

))αk(d̂mL )
k

−(ûm
L )

k((1−ZTL
)mdiag

t V̂CKM
R )kα(d̂mR )

α
)
χ+
R + h.c.

]
+

1

vR

4∑
k,i=3

(
((1−ZBL

)mdiag
b ZBR

)ki(d̂mL )
k(d̂mR )

i − (ZBR
mdiag

b (1−ZBL
))ki(d̂mR )

k(d̂mL )
i

−((1−ZTL
)mdiag

t ZTR
)ki(ûm

L )
k(ûm

R )
i + (ZTR

mdiag
t (1−ZTL

))ki(ûm
R )

k(ûm
L )

i
)
iχ3

R,

(4.90)

where we define ûm = ûm
L + ûm

R and d̂m = d̂mL + d̂mR . As mentioned before, the top

and bottom quarks are the third component of the fields in the mass basis, while the

heavy partners are the fourth component,

(ûm
L(R))

3 = tL(R), (ûm
L(R))

4 = t′L(R), (d̂mL(R))
3 = bL(R), (d̂mL(R))

4 = b′L(R). (4.91)

The left-handed, right-handed weak-isospin, and electromagnetic current in Eq.(4.90)

now have following final expressions,

jμ3L =
2∑

i=1

(ûm
L )

iγμ(ûm
L )

i +
4∑

l,j=3

(ûm
L )

lγμ(ZTL
)lj(ûm

L )
j

−
2∑

i=1

(d̂mL )
iγμ(d̂mL )

i −
4∑

l,j=3

(d̂mL )
lγμ(ZBL

)lj(d̂mL )
j, (4.92)

jμ3R =
2∑

i=1

(ûm
R )

iγμ(ûm
R )

i +
4∑

l,j=3

(ûm
R )

lγμ(ZTR
)lj(ûm

R )
j

−
2∑

i=1

(d̂mR )
iγμ(d̂mR )

i +
4∑

l,j=3

(d̂mR )
lγμ(ZBR

)lj(d̂mR )
j, (4.93)



CHAPTER 4. QUARK SECTOR AND YUKAWA INTERACTIONS 34

jμem =
2

3

4∑
α=1

(ûm)αγμ(ûm)α − 1

3

4∑
α=1

(d̂m)αγμ(d̂m)α, (4.94)

where the definitions and matrix forms of FCNC couplings are shown in Eqs.(4.82)-

(4.89). It should be noted that the Lagrangian written in Eq.(4.90) can be expressed

in the mass eigenstates of the Higgs and Z bosons. We will discuss this further in

chapter 5.



Chapter 5

Higgs Sector

In this chapter, we derived the kinetic terms and potential of Higgs, which are con-

tained in Eq.(3.4). In the same way as in chapter 4, we derive it step by step from

the SU(2)R × U(1)Y′ breaking into U(1)Y and finally SU(2)L × U(1)Y breaking into

U(1)em.

5.1 SU(2)R ×U(1)Y′ → U(1)Y

This stage occurs after the SU(2)R Higgs doublet acquires non-zero vev and is pa-

rameterized as written in Eq.(4.1). Additionally, there is mixing between B′
μ and

W 3
Rμ into Bμ and ZRμ, following the transformation shown in Eq.(4.2). We will an-

alyze the kinetic terms and potential separately. Furthermore, we classify the terms

based on the number of the fields in the term as linear, quadratic, cubic, and quar-

tic. The gauge fields inside the covariant derivatives are not counted as fields in this

classification.

5.1.1 Kinetic Terms

The kinetic terms in Eq.(3.4) become,

LH ⊃ Lkin = (Dμ
SMφL)

†(DSMμφL)

− ig′Yφ tan θRZRμ{(DSMμφL)
†φL − φ†

L(D
μ
SMφL)}

+ g′2Y 2
φ tan2 θRZ

μ
RZRμφ

†
LφL

+ (Dμ
SMχ

−
R)(DSMμχ

+
R) + i

gRvR
2

{W+μ
R (DSMμχ

−
R)−W−μ

R (DSMμχ
+
R)}

+
g2Rv

2
R

4
W−μ

R W+
Rμ

35
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+
1

2
(∂μhR)

2 +
1

2

(
∂μχ

3
R − gRvR

2 cos θR
ZRμ

)2

− gR
2
χ3
R{(W+μ

R DSMμχ
−
R) +W−μ

R (DSMμχ
+
R)}

+ i
gR
2
{W+μ

R (DSMμχ
−
R)−W−μ

R (DSMμχ
+
R)}hR +

g2RvR
2

hRW
−μ
R W+

Rμ

+ i
gR
2

cos 2θR
cos θR

Zμ
R{χ+

R(DSMμχ
−
R)− χ−

R(DSMμχ
+
R)}

+
g2RvR
4

(
cos 2θR − 1

cos θR

)
(W+

Rμχ
−
R +W−

Rμχ
+
R)Z

μ
R

+
gR
2
(W+

Rμχ
−
R +W−

Rμχ
+
R)∂

μχ3
R − i

gR
2
(W+

Rμχ
−
R −W−

Rμχ
+
R)∂

μhR

+
gR

2 cos θR
{χ3

R(∂
μhR)− (∂μχ3

R)hR}ZRμ +

(
gR

2 cos θR

)2

vRhRZ
μ
RZRμ

+
g2R(cos 2θR)− 1

4 cos θR
{(W+

Rμχ
−
R −W−

Rμχ
+
R)iχ

3
R + (W+

Rμχ
−
R +W−

Rμχ
+
R)hR}Zμ

R

+
g2R
4

(
1

2 cos2 θR
ZRμZ

μ
R +W+μ

R W−
Rμ

)
((χ3

R)
2 + h2

R)

+
g2R
2

(
W+μ

R W−
Rμ +

cos2 2θR
2 cos2 θR

Zμ
RZRμ

)
(χ−

Rχ
+
R), (5.1)

where

DSMμφL =

(
∂μ + igLW

a
Lμ

τaL
2

+ ig′YφBμ

)
φL, (5.2)

DSMμχ
+
R = (∂μ + ig′Bμ)χ

+
R (5.3)

are the definition of SM covariant derivatives for φL and χ+
R respectively.

5.1.2 Higgs Potential

The Higgs potential which is written in Eq.(3.6) now becomes,

V (φL, φR) = (μ2
L + λLRv

2
R)φ

†
LφL + λL(φ

†
LφL)

2

+ 2λLRvR(φ
†
LφL)hR + 2λLR(φ

†
LφL)

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)
+

μ2
R

2
v2R +

λR

4
v4R

+ hR(μ
2
RvR + λRv

3
R)

+
h2
R

2
(μ2

R + 3λRv
2
R) + (μ2

R + λRv
2
R)

(
χ−
Rχ

+
R +

1

2
(χ3

R)
2

)
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+ 2vRhRλR

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)
+ λR

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)2

. (5.4)

5.2 SU(2)L ×U(1)Y → U(1)em

This stage occurs after SU(2)L Higgs doublet acquires non-zero vev as parameterized

in Eq.(4.39). Similar to what happens in SM, there is a mixing between Bμ and W 3
Lμ

into Aμ and ZLμ, following the transformation shown in Eq.(4.40).

5.2.1 Kinetic Terms

At this stage, it can be shown that the first line of Eq.(5.1) yields similar results to the

breaking of SU(2)R × U(1)Y′ when substituting R → L, θR → θW , and DSM → Dem.

After computing all terms, the kinetic terms of the Higgs in Eq.(5.1) become,

LH ⊃ Lkin = (Dμ
emχ

−
L)(Demμχ

+
L) + (Dμ

emχ
−
R)(Demμχ

+
R)

+ i
gLvL
2

{W+μ
L (Demμχ

−
L)−W−μ

L (Demμχ
+
L)}+

g2Lv
2
L

4
W−μ

L W+
Lμ

+ i
gRvR
2

{W+μ
R (Demμχ

−
R)−W−μ

R (Demμχ
+
R)}+

g2Rv
2
R

4
W−μ

R W+
Rμ

+
1

2
(∂μhL)

2 +
1

2

(
∂μχ

3
L − gLvL

2 cos θW
ZLμ

)2

+
1

2
(∂μhR)

2 +
1

2

(
∂μχ

3
R − gRvR

2 cos θR
ZRμ

)2

+
1

2
g′ tan θRZRμ

{
−vL(∂

μχ3
L) +

gLv
2
L

2 cos θW
Zμ

L

}
+

1

8
v2Lg

′2 tan2 θRZ
μ
RZRμ

− gL
2
χ3
L{W+μ

L (Demμχ
−
L) +W−μ

L (Demμχ
+
L)}

− gR
2
χ3
R{W+μ

R (Demμχ
−
R) +W−μ

R (Demμχ
+
R)}

+ i
gL
2
{W+μ

L (Demμχ
−
L)−W−μ

L (Demμχ
+
L)}hL +

g2LvL
2

hLW
−μ
L W+

Lμ

+ i
gR
2

{
W+μ

R (Demμχ
−
R)−W−μ

R (Demμχ
+
R)
}
hR +

g2RvR
2

hRW
−μ
R W+

Rμ

+ i
gL
2

cos 2θW
cos θW

{χ+
L(Demμχ

−
L)− χ−

L(Demμχ
+
L)}Zμ

L

+ i
gR
2

cos 2θR
cos θR

{χ+
R(Demμχ

−
R)− χ−

R(Demμχ
+
R})Zμ

R
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+
g2LvL
4

(
cos 2θW − 1

cos θW

)
(W+

Lμχ
−
L +W−

Lμχ
+
L)Z

μ
L

+
g2RvR
4

(
cos 2θR − 1

cos θR

)
(W+

Rμχ
−
R +W−

Rμχ
+
R)Z

μ
R

+
gL
2
(W+

Lμχ
−
L +W−

Lμχ
+
L)∂

μχ3
L − i

gL
2
(W+

Lμχ
−
L −W−

Lμχ
+
L)∂

μhL

+
gR
2
(W+

Rμχ
−
R +W−

Rμχ
+
R)∂

μχ3
R − i

gR
2
(W+

Rμχ
−
R −W−

Rμχ
+
R)∂

μhR

+
gL

2 cos θW
{χ3

L(∂μhL)− (∂μχ
3
L)hL}Zμ

L +

(
gL

2 cos θW

)2

vLhLZ
μ
LZLμ

+
gR

2 cos θR
{χ3

R(∂μhR)− (∂μχ
3
R)hR}Zμ

R +

(
gR

2 cos θR

)2

vRhRZ
μ
RZRμ

− ie tan θW{χ+
R(Demμχ

−
R)− χ−

R(Demμχ
+
R)}Zμ

L

− i
1

2
g′ tan θR{χ+

L(Demμχ
−
L)− χ−

L(Demμχ
+
L)}Zμ

R

− gR
2
vRe tan θW

(
W+

Rμχ
−
R +W−

Rμχ
+
R

)
Zμ

L

− gL
2
vLg

′ tan θR(W+
Lμχ

−
L +W−

Lμχ
+
L)Z

μ
R

+ g′
1

2
tan θR

{
(∂μhL)χ

3
L − (∂μχ

3
L)hL

}
Zμ

R

+ g′
1

2
tan θR

gL
cos θW

vLhLZRμZ
μ
L + vLg

′21
4
tan2 θRhLZRμZ

μ
R

+
g2L(cos 2θW − 1)

4 cos θW
{(W+

Lμχ
−
L −W−

Lμχ
+
L)iχ

3
L + (W+

Lμχ
−
L +W−

Lμχ
+
L)hL}Zμ

L

+
g2R(cos 2θR − 1)

4 cos θR
{(W+

Rμχ
−
R −W−

Rμχ
+
R)iχ

3
R + (W+

Rμχ
−
R +W−

Rμχ
+
R)hR}Zμ

R

− i
gR
2
e tan θWχ3

R

(
W+

Rμχ
−
R −W−

Rμχ
+
R

)
Zμ

L

− i
gL
2
g′ tan θRχ3

L

(
W+

Lμχ
−
L −W−

Lμχ
+
L

)
Zμ

R

− gR
2
e tan θWhR

(
W+

Rμχ
−
R +W−

Rμχ
+
R

)
Zμ

L

− gL
2
g′ tan θRhL

(
W+

Lμχ
−
L +W−

Lμχ
+
L

)
Zμ

R

+
g2L
4

(
W+μ

L W−
Lμ

)
((χ3

L)
2 + h2

L) +
g2R
4

(
W+μ

R W−
Rμ

)
((χ3

R)
2 + h2

R)

+
g2L
2
W+μ

L W−
Lμχ

+
Lχ

−
L +

g2R
2
W+μ

R W−
Rμχ

+
Rχ

−
R

+
g2L
2

cos2 2θW
2 cos2 θW

χ+
Lχ

−
LZLμZ

μ
L +

g2R
2

cos2 2θR
2 cos2 θR

χ+
Rχ

−
RZRμZ

μ
R

+ e2 tan2 θWχ+
Rχ

−
RZLμZ

μ
L +

g′2

4
tan2 θRχ

−
Lχ

+
LZRμZ

μ
R
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− gR
2
e tan θW

cos 2θR
cos θR

(2χ+
Rχ

−
R)ZLμZ

μ
R − gL

2
g′ tan θR

cos 2θW
cos θW

χ−
Lχ

+
LZLμZ

μ
R

+
g2L
4

1

2 cos2 θW
ZLμZ

μ
L((χ

3
L)

2 + h2
L) +

g2R
4

1

2 cos2 θR
ZRμZ

μ
R((χ

3
R)

2 + h2
R)

+
g′2

4

1

2
tan2 θRZRμZ

μ
R

(
(χ3

L)
2 + h2

L

)
, (5.5)

where,

Demμχ
+
L(R) = (∂μ + ieAμ)χ

+
L(R). (5.6)

5.2.2 Higgs Potential

At this stage, the Higgs potential in Eq.(5.4) becomes,

V (φL, φR) =
μ2
L

2
v2L +

μ2
R

2
v2R +

λL

4
v4L +

λR

4
v4R +

λLR

2
v2Rv

2
L

+ hL(μ
2
LvL + λLv

3
L + λLRv

2
RvL) + hR(μ

2
RvR + λRv

3
R + λLRvRv

2
L)

+ hL(2λLRvRvL)hR +
h2
L

2
(μ2

L + 3λLv
2
L + λLRv

2
R) +

h2
R

2
(μ2

R + 3λRv
2
R + λLRv

2
L)

+ (μ2
L + λLv

2
L + λLRv

2
R)

(
χ−
Lχ

+
L +

1

2
(χ3

L)
2

)
+ (μ2

R + λRv
2
R + λLRv

2
L)

(
χ−
Rχ

+
R +

1

2
(χ3

R)
2

)
+ 2vL

{
λL

(
χ−
Lχ

+
L +

1

2
(h2

L + (χ3
L)

2)

)
+ λLR

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)}
hL

+ 2vR

{
λR

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)
+ λLR

(
χ−
Lχ

+
L +

1

2
(h2

L + (χ3
L)

2)

)}
hR

+ λL

(
χ−
Lχ

+
L +

1

2
(h2

L + (χ3
L)

2)

)2

+ λR

(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)2

+ 2λLR

(
χ−
Lχ

+
L +

1

2
(h2

L + (χ3
L)

2)

)(
χ−
Rχ

+
R +

1

2
(h2

R + (χ3
R)

2)

)
, (5.7)

where μ2
L and μ2

R are negative. The minimization conditions of the potential are,

vL(μ
2
L + λLv

2
L + λLRv

2
R) = 0, (5.8)

vR(μ
2
R + λRv

2
R + λLRv

2
L) = 0. (5.9)
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The expressions for the non-zero vevs can be obtained as follows,

vL =

√
λLRμ2

R − λRμ2
L

λRλL − λ2
LR

and vR =

√
λLRμ2

L − λLμ2
R

λRλL − λ2
LR

, (5.10)

where the vev’s are taken to be positive. It can be shown that the linear terms of

the Higgs fields and the quadratic terms of χ±
L(R), χ

3
L(R) will vanish by using Eqs.(5.8)

and (5.9).

5.3 Boson Mass

We collect the quadratic terms from kinetic terms Eq.(5.5) and Higgs potential

Eq.(5.7) below,

LH ⊃ Lquad = (Dμ
emχ

−
L)(Demμχ

+
L) + (Dμ

emχ
−
R)(Demμχ

+
R)

+ i
gLvL
2

{W+μ
L (Demμχ

−
L)−W−μ

L (Demμχ
+
L)}+

g2Lv
2
L

4
W−μ

L W+
Lμ

+ i
gRvR
2

{W+μ
R (Demμχ

−
R)−W−μ

R (Demμχ
+
R)}+

g2Rv
2
R

4
W−μ

R W+
Rμ

+
1

2

(
gL
2

vL
cos θW

)2

Zμ
LZLμ +

1

2

{(
gR
2

vR
cos θR

)2

+

(
g′

2
vL tan θR

)2
}
Zμ

RZRμ

+
g′vL
2

tan θR
gL
2

vL
cos θW

Zμ
LZRμ

+
1

2
(∂μχ

3
L)

2 +
1

2
(∂μχ

3
R)

2

− 1

2

gLvL
cos θW

ZLμ(∂
μχ3

L)−
1

2

gRvR
cos θR

ZRμ(∂
μχ3

R)−
g′vL
2

tan θRZRμ(∂
μχ3

L)

+
1

2
(∂μhL)

2 +
1

2
(∂μhR)

2

− hL(2λLRvRvL)hR − h2
L

2
(2λLv

2
L)−

h2
R

2
(2λRv

2
R). (5.11)

From Eq.(5.11), we obtain the masses for WL and WR as follows,

MWL
=

gL
2
vL, (5.12)

MWR
=

gR
2
vR. (5.13)

Since there is mixing between ZL and ZR as well as hL and hR, we need to diagonalize

the mass matrices to obtain the mass eigenstates for the Z bosons and the Higgs
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bosons. In line with that, the Nambu-Goldstone bosons χ3
L and χ3

R also mix.

5.3.1 Z and Z ′ Boson Mass

We define the following transformation from the ZL and ZR basis into the mass

eigenstates, (
ZLμ

ZRμ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
Zμ

Z ′
μ

)
. (5.14)

From Eq.(5.11), the mass matrix in the ZL and ZR basis is given by,

M
2
Z =

(
( gLvL
2 cos θW

)2 1
2
g′vL tan θR

gLvL
2 cos θW

1
2
g′vL tan θR

gLvL
2 cos θW

( gRvR
2 cos θR

)2 +
(
1
2
g′vL tan θR

)2
)
. (5.15)

The matrix M
2
Z can be diagonalized as,

OT
ZM

2
ZOZ = diag(M2

Z ,M
2
Z′), (5.16)

where OZ is the mixing matrix defined in Eq.(5.14). The exact mass eigenvalues and

mixing angles are as follows,

M2
Z =

M2
WR

2c2R

⎧⎨⎩1 + (c2R + t2W )
M2

WL

M2
WR

−
√

1− 2M2
WL

M2
WR

(
c2R − s2W s2R

c2W

)
+ (c2R + t2W )2

(
M2

WL

M2
WR

)2
⎫⎬⎭ ,

(5.17)

M2
Z′ =

M2
WR

2c2R

⎧⎨⎩1 + (c2R + t2W )
M2

WL

M2
WR

+

√
1− 2M2

WL

M2
WR

(
c2R − s2W s2R

c2W

)
+ (c2R + t2W )2

(
M2

WL

M2
WR

)2
⎫⎬⎭ ,

(5.18)

tan 2θ =
2cRs

3
RsW

v2L
v2R

s2W − s2R (s2W cos 2θR + c2W c2R)
v2L
v2R

, 0 ≤ θ ≤ π

4
, (5.19)

where,

cR = cos θR, sR = sin θR, cW = cos θW , sW = sin θW , tW = tan θW . (5.20)

When MWR

 MWL

, the masses of the Z and Z ′ bosons are approximately given by,

M2
Z � M2

WL

c2W

(
1− M2

WL

M2
WR

s2Rt
2
W

)
, (5.21)
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M2
Z′ � M2

WR

c2R

(
1 +

M2
WL

M2
WR

s2Rt
2
W

)
. (5.22)

5.3.2 Higgs Boson Mass

We define the transformation from the hL and hR basis into the mass eigenstate as

follows, (
hL

hR

)
=

(
cosφ sinφ

− sinφ cosφ

)(
h

H

)
. (5.23)

The mass matrix of the Higgs in the hL and hR basis are is given by,

M
2
h =

(
2λLv

2
L 2λLRvRvL

2λLRvRvL 2λRv
2
R

)
. (5.24)

By defining the mixing matrix in Eq.(5.23) as Oh, we can diagonalize Mh as,

OT
hM

2
hOh = diag(m2

h,m
2
H), (5.25)

which yieds the exact mass eigenvalues,

m2
h = λLv

2
L + λRv

2
R −

√
(λLv2L − λRv2R)

2 + 4λ2
LRv

2
Lv

2
R, (5.26)

m2
H = λLv

2
L + λRv

2
R +

√
(λLv2L − λRv2R)

2 + 4λ2
LRv

2
Lv

2
R. (5.27)

Additionally, the mixing angle in Eq.(5.23) is given by,

tan 2φ =
2λLRvRvL

λRv2R − λLv2L
, 0 ≤ |φ| ≤ π

4
. (5.28)

Furthermore, the mass eigenvalues and mixing angle can be approximated as follows,

m2
h � 2λL

(
1− λ2

LR

λLλR

)
v2L, (5.29)

m2
H � 2λRv

2
R, (5.30)

tan 2φ � 2λLR

λR

vL
vR

(5.31)

if we ignore the correction of O (v2L/v
2
R).
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5.4 χ3
L and χ3

R Mixing

From Eq.(5.11), we extract the following form,

Lquad ⊃ Lχ =
1

2
(∂μχ

3
L)

2 +
1

2
(∂μχ

3
R)

2

− 1

2

gLvL
cos θW

ZLμ(∂
μχ3

L)−
1

2

gRvR
cos θR

ZRμ(∂
μχ3

R)−
g′vL
2

tan θRZRμ(∂
μχ3

L).

(5.32)

By changing into the mass eigenstate using Eq.(5.14) and writing in terms of the

diagonal mass eigenvalues (MZ ,MZ′), Eq.(5.32) can be rewritten as,

Lquad ⊃ Lχ =
1

2
(∂μχZ)

2 +
1

2
(∂μχZ′)2

−MZ (∂μχZ)Zμ −MZ′(∂μχZ′)Z ′
μ, (5.33)

where, (
χ3
L

χ3
R

)
=

(
cosα sinα

− sinα cosα

)(
χZ

χZ′

)
, (5.34)

cosα =
MZ cos θ√

M2
Z cos2 θ +M2

Z′ sin2 θ
, (5.35)

sinα =
MZ′ sin θ√

M2
Z cos2 θ +M2

Z′ sin2 θ
. (5.36)

Therefore, the quadratic terms in Eq.(5.11) can be written in terms of the mass

basis of the Z bosons, Higgs bosons, and Nambu-Goldstone bosons,

LH ⊃ Lquad =
(
Dμ

emχ
−
L − iMWL

W μ−
L

) (
Demμχ

+
L + iMWL

W+
Lμ

)
+
(
Dμ

emχ
−
R − iMWR

W μ−
R

) (
Demμχ

+
R + iMWR

W+
Rμ

)
+

1

2
(∂μχZ −MZZμ)

2 +
1

2

(
∂μχZ′ −MZ′Z ′

μ

)2
+

1

2
(∂μh)

2 − 1

2
m2

hh
2 +

1

2
(∂μH)2 − 1

2
m2

HH
2, (5.37)

where the covariant derivatives of χL and χR are given in Eq.(5.6). We have shown

explicitly that χ3
L and χ3

R are mixed in this model. From Eq.(5.37), it is shown clearly

that the degrees of freedom χZ and χZ′ become the longitudinal components of the

massive Z and Z ′ bosons, respectively.



Chapter 6

Kinetic Terms of the Gauge Fields

In this chapter we derive the kinetic terms of the gauge fields starting from Lagrangian

in Eq.(3.5).

6.1 SU(2)R ×U(1)Y′ → U(1)Y

At this stage, the kinetic terms of the gauge fields change from the B′
μ and WRμ basis

into Bμ and ZRμ basis. Following the transformation in Eq.(4.2), the Lagrangian in

Eq.(3.5) becomes,

Lgauge =− 1

4
F a
LμνF

aμν
L − 1

4
BμνB

μν

− 1

2
(∂μW

+
Rν − ∂νW

+
Rμ)(∂

μW−ν
R − ∂νW−μ

R )

− i(∂μW
+
Rν − ∂νW

+
Rμ)(gR cos θRZ

ν
R + g′Bν)W−μ

R

+ i(∂μW−ν
R − ∂νW−μ

R )(gR cos θRZRν + g′Bν)W
+
Rμ

− {(gR cos θRZRν + g′Bν)W
+
Rμ(gR cos θRZ

ν
R + g′Bν)W−μ

R

−(gR cos θRZRμ + g′Bμ)W
+
Rν(gR cos θRZ

ν
R + g′Bν)W−μ

R

}
− 1

4
F 0
ZRμνF

0μν
ZR

+ iW−
RμW

+
Rν(gR cos θRF

0μν
ZR

+ g′Bμν)

+
1

2
g2R(W

−
RμW

+
Rν −W+

RμW
−
Rν)(W

−μ
R W+ν

R ), (6.1)

where,

Bμν = ∂μBν − ∂νBμ, (6.2)

F a
Lμν = ∂μW

a
Lν − ∂νW

a
Lμ − gLε

abcW b
LμW

c
Lν , (6.3)
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F 0
ZRμν = ∂μZRν − ∂νZRμ. (6.4)

6.2 SU(2)L ×U(1)Y → U(1)em

At this stage, there is a mixing between Bμ and W 3
Lμ into Aμ and ZLμ following

the transformation shown in Eq.(4.40). Additionally, we express the fields in the

diagonal basis of Z and Z ′ where the transformation is shown in Eq.(5.14). Thus,

the Lagrangian in Eq.(6.1) becomes,

Lgauge = −1

4
F 0
ZμνF

0μν
Z − 1

4
F 0
Z′μνF

0μν
Z′ − 1

4
FμνF

μν

− 1

2

(DμW
+
Lν −DνW

+
Lμ

) (DμW−ν
L −DνW−μ

L

)
− 1

2

(DμW
+
Rν −DνW

+
Rμ

) (DμW−ν
R −DνW−μ

R

)
+

g2L
2

(
(W−

L ·W−
L )(W+

L ·W+
L )− (W−

L ·W+
L

)2)
+

g2R
2

(
(W−

R ·W−
R )(W+

R ·W+
R )− (W−

R ·W+
R

)2)
+ i
{
gL cos θW cos θF 0μν

Z + gL cos θW sin θF 0μν
Z′ + eF μν

} (
W−

LμW
+
Lν

)
+ i
{−(gR cos θR sin θ + e tan θW cos θ)F 0μν

Z

+(gR cos θR cos θ − e tan θW sin θ)F 0μν
Z′ + eF μν

} (
W−

RμW
+
Rν

)
,

(6.5)

where,

F 0
Zμν = ∂μZν − ∂νZμ,

F 0
Z′μν = ∂μZ

′
ν − ∂νZ

′
μ,

Fμν = ∂μAν − ∂νAμ,

DμW
+
Rν = (DemμW

+
Rν)− i(e tan θWZLμ − gR cos θRZRμ)W

+
Rν ,

DμW
+
Lν = (DemμW

+
Lν) + igL cos θWZLμW

+
Lν ,

DemμGν = (∂μ + ieAμ)Gν , (6.6)

with Gν ∈ {W+
Rν ,W

+
Lν}.



Chapter 7

Hierarchy of VLQ’s Mass

Parameters, vL, and vR

In this chapter, we discuss about the hierarchy of VLQ’s mass parameters, vL, and

vR. From Eqs.(4.70) and (4.71), we have the exact mass eigenvalues of top and

bottom quarks, as well as the heavy top and bottom quarks, respectively. One of the

motivations for the universal seesaw model in the quark sector is to explain the mass

hierarchy of quarks. The hierarchy of VLQ’s mass parameters (MT and MB), vL, and

vR is important in our model. We give the analytical and numerical analysis.

7.1 Analytical analysis

The exact mass eigenvalue of the top quark in Eq.(4.70) can be expressed as follows,

mt =

√
M2

T +m2
uR

+m2
uL

+ 2muL
muR

2
−
√

M2
T +m2

uR
+m2

uL
− 2muL

muR

2

�
⎛⎝ muR√

M2
T +m2

uR

⎞⎠muL
. (7.1)

From the first line to the second line of Eq.(7.1), we apply the condition muL
< muR

.

The second line of Eq.(7.1) can then be rewritten in terms of Yukawa couplings, using

Eq.(C.16), as follows,

mt �
⎛⎝ Y 3

uR
vR√
2√

M2
T +

(Y 3
uR

)2v2R
2

⎞⎠ Y 3
uL
vL√
2

. (7.2)
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Assuming Y 3
uL

= Y 3
uR

� O(1) and that the factor inside the parentheses is O(1), we

can approximate the top quark mass as mt � vL. This implies that MT < vR. To

determine the hierarchy between MT and vR for the large top quark mass, the ratio

MT/vR can be derived from Eq.(7.2) as follows,

MT

vR
=

Y 3
uL
Y 3
uR√
2

√
1

(ySMt )2
− 1

(Y 3
uL
)2
, (7.3)

where ySMt is the SM Yukawa coupling of top quark and Y 3
uL

≥ ySMt . If we further

require that the Yukawa couplings are in the perturbative region, ySMt ≤ Y 3
uL
,Y 3

uR
≤ 1,

the upper and the lower limit of the ratio MT/vR is given by

0 ≤ MT

vR
≤ 1√

2

√
1

(ySMt )2
− 1. (7.4)

If we take ySMt = 0.9912, we find that the upper limit of the ratio MT/vR is ≤ 0.0944.

This demonstrates how the seesaw mechanism accounts for both the top quark mass

and the hierarchy between MT and vR.

Similarly, in the bottom sector, by applying the condition mdL < mdR , the bottom

quark mass can be expressed as follows,

mb �
⎛⎝ Y 3

dR
vR√
2√

M2
B +

(Y 3
dR

)2v2R
2

⎞⎠ Y 3
dL
vL√
2

. (7.5)

Assuming Y 3
dL

= Y 3
dR

� O(1) and that the factor inside the parentheses is much

smaller thanO(1), we can derive the light bottom quark mass. This impliesMB 
 vR,

allowing us to express Eq.(7.5) as follows,

mb �
vRY

3
dR
Y 3
dL
vL

2MB

. (7.6)

To determine the hierarchy between MB and vR for the light bottom quark mass, the

ratio MB/vR can be obtained from Eq.(7.6) as follows,

MB

vR
=

Y 3
dL
Y 3
dR√
2

1

ySMb
, (7.7)

where ySMb is the SM Yukawa coupling of bottom quark. If we further require that

the Yukawa couplings are in the perturbative region, Y 3
dL
,Y 3

dR
≤ 1, the upper limit of
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the ratio MB/vR is given by
MB

vR
≤ 1√

2

1

ySMb
. (7.8)

If we take ySMb = 2.4× 10−2, the upper limit of the ratio MB/vR is ≤ 29.46. Equality

holds when the Yukawa couplings Y 3
dL

= Y 3
dR

= 1. This demonstrates how the seesaw

mechanism accommodates the bottom quark mass and the hierarchy between MB

and vR. Therefore, when all Yukawa couplings Y 3
dL
, Y 3

dR
, Y 3

uL
, and Y 3

uR
are O(1),

the hierarchy among the three scales is MT < vR � MB. If we include the vL, the

hierarchy has two possibilities depending on the numerical inputs: either vL < MT <

vR � MB or MT < vL < vR � MB.

To summarize, by using the hierarchy that we discussed before, from the exact

mass eigenvalues in Eqs.(4.70) and (4.71) we can obtain the approximate form as

follows,

mapprox
t � vRY

3
uR
Y 3
uL
vL

2

√
v2R
2
(Y 3

uR
)2 +M2

T

, (7.9)

mapprox
t′ �

√
v2R
2
(Y 3

uR
)2 +M2

T , (7.10)

mapprox
b � vRY

3
dR
Y 3
dL
vL

2MB

, (7.11)

mapprox
b′ � MB. (7.12)

Our results in Eqs.(7.9) and (7.10) agree with Eqs.(7) and (8) in Ref.[28], as well

as Eqs.(3.19) and (3.17) in Ref.[29], respectively. While our results in Eqs.(7.11)

and (7.12) agree with Eqs.(14) and (15) in Ref.[28], as well as Eq.(3.9) in Ref.[29],

respectively.

7.2 Numerical analysis

We start by analyzing the constraints in the top sector, as shown in Fig (7.1a). We

consider an asymmetric left-right model with gL �= gR. By assuming gR � 1 and

using the value of g′ � 0.357, we obtain θR with Eq.(4.4). Additionally, we assume

Y 3
uR

� Y 3
uL

� 1. The following constraints are used [11]: (1) the top quark mass

obtained by the direct measurement is mt = 172.57 GeV; (2) the lower bound for

the heavy top quark mass is set to be mt′ > 1310 GeV; (3) the lower bound for the

Z ′ boson mass is set to be MZ′ > 5150 GeV. Using the exact mass eigenvalue for
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(a)

(b)

Figure 7.1: Constraints on vR and VLQ’s mass parameters of different sectors. (a)
Top sector. (b) Bottom sector. These figures are taken from Figure 1 in Ref.[46].

the Z ′ boson mass in Eq.(5.18), we compute the lower bound for WR boson mass as

MWR
� 5 TeV. Consequently, we find the constraint for vR using Eq. (5.13), yielding

vR � 10 TeV. At vR = 10 TeV, MT is 942.3 GeV as shown by the black dot in Fig

(7.1a). Using these vR and MT values, we further calculate the heavy top quark mass

with Eq.(4.71) and obtain mt′ = 7.13 TeV.

Next, we analyze the constraints in the bottom sector, as depicted in Fig (7.1b).

Here, we also assume Y 3
dR

� Y 3
dL

� 1. The constraints are [11]: (1) the SM bottom

quark mass we use is the running mass at bottom mass mb = 4.183 GeV; (2) the

lower bound for the heavy bottom quark mass is set to be mb′ > 1390 GeV; (3) the

constraint for vR � 10 is derived from the lower bound for the Z ′ boson mass. For
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the bottom sector, at vR = 10 TeV, MB is 293.74 TeV as indicated by the black dot

in Fig (7.1b). Using these vR and MB values, we further calculate the heavy bottom

quark mass with Eq.(4.71) and obtain mb′ = 293.82 TeV. This result indicates that

mb′ � MB.

From the above facts, the mass parameter of the top partner VLQ (MT ) is smaller

than vR but could be larger or smaller than vL depending on other parameters. On

the other hand, in the bottom sector, the mass parameter of the bottom partner

VLQ (MB) is significantly larger compared to vR. This explains the mass hierarchy

problem, where the smallness of the bottom quark mass is suppressed by the large

mass of the bottom VLQ through a seesaw mechanism. Mathematically, our choice of

numerical input satisfies the following hierarchy: (1) for the top sector: vL < MT <

vR; (2) for the bottom sector: vL < vR � MB.

Using our chosen numerical inputs, one can compute the masses in the approxi-

mation form given in Eqs.(7.9), (7.10), (7.11) and (7.12) and obtain mapprox
t = 172.58

GeV, mapprox
t′ = 7.13 TeV, mapprox

b = 4.19 GeV, and mapprox
b′ = 293.74 TeV. These

values are very close to the exact mass eigenvalues formula. For the rest of our nu-

merical analysis, we will use vR = 10 TeV. This vR = 10 TeV is also used in Ref.[34],

although unlike this paper, they considered the model with left-right symmetry where

gL = gR.



Chapter 8

Flavor-changing Neutral Current

In this chapter, we discuss flavor-changing neutral currents (FCNCs) in this model.

8.1 Higgs FCNC

In this section, we discuss the interaction between Higgs and quarks in our model.

From Eq.(4.90), we extract the interactions between hL and hR with quarks, given by

Lq ⊃ LhH = − 1

vL

4∑
k,i=3

[
(ZTL

mdiag
t )ki(ûm

L )
k(ûm

R )
i + (mdiag

t ZTL
)ki(ûm

R )
k(ûm

L )
i

+(ZBL
mdiag

b )ki(d̂mL )
k(d̂mR )

i + (mdiag
b ZBL

)ki(d̂mR )
k(d̂mL )

i
]
hL

− 1

vR

4∑
k,i=3

[
((1−ZTL

)mdiag
t ZTR

)ki(ûm
L )

k(ûm
R )

i

+(ZTR
mdiag

t (1−ZTL
))ki(ûm

R )
k(ûm

L )
i + ((1−ZBL

)mdiag
b ZBR

)ki(d̂mL )
k(d̂mR )

i

+(ZBR
mdiag

b (1−ZBL
))ki(d̂mR )

k(d̂mL )
i
]
hR, (8.1)

where ZTL
,ZBL

,ZTR
,ZBR

,mdiag
t , and mdiag

b are given in Eqs.(4.84),(4.85),(4.88),

(4.89), (4.68), and (4.69), respectively. By transforming hL − hR basis into h − H

mass eigenstate with Eq.(5.23), the Lagrangian in Eq.(8.1) transforms into,

LhH = −
{
cosφ

vL

4∑
k,i=3

[
(ZTL

mdiag
t )ki(ûm

L )
k(ûm

R )
i + (mdiag

t ZTL
)ki(ûm

R )
k(ûm

L )
i

+(ZBL
mdiag

b )ki(d̂mL )
k(d̂mR )

i + (mdiag
b ZBL

)ki(d̂mR )
k(d̂mL )

i
]
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−sinφ

vR

4∑
k,i=3

[
((1−ZTL

)mdiag
t ZTR

)ki(ûm
L )

k(ûm
R )

i + (ZTR
mdiag

t (1−ZTL
))ki(ûm

R )
k(ûm

L )
i

+((1−ZBL
)mdiag

b ZBR
)ki(d̂mL )

k(d̂mR )
i + (ZBR

mdiag
b (1−ZBL

))ki(d̂mR )
k(d̂mL )

i
]}

h

−
{
sinφ

vL

4∑
k,i=3

[
(ZTL

mdiag
t )ki(ûm

L )
k(ûm

R )
i + (mdiag

t ZTL
)ki(ûm

R )
k(ûm

L )
i

+(ZBL
mdiag

b )ki(d̂mL )
k(d̂mR )

i + (mdiag
b ZBL

)ki(d̂mR )
k(d̂mL )

i
]

+
cosφ

vR

4∑
k,i=3

[
((1−ZTL

)mdiag
t ZTR

)ki(ûm
L )

k(ûm
R )

i + (ZTR
mdiag

t (1−ZTL
))ki(ûm

R )
k(ûm

L )
i

+((1−ZBL
)mdiag

b ZBR
)ki(d̂mL )

k(d̂mR )
i + (ZBR

mdiag
b (1−ZBL

))ki(d̂mR )
k(d̂mL )

i
]}

H,

(8.2)

where h and H denote the Higgs and the heavy Higgs, respectively. In this discussion,

we will focus on the interaction of the Higgs with the quarks in our model.

8.1.1 Top Sector

We collect the interaction terms between Higgs with top quark (t) and heavy top

quark (t′) from Eq. (8.2)

LhH ⊃ Lht = −
[
cosφ

vL
cos2 φTL

mt − sinφ

vR

(
sin2 φTL

cos2 βTR
mt

− sinφTL
cosφTL

sin βTR
cos βTR

mt′)] t̄th

+

[
cosφ

vL
sinφTL

cosφTL
mt′ +

sinφ

vR

(
sinφTL

cosφTL
sin2 βTR

mt′

− sin2 φTL
sin βTR

cos βTR
mt

)]
(t̄Lt

′
R + t̄′RtL)h

+

[
cosφ

vL
sinφTL

cosφTL
mt +

sinφ

vR

(
sinφTL

cosφTL
cos2 βTR

mt

− cos2 φTL
sin βTR

cos βTR
mt′
)]

(t̄′LtR + t̄Rt
′
L)h

−
[
cosφ

vL
sin2 φTL

mt′ − sinφ

vR

(
cos2 φTL

sin2 βTR
mt′

− sinφTL
cosφTL

sin βTR
cos βTR

mt)] t̄
′t′h, (8.3)

where we substitute the elements of ZTL
and ZTR

in Eqs.(4.84) and (4.88), respec-

tively. Then, we approximate the mixing angles using Eqs.(C.26) and (D.13). Ad-

ditionally, by using the hierarchy in the top sector that is vL < MT < vR, and the
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approximation for the mixing angle φ in Eq.(5.31), we derive the interaction between

the Higgs and the top-sector quarks as follows,

Lht � − cosφ
mt

vL

(
1− λLR

λR

M2
T

m2
uR

v2L
v2R

)
t̄th− cosφ

MT

muR

(
1 +

λLR

λR

v2L
v2R

)
(t̄Lt

′
R + t̄′RtL)h

− cosφ
MT

muR

vL
vR

(
1 +

λLR

λR

)
(t̄′LtR + t̄Rt

′
L)h− cosφ

mt′

vR

vL
vR

(
M2

T

m2
uR

− λLR

λR

)
t̄′t′h.

(8.4)

In this expression, we also assume that Y 3
uL

� Y 3
uR

� 1. From Eq.(8.4) we extract

useful informations regarding our model. Higgs-top quark coupling receives a small

correction, while Higgs-heavy top quark coupling receives an overall suppression of

O (vL/vR) . Another significant point is that the tree-level FCNC interaction is sup-

pressed. The Higgs FCNC of t̄′LtR and t̄Rt
′
L types are more suppressed by a factor of

O (vL/vR) compared to the t̄Lt
′
R and t̄′RtL type.

8.1.2 Bottom Sector

In the same way as in the top quark sector, from Eq. (8.2), we collect the interaction

between Higgs with the bottom quark sector. By expressing ZBL
and ZBR

in terms

of their elements, we obtain,

LhH ⊃ Lhb = −
[
cosφ

vL
cos2 φBL

mb − sinφ

vR

(
sin2 φBL

cos2 βBR
mb

− sinφBL
cosφBL

sin βBR
cos βBR

mb′)] b̄bh

+

[
cosφ

vL
sinφBL

cosφBL
mb′ +

sinφ

vR

(
sinφBL

cosφBL
sin2 βBR

mb′

− sin2 φBL
sin βBR

cos βBR
mb

)]
(b̄Lb

′
R + h.c.)h

+

[
cosφ

vL
sinφBL

cosφBL
mb +

sinφ

vR

(
sinφBL

cosφBL
cos2 βBR

mb

− cos2 φBL
sin βBR

cos βBR
mb′
)]

(b̄′LbR + h.c.)h

−
[
cosφ

vL
sin2 φBL

mb′ − sinφ

vR

(
cos2 φBL

sin2 βBR
mb′

− sinφBL
cosφBL

sin βBR
cos βBR

mb)] b̄
′b′h. (8.5)

By using the approximations for the mixing angles in Eqs.(C.26), (D.13), and (5.31),

and considering the hierarchy in the bottom sector vL < vR � MB, we obtain the
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interaction between the Higgs and bottom-sector quarks as follows

Lhb � − cosφ
mb

vL

(
1− λLR

λR

v2L
v2R

)
b̄bh− cosφ

mbmb′

mdLmdR

(
1 +

λLR

λR

v2L
M2

B

)
(b̄Lb

′
R + b̄′RbL)h

− vL
vR

(
λLR

λR

+
v2R
M2

B

)
(b̄′LbR + b̄Rb

′
L)h− cosφ

mdL

mb′

(
1− λLR

λR

)
b̄′b′h. (8.6)

Similar to the top sector, the interaction between the Higgs and the bottom quark

pairs receives a small correction compared to the SM. The interaction between the

Higgs and the heavy bottom quark pairs is suppressed by a factor O(vL/MB). The

Higgs FCNC of b̄′LbR and b̄Rb
′
L types are suppressed by a factor O(vL/vR). On the

other hand, the Higgs FCNC of b̄Lb
′
R and b̄′RbL type is not suppressed. This is because

we assume Y 3
dL

� 1.

8.2 Z FCNC

In this section we discuss the interaction between the Z boson and quarks. We begin

by extracting the interaction terms between ZL − ZR and quarks from Eq.(4.90),

which reads as follows,

Lq ⊃ LZZ′ = −
[

gL
2 cos θW

(jμ3L)− e tan θW (jμem)

]
ZLμ

−
[

gR
2 cos θR

(jμ3R)− g′ tan θR

(
jμem − 1

2
(jμ3L)

)]
ZRμ. (8.7)

Here jμ3L, j
μ
3R, and jμem are defined in Eqs.(4.92)-(4.94), respectively. Next, we change

the basis from ZL − ZR basis to the Z − Z ′ basis using Eq.(5.14), which yields

LZZ′ = −
[

1

2 cos θW
(gL cos θ − e tan θR sin θ)jμ3L − gR sin θ

2 cos θR
jμ3R

− e

cos θW
(sin θW cos θ − tan θR sin θ)jμem

]
Zμ

−
[

1

2 cos θW
(gL sin θ + e tan θR cos θ)jμ3L +

gR cos θ

2 cos θR
jμ3R

− e

cos θW
(sin θW sin θ + tan θR cos θ)jμem

]
Z ′

μ. (8.8)

In this discussion, we will focus on the interaction between SM Z-boson with quarks.

We expressed the Z-boson interaction in terms of vector and axial-vector couplings
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as follows,

LZZ′ ⊃ LZ
q̄q = − gL

2 cos θW

4∑
α,β=1

(ûm)αγμ

[
(gV )

αβ
u − (gA)

αβ
u γ5

]
(ûm)βZμ

− gL
2 cos θW

4∑
α,β=1

(d̂m)αγμ

[
(gV )

αβ
d − (gA)

αβ
d γ5

]
(d̂m)βZμ, (8.9)

where,

(gV )
αβ
u =

1

2

(
(κTL

)αβ − (κTR
)αβ
)− 2κQuδ

αβ, (8.10)

(gA)
αβ
u =

1

2

(
(κTL

)αβ + (κTR
)αβ
)
, (8.11)

(gV )
αβ
d = −1

2

(
(κBL

)αβ − (κBR
)αβ
)− 2κQdδ

αβ, (8.12)

(gA)
αβ
d = −1

2

(
(κBL

)αβ + (κBR
)αβ
)
, (8.13)

(κTL
)αβ = (cos θ − sin θW tan θR sin θ)(Zall

TL
)αβ, (8.14)

(κTR
)αβ =

sin θW sin θ

sin θR cos θR
(Zall

TR
)αβ, (8.15)

(κBL
)αβ = (cos θ − sin θW tan θR sin θ)(Zall

BL
)αβ, (8.16)

(κBR
)αβ =

sin θW sin θ

sin θR cos θR
(Zall

BR
)αβ, (8.17)

κ = sin2 θW cos θ − sin θW tan θR sin θ. (8.18)

The matrix forms of 4 × 4 unitary matrices Zall
TL
,Zall

BL
,Zall

TR
, and Zall

BR
are given as

follows,

Zall
TL

=

(
I2 02

02 ZTL

)
,Zall

TR
=

(
I2 02

02 ZTR

)
,Zall

BL
=

(
I2 02

02 ZBL

)
,Zall

BR
=

(
I2 02

02 ZBR

)
,

(8.19)

where I2 and 02 are 2×2 unit matrix and zero matrix respectively. The 2×2 submatrix

ZTL
,ZBL

,ZTR
, and ZBR

are given in Eqs.(4.84),(4.85),(4.88),(4.89) respectively and

Qu = 2/3, Qd = −1/3 are the electric charge of up-type and down-type quarks

respectively.



CHAPTER 8. FLAVOR-CHANGING NEUTRAL CURRENT 56

8.2.1 Up Sector

In this part, we analyze the interaction between Z-boson with the up sector in our

model. From Eq. (8.9), it reads as,

LZ
q̄q ⊃ LZ

t = − gL
2 cos θW

{
(ûm)1γμ

[
(gV )

11
u − (gA)

11
u γ5

]
(ûm)1

+(ûm)2γμ

[
(gV )

22
u − (gA)

22
u γ5

]
(ûm)2 + tγμ

[
(gV )

33
u − (gA)

33
u γ5

]
t

+tγμ

[
(gV )

34
u − (gA)

34
u γ5

]
t′ + t′γμ

[
(gV )

43
u − (gA)

43
u γ5

]
t

+t′γμ

[
(gV )

44
u − (gA)

44
u γ5

]
t′
}
Zμ, (8.20)

where the vector coupling (gV )u and axial-vector coupling (gA)u are defined in Eqs.(8.10)-

(8.11) respectively. By using the definition of κTL
, κTR

and κ which are written in

Eqs.(8.14),(8.15), and (8.18) respectively, we obtain

(κTL
)11 = (κTL

)22 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
, (8.21)

(κTR
)11 = (κTR

)22 =
sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
, (8.22)

(κTL
)33 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
, (8.23)

(κTR
)33 =

sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
M2

T

m2
uR

, (8.24)

(κTL
)34 = (κTL

)43 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
muL

MT

m2
uR

, (8.25)

(κTR
)34 = (κTR

)43 = − sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
MT

muR

, (8.26)

(κTL
)44 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
m2

uL
M2

T

m4
uR

, (8.27)

(κTR
)44 =

sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
, (8.28)

κ = cos θ

(
sin2 θW − sin θW tan θRO

(
v2L
v2R

))
. (8.29)

The suppression due to the small mixing angle θ is represented as O(v2L/v
2
R). The

exact form of the mixing angle θ is given in Eq.(5.19). From Eqs.(8.25) and (8.26),

the κTL
and κTR

, which are related to the Z-boson FCNC process with the top and
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heavy-top quarks are suppressed by O(vLMT/v
2
R) and O(v2LMT/v

3
R), respectively.

This indicates that the Z-mediated FCNC process in the up sector is suppressed

within our model. In addition, the interaction between Z-boson and heavy top quark

is also suppressed. Moreover, the deviation of the SM-like terms in (κTL
)ii and κ,

with i ∈ {1, 2, 3} are suppressed by a factor O(v2L/v
2
R).

8.2.2 Down Sector

In this part, we analyze the interaction between Z-boson and the down sector in our

model. From Eq. (8.9), we extract,

LZ
q̄q ⊃ LZ

b = − gL
2 cos θW

{
(d̂m)1γμ

[
(gV )

11
d − (gA)

11
d γ5

]
(d̂m)1

+(d̂m)2γμ

[
(gV )

22
d − (gA)

22
d γ5

]
(d̂m)2 + bγμ

[
(gV )

33
d − (gA)

33
d γ5

]
b

+bγμ

[
(gV )

34
d − (gA)

34
d γ5

]
b′ + b′γμ

[
(gV )

43
d − (gA)

43
d γ5

]
b

+b′γμ

[
(gV )

44
d − (gA)

44
d γ5

]
b′
}
Zμ, (8.30)

where the vector coupling (gV )d and axial-vector coupling (gA)d are defined in Eqs.(8.12)-

(8.13) respectively. By using the definition of κBL
, κBR

and κ written in Eqs.(8.16),(8.17),

and (8.18) respectively, we get

(κBL
)11 = (κBL

)22 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
, (8.31)

(κBR
)11 = (κBR

)22 =
sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
, (8.32)

(κBL
)33 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
, (8.33)

(κBR
)33 =

sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
, (8.34)

(κBL
)34 = (κBL

)43 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
mdL

MB

, (8.35)

(κBR
)34 = (κBR

)43 = − sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
mdR

MB

, (8.36)

(κBL
)44 = cos θ

(
1− sin θW tan θRO

(
v2L
v2R

))
m2

dL

M2
B

, (8.37)

(κBR
)44 =

sin θW cos θ

sin θR cos θR
O
(
v2L
v2R

)
m2

dR

M2
B

, (8.38)
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κ = cos θ

(
sin2 θW − sin θW tan θRO

(
v2L
v2R

))
. (8.39)

The FCNC process in the down sector is suppressed, similar to the up sector. As

shown in Eqs.(8.35) and (8.36), the κBL
and κBR

are suppressed by factor O(vL/MB)

and O(v2L/vRMB), respectively. In addition, the interaction between Z-boson and

heavy bottom quark is also suppressed. Furthermore, the deviation of the SM-like

terms in (κBL
)ii and κ, with i ∈ {1, 2, 3} are suppressed by a factor O(v2L/v

2
R).



Chapter 9

Summary

We have presented a systematic analysis of the quark sector of the universal seesaw

model. We derived the Lagrangian of the model, including the quark sector, Higgs

sector, and kinetic terms of the gauge fields. We start by writing the Lagrangian which

is invariant under SU(2)L × SU(2)R × U(1)Y′ . After SU(2)R Higgs doublet acquires

non-zero vev, we obtain the Lagrangian, which is invariant under SM gauge symmetry.

Furthermore, the SM gauge group is broken into U(1)em after SU(2)L Higgs doublet

acquires non-zero vev. In the gauge interactions sector, we classify the terms based

on the number of fields, such as linear, quadratic, cubic, and quartic interactions.

Additionally, without fixing the gauge, we found that the massless Nambu-Goldstone

bosons mix to form χZ and χZ′ . We have clearly shown that the degrees of freedom

χZ and χZ′ become the longitudinal components of the massive Z and Z ′ bosons,

respectively.

Our model focuses on the third family of quark sector. Within this framework, we

explain the hierarchy between the top and bottom quark masses by mixing with the

heavy Vector-Like Quarks (VLQs). We use the direct measurement of the top quark

mass and the running mass of the bottom quark. Additionally, the lower bounds

on the heavy top and heavy bottom quark masses also serve as constraints. The

lower mass limit of the Z ′-boson, which is linked to the WR boson mass, imposes a

significant constraint on vR. By setting gR and the Yukawa couplings equal to 1, the

lower limit of vR in this model is 10 TeV. We found that the heavy top quark mass is

in the order of vR (mt′ = 7.13 TeV) and the heavy bottom mass is in the order of MB

(mb′ = 293.82 TeV). We confirmed that the hierarchy of VLQ’s mass parameters, vL,

and vR in our model is vL < MT < vR � MB.

Moreover, the presence of VLQs in the model induces the flavor-changing neutral

currents (FCNCs) at the tree level. In the SM, the FCNC processes at tree-level

59
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are absent. In our model, we have shown that the Z-boson mediated FCNC process

is suppressed for both (up and down) sectors. The deviations from the SM values

are suppressed by O(v2L/v
2
R), which result from the small mixing in the lighter mass

eigenstate Z from ZR. On the other hand, Higgs mediated FCNCs of the b̄Lb
′
R and

b̄′RbL type are not suppressed when Y 3
dL

� 1.
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Appendix A

Weak-basis of Yukawa interaction

In this appendix, we show how to obtain the Yukawa interaction which is written in

Eq.(3.3). We start from the general Yukawa interaction terms,

LYM = −qiLy
i
uL
φ̃LTR − TLy

i∗
uR
φ̃†
Rq

i
R − TLMTTR − h.c.

− qiLy
i
dL
φLBR − BLy

i∗
dR
φ†
Rq

i
R − BLMBBR − h.c. (A.1)

The Yukawa couplings are general complex vectors in C
3 with following parameteri-

zation,

yiuL(R)
= yuL(R)

=

⎛⎜⎜⎝
sin θuL(R) sinφ

u
L(R)e

iα1
uL(R)

sin θuL(R) cosφ
u
L(R)e

iα2
uL(R)

cos θuL(R)e
iα3

uL(R)

⎞⎟⎟⎠Y 3
uL(R)

, (A.2)

yidL(R)
= ydL(R)

=

⎛⎜⎜⎝
sin θdL(R) sinφ

d
L(R)e

iα1
dL(R)

sin θdL(R) cosφ
d
L(R)e

iα2
dL(R)

cos θdL(R)e
iα3

dL(R)

⎞⎟⎟⎠Y 3
dL(R)

, (A.3)

where Y 3
uL(R)

and Y 3
dL(R)

are real positive numbers. Define following weak-basis trans-

formation (WBT) as follows,

(q′L)
i = e−iαi

uLqiL, (A.4)

(q′R)
i = e−iαi

uRqiR. (A.5)

Applying this WBT into Eq.(A.1), we obtain

LYM = −(q′L)i(y
′
uL
)iφ̃LTR − TL(y

′
uR
)i∗φ̃†

R(q
′
R)

i − TLMTTR − h.c.



− (q′L)iy
i
dL
φLBR − BLy

i∗
dR
φ†
R(q

′
R)

i − BLMBBR − h.c., (A.6)

where

(y′uL
)i = yiuL

e−iαi
uL , (A.7)

(y′uR
)i = yiuR

e−iαi
uR (A.8)

are real vectors. On the other hand, yidL and yidR remain complex vectors with the

redefined phases.

Next we write the (y′uL
)i Yukawa coupling explained above as,

(y′uL
)i =

⎛⎜⎝ sin θuL sinφ
u
L

sin θuL cosφ
u
L

cos θuL

⎞⎟⎠Y 3
uL

= euL3
Y 3
uL

(A.9)

and defining another WBT,

(q′L)
i = (VuL

)ij(q′′L)
j, (A.10)

where in general VuL
is 3 × 3 unitary matrix which formed by three orthonormal

vectors with the third column is chosen as euL3
in Eq.(A.9),

VuL
=
(

euL1
euL2

euL3

)
. (A.11)

which leads the product (V †
uL
)ji(y′uL

)i = δj3Y 3
uL
.

For the (y′uR
)i Yukawa coupling can be derived similarly by changing L → R

in Eq.(A.9) - (A.11). For the down-sector, product Eq.(A.11) and the down-type

Yukawa coupling yield down-type Yukawa coupling in another basis. For example,

(V †
uL
)ji(ydL)

i = (y′′dL)
j. Therefore, the Lagrangian in Eq.(A.6) become,

LYM = −Y 3
uL
(q′′L)3φ̃LTR − Y 3

uR
TLφ̃

†
R(q

′′
R)

3 − TLMTTR − h.c.

− (q′′L)i(y
′′
dL
)iφLBR − BL(y

′′
dR
)i∗φ†

R(q
′′
R)

i − BLMBBR − h.c. (A.12)

and it has form the Yukawa couplings of up-type quark doublet (Y 3
uL

and Y 3
uR
) are

real positive numbers while the Yukawa couplings of down-type quark are general

complex vectors as written in Eq.(3.3).



Appendix B

Parameterization of VdR and VdL

In this appendix, we explain more details of how to parameterize and remove the

unphysical phases of VdR and VdL . Both VdR and VdL have the following form

V =
(

v1 v2 v3

)
, (B.1)

where the third column is related to either ydR or ydL and is parameterized by

v3 =

⎛⎜⎝ sin θ sinφeiα1

sin θ cosφeiα2

cos θeiα3

⎞⎟⎠ . (B.2)

Since V is a unitary matrix, the column vector satisfy v†
i · vj = δij and has matrix

form as follow,

V = (α1, α2, α3)R12(φ)R23(θ)(0, δ, 0)R12(α)(ρ, σ, 0), (B.3)

where (α1, α2, α3) = diag(eiα1 , eiα2 , eiα3); (0, δ, 0) = diag(1, eiδ, 1);(ρ, σ, 0) = diag(eiρ, eiσ, 1)

and

R12(φ) =

⎛⎜⎝ cosφ sinφ 0

− sinφ cosφ 0

0 0 1

⎞⎟⎠, R23(θ) =

⎛⎜⎝ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞⎟⎠ ,

R12(α) =

⎛⎜⎝ cosα sinα 0

− sinα cosα 0

0 0 1

⎞⎟⎠ . (B.4)



We have the freedom to rotate V by U(2) transformations from the both sides. As

shown in Eqs.(4.18) and (4.57), we can remove the unphysical phases and angles in

Eq.(B.3) by following,

Ṽ = Ũ †V W̃ , (B.5)

where Ũ and W̃ are 3× 3 unitary matrices which have following expressions,

Ũ † = (0,
α3

2
, 0)R−1

12 (φ)(−α1,−α2, 0),

W̃ = (−ρ,−σ, 0)R−1
12 (α)(0,−δ, 0)(0,−α3

2
, 0). (B.6)

Thus we obtain,

Ṽ =

⎛⎜⎝ 1 0 0

0 cos θ sin θei
α3
2

0 − sin θei
α3
2 cos θeiα3

⎞⎟⎠ . (B.7)



Appendix C

Diagonalization of quark mass

matrix

In this appendix, we derive the exact mass eigenvalues of the top-bottom SM quarks

and the heavy VLQ partners, as well as the matrices used for the diagonalization

procedure. We will show the diagonalization procedure for the top sector. The

bottom sector can be done similarly because the form of Mb is the same as Mt. We

start from Eq.(4.66), explicitly writing the (WTR
)43 and (WTR

)44 values,

Mt ≡
(

−Y 3
uL

Y 3
uR

vLvR

2mu4
Y 3
uL

vL√
2

MT

mu4

0 mu4

)
=

(
−mt1 mt2

0 mu4

)
, (C.1)

where mt1 and mt2 in Eq.(C.1) are not mass eigenvalues but are defined as follows,

mt1 =
Y 3
uL
Y 3
uR
vLvR

2mu4

, mt2 = Y 3
uL

vL√
2

MT

mu4

. (C.2)

The top quark mass matrix in Eq.(C.1) can be diagonalized by bi-unitary transfor-

mation, which gives,

K†
TL
MtKTR

= (mdiag
t ) = diag(mt,mt′). (C.3)

Initially, we transform Mt into a real symmetric matrix by multiplying it on the left

side by an orthogonal matrix St, which yields

M
′
t = StMt, (C.4)



where,

St =

(
cosφTl

− sinφTl

sinφTl
cosφTl

)
. (C.5)

M
′
t becomes a real symmetric matrix with the following expression

M
′
t =

(
−mt1 cosφTl

−mt1 sinφTl

−mt1 sinφTl
mt2 sinφTl

+mu4 cosφTl

)
(C.6)

if the mixing angle satisfies the following condition:

tanφTl
=

mt2

mu4 −mt1

. (C.7)

Then, a real symmetric matrix can be diagonalized by multiplying from both sides

another 2× 2 orthogonal matrix Rt and its transpose,

Rt M
′
tR

T
t = diag(−mt,mt′), (C.8)

where,

Rt =

(
cosφTR

sinφTR

− sinφTR
cosφTR

)
. (C.9)

The minus sign inside the diagonal matrix on the right-hand side of Eq.(C.8) arises

because the determinant of the top quark mass matrix Mt is negative. Since mt is

lighter than m′
t, we assign the minus sign to mt. However, we could eliminate the

minus sign by multiplying Eq.(C.8) by −τ3 on the right side, where τ3 is the third

component of the Pauli matrices. The mixing angle can then be obtained as:

tan 2φTR
=

2mt1mt2

m2
u4

+m2
t2 −m2

t1

. (C.10)

The eigenvalues of Eq.(C.8) can be computed using the following equation,

λ2 − (trM′
t)λ+ detM′

t = 0. (C.11)

After performing the calculations, we obtain

λ1 = −mt =

√
m2

t2 + (mu4 −mt1)
2

2
−
√

m2
t2 + (mu4 +mt1)

2

2
, (C.12)

λ2 = mt′ =

√
m2

t2 + (mu4 −mt1)
2

2
+

√
m2

t2 + (mu4 +mt1)
2

2
. (C.13)



We can also equivalently express the explicit mass eigenvalues in the following form,

mt = −
√
M2

T + (muR
−muL

)2

2
+

√
M2

T + (muR
+muL

)2

2
, (C.14)

mt′ =

√
M2

T + (muR
−muL

)2

2
+

√
M2

T + (muR
+muL

)2

2
, (C.15)

where,

muR
= Y 3

uR

vR√
2
, muL

= Y 3
uL

vL√
2
. (C.16)

Finally, we can summarize all the matrix transformations explained above as,

RtStMtR
T
t (−τ3) = diag(mt,mt′). (C.17)

Additionally, the product of two orthogonal matrices is also an orthogonal matrix.

Then we can define Ot as,

Ot = RtSt =

(
cosφTL

sinφTL

− sinφTL
cosφTL

)
(C.18)

with φTL
= φTR

− φTl
. Hence, by comparing Eq.(C.17) and Eq.(C.3) we obtain the

expression for the mixing matrices as follows.

K†
TL

=

(
cosφTL

sinφTL

− sinφTL
cosφTL

)
, (C.19)

KTR
=

(
cosφTR

− sinφTR

sinφTR
cosφTR

)(
−1 0

0 1

)
=

(
− cosφTR

− sinφTR

− sinφTR
cosφTR

)
. (C.20)

For the bottom sector, we can derive the results similarly by replacing t with b, T

with B, and u with d. Thus, we write the mass eigenvalues and the mixing matrices

for the bottom sector as follows,

mb = −
√

M2
B + (mdR −mdL)

2

2
+

√
M2

B + (mdR +mdL)
2

2
, (C.21)

mb′ =

√
M2

B + (mdR −mdL)
2

2
+

√
M2

B + (mdR +mdL)
2

2
, (C.22)

where,

mdR = Y 3
dR

vR√
2
, mdL = Y 3

dL

vL√
2
, (C.23)



K†
BL

=

(
cosφBL

sinφBL

− sinφBL
cosφBL

)
, (C.24)

KBR
=

(
cosφBR

− sinφBR

sinφBR
cosφBR

)(
−1 0

0 1

)
=

(
− cosφBR

− sinφBR

− sinφBR
cosφBR

)
. (C.25)

While the approximate masses are already written in Eqs.(7.9)-(7.12), the approxi-

mate mixing angles are given as follows,

sinφTL
� − muL

MT

M2
T +m2

uR

, cosφTL
� 1, sinφTR

� m2
uL
muR

MT

(M2
T +m2

uR
)2
, cosφTR

� 1

sinφBL
� −mdL

MB

, cosφBL
� 1, sinφBR

� m2
dL
mdR

M3
B

, cosφBR
� 1. (C.26)

Using the approximate angles, one can write the approximate form for the matrices

as follows,

K†
TL

�
⎛⎝ 1 − muL

MT

M2
T+m2

uR
muL

MT

M2
T+m2

uR

1

⎞⎠ , KTR
�
⎛⎝ 1 −m2

uL
muR

MT

(M2
T+m2

uR
)2

−m2
uL

muR
MT

(M2
T+m2

uR
)2

1

⎞⎠
(C.27)

K†
BL

�
(

1 −mdL

MB
mdL

MB
1

)
, KBR

�
⎛⎝ −1 −m2

dL
mdR

M3
B

−m2
dL

mdR

M3
B

1

⎞⎠ . (C.28)



Appendix D

CKM Matrices

In this appendix, we will discuss CKM-like matrices in this model and the rephasing of

the CKM-like matrices. CKM-like matrix, which appears for the first time in Section

4, is an “intermediate” right-handed CKM-like matrix which has explicit form as

follows,

V CKM
R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cθdR sθdRcθBR
ei

α3
dR
2 sθdRsθBR

ei
α3
dR
2

0 −cθTRsθdRe
i
α3
dR
2 cθTR cθdRcθBR

e
iα3

dR cθTR cθdRsθBR
e
iα3

dR

0 −sθTRsθdRe
i
α3
dR
2 sθTR cθdRcθBR

e
iα3

dR sθTR cθdRsθBR
e
iα3

dR

⎞⎟⎟⎟⎟⎟⎟⎠ , (D.1)

where,

cθdR = cos θdR, sθdR = sin θdR, cθTR = cos θTR
,

sθTR = sin θTR
, cθBR

= cos θBR
, sθBR

= sin θBR
. (D.2)

After Step 6 is done, we have the final expression of the left-handed CKM-like matrix

and right-handed CKM-like matrix, which are defined in Eq.(4.73) and Eq.(4.74),

respectively. The matrix forms of the left-handed CKM-like matrix and right-handed

CKM-like matrix are as follows,

VCKM
L =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cθdL sθdLcφBL
ei

α3
dL
2 −sθdLsφBL

ei
α3
dL
2

0 −cφTL
sθdLe

i
α3
dL
2 cφTL

cθdLcφBL
e
iα3

dL −cφTL
cθdLsφBL

e
iα3

dL

0 sφTL
sθdLe

i
α3
dL
2 −sφTL

cθdLcφBL
e
iα3

dL sφTL
cθdLsφBL

e
iα3

dL

⎞⎟⎟⎟⎟⎟⎟⎠ , (D.3)



where

cθdL = cos θdL, sθdL = sin θdL, cφTL
= cosφTL

,

sφTL
= sinφTL

, cφBL
= cosφBL

, sφBL
= sinφBL

. (D.4)

and

VCKM
R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cθdR −sθdRcβBR
ei

α3
dR
2 sθdRsβBR

ei
α3
dR
2

0 cβTR
sθdRe

i
α3
dR
2 cβTR

cθdRcβBR
e
iα3

dR −cβTR
cθdRsβBR

e
iα3

dR

0 −sβTR
sθdRe

i
α3
dR
2 −sβTR

cθdRcβBR
e
iα3

dR sβTR
cθdRsβBR

e
iα3

dR

⎞⎟⎟⎟⎟⎟⎟⎠ , (D.5)

where

cθdR = cos θdR, sθdR = sin θdR, cβTR
= cos βTR

,

sβTR
= sin βTR

, cβBR
= cos βBR

, sβBR
= sin βBR

,

βTR
= θTR

− φTR
, βBR

= θBR
− φBR

. (D.6)

Recall the mass terms in the diagonal mass basis (including the massless two lightest

quark fields) as follows,

Lq ⊃ Lmass = −(um
L )

α(mdiag
t )α(um

R )
α − h.c.

− (dmL )
α(mdiag

b )α(dmR )
α − h.c. (D.7)

We have the freedom to rephase the quark fields with following transformations,

(um
L(R))

α = (θuL(R)
)αδαβ(ûm

L(R))
β, (D.8)

(dmL(R))
α = (θdL(R)

)αδαβ(d̂mL(R))
β, (D.9)

where θuL(R)
= diag(e

iθuL(R)1 , e
iθuL(R)2 , eiθu3 , eiθu4 ) and θdL(R)

= diag(e
iθdL(R)1 , e

iθdL(R)2 , eiθd3 , eiθd4 ).

One can show that Eq.(D.7) is invariant under transformation in Eq.(D.8)-(D.9).

We apply this rephasing transformation into the Lq. The left-handed and right-

handed CKM-like matrices are rephased and become,

V̂CKM
L = θ†uL

VCKM
L θdL , V̂CKM

R = θ†uR
VCKM
R θdR , (D.10)

By choosing proper phase and phase difference, we could rephase the left-handed and



right-handed CKM-like matrices and they become following matrix forms,

V̂CKM
L =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 cθdL sθdLcφBL
−sθdLsφBL

0 −cφTL
sθdL cφTL

cθdLcφBL
−cφTL

cθdLsφBL

0 sφTL
sθdL −sφTL

cθdLcφBL
sφTL

cθdLsφBL

⎞⎟⎟⎟⎟⎠ , (D.11)

V̂CKM
R =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 cθdR −sθdRcβBR
ei

δ
2 sθdRsβBR

ei
δ
2

0 cβTR
sθdRe

i δ
2 cβTR

cθdRcβBR
eiδ −cβTR

cθdRsβBR
eiδ

0 −sβTR
sθdRe

i δ
2 −sβTR

cθdRcβBR
eiδ sβTR

cθdRsβBR
eiδ

⎞⎟⎟⎟⎟⎠ , (D.12)

where we redefine the phase difference as δ = α3
dR

−α3
dL
. Therefore, in this model, we

have one CP violating phase δ and in our choice, it is included in the right-handed

CKM-like matrix as shown in Eq.(D.12).

Moreover, the mixing angle βTR
and βBR

can be expressed in the approximate

form as,

sin βTR
� muR√

M2
T +m2

uR

, cos βTR
� MT√

M2
T +m2

uR

, sin βBR
� mdR

MB

, cos βBR
� 1.

(D.13)


