題 目 A Study of the Third Family Quark Mass Hierarchy and Flavor-Changing Neutral Current in the Universal Seesaw Model (ユニバーサルシーソー模型における第三世代のクオーク質量階層性とフレーバーを 変える中性カレントの研究)

氏名 ALBERTUS HARIWANGSA PANULUH

The Universal Seesaw Model is an extension of the Standard Model (SM) that aims to explain the mass hierarchy problem between fermions by introducing heavy vector-like fermions (VLFs). These VLFs mix with the SM fermions, providing a seesaw-like mechanism that naturally explains the small masses of the light quarks and leptons while accommodating the heavy masses of the third family quarks. In addition, flavor-changing neutral currents (FCNC) are present at the tree level.

In this thesis, we present the study of the quark sector of the universal seesaw model with $SU(2)_L \times SU(2)_R \times U(1)_{Y'}$ gauge symmetry in the massless case of the two lightest quark families. This model aims to explain the mass hierarchy of the third family quark by introducing a vector-like quark (VLQ) partner for each quark. In this model, we introduce $SU(2)_L$ and $SU(2)_R$ Higgs doublets.

We derive the Lagrangian of the model explicitly for the quark sector, Higgs sector, and kinetic terms of the gauge fields. Starting from a Lagrangian invariant under $SU(2)_L \times SU(2)_R \times U(1)_{Y'}$, we systematically present the Lagrangian at each stage of symmetry breaking. After the $SU(2)_R$ Higgs doublet acquires a non-zero vacuum expectation value (vev), the Lagrangian becomes invariant under the SM gauge symmetry, and further breaking to $U(1)_{em}$ occurs when the $SU(2)_L$ Higgs doublet acquires its vev. At each stage of the symmetry breaking, we present the Lagrangian with the remaining gauge symmetry. Additionally, we investigate the flavor-changing neutral currents (FCNC) of Higgs (h) and Z-boson in the interaction with the top, heavy top, bottom, and heavy bottom quark.