
Research on Formal Verification
and Program Segment Testing

for Software Reliability

RAO LEI

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Graduate School of Advanced Science and Engineering
Hiroshima University

June, 2024

Abstract

This dissertation explores the use of formal verification and Program Seg-
ment Testing (PST) to enhance software reliability. Initially, formal verifi-
cation techniques, such as Event-B and Labeled Transition Systems (LTS),
were proposed to ensure software correctness and reliability. These methods
provide rigorous mathematical frameworks for modeling and verifying sys-
tem behavior and are particularly suitable for safety-critical and completed
systems or specifications. However, these techniques are less suitable for the
iterative and evolving nature of software development, particularly in the
context of Human-Machine Pair Programming (HMPP).

To address these limitations, this research introduces PST as a comple-
mentary technique. PST focuses on detecting runtime exceptions in both
partial and entire programs during the software development process, pro-
viding real-time feedback without human intervention. Integrated within
the HMPP framework, PST allows developers to identify and fix issues early,
enhancing productivity and reducing debugging time.

The effectiveness of formal verification is evaluated through the detailed
modeling and verification of the ARINC653 specification. Separately, the
benefits of PST are demonstrated through experiments that showcase its
ability to detect runtime errors early in the development cycle. This research
highlights that while formal verification is powerful for ensuring system cor-
rectness in completed systems, PST offers significant advantages in iterative
development environments by providing timely error detection.

This dissertation contributes to the field of software engineering by pro-
viding a comprehensive evaluation of formal verification and PST, highlight-
ing their individual strengths and limitations, and proposing practical solu-
tions for enhancing software reliability in different contexts.

Keywords: Combined Formal Method, Formal Verification, Human-Machine
Pair Programming, Program Segment Testing, Software Reliability

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives and Scope 3
1.3 Limitations . 4
1.4 Thesis Structure . 5

2 Literature Review 7
2.1 Formal Verification . 7

2.1.1 Formal Methods . 7
2.1.2 Formal Verification of Safety-Critical System 9
2.1.3 Top-down Formal Modeling of Safety-Critical Systems 10
2.1.4 Formal Modeling and Verification of Safety-Critical Sys-

tem Specification . 12
2.2 Program Segment Testing . 13

2.2.1 Human-Machine Pair Programming 13
2.2.2 Runtime Exception . 14
2.2.3 Program Slicing . 16
2.2.4 Software Testing . 17

2.3 Existing Work and Gaps . 19
2.3.1 Formal Verification Techniques 19
2.3.2 Program Segment Testing (PST) 20
2.3.3 Gaps in Existing Research 21

3 Formal Verification for Software Reliability 23
3.1 Combined Formal Method . 23
3.2 System modeling and verification framework based on com-

bined formal methods . 25
3.2.1 Event-B Theorem Proving Framework 26

3.2.2 Choice of model checking methods 33
3.3 Preliminary of Event-B and LTS 34

3.3.1 LTS and its Combinations 34
3.3.2 Event-B, iUML-B State Machine and Its Combination 35

3.4 Methodology . 37
3.4.1 Refinement Process in Event-B and LTS 37
3.4.2 Unified Representation 40
3.4.3 Proof of Equivalence 46
3.4.4 Discussion about the Ability of the Method 49

3.5 Experiment . 50
3.5.1 Introduction to the ARINC653 Specification 50
3.5.2 ARINC653 Specification Modeling 52
3.5.3 Property Verification of the ARINC 653 Specification

Model . 55
3.6 Results and Discussion . 58

4 Program Segment Testing for Software Reliability 61
4.1 Overview of Program Segment Testing 61
4.2 PST for Arithmetic Exception 65

4.2.1 Preliminary . 65
4.2.2 Case Study . 67
4.2.3 Experiment . 76

4.3 PST for index out of bounds exceptions 81
4.3.1 Preliminary . 81
4.3.2 Case Study . 83
4.3.3 Experiment . 88

4.4 Threats to Validity . 96
4.5 Discussion about PST . 97

5 Comparative Analysis and Discussion 99
5.1 Introduction . 99
5.2 Strengths of Formal Verification Techniques 99
5.3 Limitations of Formal Verification Techniques 100
5.4 Strengths of PST . 100
5.5 Limitations of PST . 101
5.6 Complementary Nature of Formal Verification and PST 101
5.7 Discussion . 102

6 Conclusion and Future Work 103
6.1 Summary of Key Findings . 103
6.2 Implications for Theory and Practice 104
6.3 Future Research Directions . 104
6.4 Conclusion . 105

7 Acknowledgements 107

8 Publication List of the Author 125

Chapter 1

Introduction

1.1 Background and Motivation

Software reliability is a critical aspect of modern software development, en-
suring that software systems perform correctly and consistently under various
conditions. Software reliability refers to the probability of a software system
performing its intended functions without failure over a specified period.
This is particularly crucial in safety-critical systems, where software failures
can lead to catastrophic consequences. Safety-critical systems include appli-
cations such as avionics, medical devices, and nuclear power plant controls,
where failure or malfunction could result in serious harm to people, prop-
erty, or the environment. Thus, improving software reliability is not just a
technical necessity but also a societal imperative.

Traditional software verification techniques, such as testing and code re-
views, often fall short in providing the necessary guarantees of correctness
for these complex systems. These methods rely on sampling and heuristics,
which may miss critical errors and do not offer formal guarantees about the
system’s behavior.

To address these challenges, formal methods have been developed. For-
mal methods are mathematically based techniques used to specify, develop,
and verify software and hardware systems. They involve the use of formal
logic and discrete mathematics to model and analyze system behavior, en-
suring that the system adheres to its specifications. Formal verification, a
process using formal methods to prove or disprove the correctness of a sys-
tem’s design with respect to certain formal specifications or properties, offers

1

a mathematically rigorous way to ensure software correctness. These tech-
niques aim to eliminate ambiguities in system design and ensure that the
system behaves as intended under all possible scenarios. Techniques such as
Event-B and Labeled Transition Systems (LTS) are particularly effective for
modeling and verifying the behavior of safety-critical and completed systems
or specifications. Event-B, for example, allows for the incremental refinement
of abstract models into detailed designs, ensuring correctness at each stage.
LTS provides a graphical representation of system states and transitions,
which is useful for analyzing concurrent and distributed systems.

Despite their strengths, formal verification techniques face significant
challenges when applied to the iterative and evolving nature of software de-
velopment. This is particularly true in the context of Human-Machine Pair
Programming (HMPP), where software is developed in a collaborative and
incremental manner. Formal verification can be resource-intensive, requiring
substantial computational power and expertise. The process of creating and
verifying formal models can be time-consuming and may not fit well with the
fast-paced, adaptive nature of modern software development practices. As
a result, these techniques are less practical for providing real-time feedback
during the software development process.

To address these limitations, this research introduces Program Segment
Testing (PST) as a complementary technique. A program segment refers to
a sequence of statements derived from the current version of a program (a
partial or completed program). PST focuses on detecting runtime exceptions
within these segments during the development process. Integrated within the
HMPP framework, PST provides real-time error detection without requiring
human intervention, allowing developers to identify and fix issues early in
the development cycle. This approach enhances productivity, reduces de-
bugging time, and improves overall software reliability. PST’s ability to
work seamlessly in the background, continuously monitoring the software as
it is developed, makes it particularly suited for modern, agile development
environments.

The motivation for this research stems from the need to bridge the gap
between the rigorous but resource-intensive formal verification techniques
and the practical, real-time error detection provided by PST. By leveraging
the strengths of both approaches, this research aims to enhance software
reliability in a comprehensive manner, particularly for safety-critical and
complex systems.

2

1.2 Research Objectives and Scope

The primary objective of this dissertation is to enhance software reliability
through the evaluation and application of formal verification techniques and
PST. The research aims to address the limitations of each method by leverag-
ing their respective strengths in different phases of the software development
process. Specifically, the research seeks to:
1. Assess the Effectiveness of Formal Verification Techniques

• Evaluate the capabilities of formal verification techniques, such as Event-
B and LTS, in ensuring software correctness and reliability for safety-
critical and completed systems.

• Investigate the application of these techniques to the ARINC653 spec-
ification, a critical avionics software standard, to demonstrate their
effectiveness in modeling and verifying complex system behaviors.

2. Develop and Evaluate PST Methodology

• Develop a robust PST methodology for detecting runtime exceptions
in both partial and entire programs during the software development
process.

• Integrate PST within the HMPP framework to enable real-time error
detection and feedback without human intervention, and evaluate its
effectiveness through experiments and case studies.

3. Compare and Contrast Techniques

• Conduct a comparative analysis of formal verification and PST to high-
light their respective strengths and weaknesses.

• Determine how PST can complement formal verification by address-
ing its limitations, particularly in terms of real-time application and
iterative development processes.

4. Propose Practical Solutions and Best Practices

• Based on the findings from the case studies and experiments, propose
practical solutions and best practices for integrating formal verification
and PST into the software development lifecycle.

3

• Suggest future research directions to further enhance the effectiveness
of these techniques in ensuring software reliability.

This research focuses on evaluating formal verification techniques and
PST independently to improve software reliability. The scope includes ap-
plying these techniques to specific case studies, such as the ARINC653 spec-
ification, and analyzing their effectiveness in detecting and correcting errors.

1.3 Limitations

While this research aims to provide a comprehensive evaluation of formal
verification and PST, several limitations must be acknowledged:
1. Scalability Issues

Formal verification techniques, especially when dealing with large-scale
and highly complex software systems, can face scalability issues. The com-
putational resources and time required to model and verify such systems can
be significant, potentially limiting the applicability of these techniques in
real-world scenarios.
2. Domain Specificity

The findings from this research may not be directly applicable to all
software domains without additional validation. The results may need adap-
tation to be relevant in different contexts.
3. Tool Support

While tools for formal verification are available, dedicated tools for PST
are still under development. This research evaluates existing tools but does
not propose improvements for them, acknowledging the ongoing need for
better tool support to facilitate the use of PST in practice.
4. Partial Program and Entire Program Testing:

While PST is designed to detect runtime exceptions in both partial and
entire programs, its focus on incremental and real-time error detection during
development means it might not provide the same level of exhaustive veri-
fication as formal methods. This approach prioritizes practical and timely
feedback over comprehensive validation.
5. Formal Method Expertise:

Implementing formal verification techniques requires a high level of ex-
pertise in formal methods and mathematical modeling. The steep learning
curve and the need for specialized knowledge can be a barrier to widespread

4

adoption, particularly in development teams with limited experience in for-
mal methods.

By acknowledging these limitations, this research aims to provide a bal-
anced and realistic evaluation of the potential and challenges associated with
formal verification and PST in enhancing software reliability.

1.4 Thesis Structure

This dissertation is structured as follows:

• Chapter 1: Introduction - Provides the background and motivation for
the research, outlines the research objectives, scope, and limitations,
and gives an overview of the thesis structure.

• Chapter 2: Literature Review - Reviews existing literature on formal
verification techniques and PST, highlighting their development, appli-
cations, and the gaps this research aims to address.

• Chapter 3: Formal Verification for Software Reliability - Discusses the
application of formal verification techniques, specifically Event-B and
LTS, including a detailed case study on the ARINC653 specification.

• Chapter 4: Program Segment Testing for Software Reliability - De-
scribes the PST methodology, its integration within the HMPP frame-
work, and presents experiment results demonstrating its effectiveness
in detecting runtime errors.

• Chapter 5: Comparative Analysis and Discussion - Compares the strengths
and limitations of formal verification and PST, discusses their com-
plementary nature, and provides insights into their combined use for
enhancing software reliability.

• Chapter 6: Conclusion and Future Work - Summarizes the key find-
ings, discusses the implications for theory and practice, and suggests
directions for future research.

This structure ensures a comprehensive exploration of the research ob-
jectives and provides a clear pathway for understanding the contributions of
both formal verification and PST in enhancing software reliability.

5

6

Chapter 2

Literature Review

2.1 Formal Verification

2.1.1 Formal Methods

”Formal methods” refer to various mathematical techniques used for the
specification and verification of software. These methods utilize formal spec-
ification languages as modeling elements and rely on a set of tools to sup-
port formal checks and property verification [1]. With the support of formal
methods, researchers can describe system requirements and behaviors using
rigorous mathematical models and verify whether a given system or model
meets the required properties[2]. Typical formal verification methods include
model checking [3] and theorem proving [4].

Formal methods, known for their rigorous mathematical foundation, are
considered one of the most promising approaches for future system verifica-
tion. Currently, formal methods have been widely applied to the modeling
and verification of various safety-critical systems, such as aerospace systems
[5], railway systems [6], nuclear power management systems [7], and automo-
tive electronic systems [8]. They are gradually extending into fields like the
Internet of Things (IoT) [9], cloud computing [10], and artificial intelligence
(AI) [11].

However, current formal methods often only model and verify certain
aspects or attributes of a system. For instance, modeling languages based
on model-checking methods, such as automaton and LTS, mainly focus on
behavioral aspects. In contrast, formal systems based on theorem-proving
methods, such as Event-B [12], Z notation [13], and VDM [14], primarily

7

focus on data refinement. To achieve comprehensive system verification,
multiple attributes (e.g., timing, spatial efficiency, and energy consumption)
must be considered. This not only requires ensuring data consistency but
also verifying system behavior attributes.

To enhance the expressive power of certain formal methods, researchers
often extend formal modeling languages based on actual requirements. For
example, to improve the structural degree of a type system, languages like
VDM++ [15], Obj-Z [16], and UML-B[17] have been developed. Event-
B was proposed to meet the needs of event-driven systems, and CSP-OZ
was introduced to visualize the control flow of abstract state machines[18].
To model and verify the temporal characteristics of systems, languages like
Timed CSP [19], CSP-OZ-DC [20], and RT-Z [21] were proposed. These can
all be seen as extensions of formal methods. Additionally, some research
groups have proposed entirely new formal systems that fully incorporate the
required expressive capabilities. For example, Circus [22] and OhCircus [23]
combine features of CSP and Z.

However, in reality, there is no formal method that can express all as-
pects of a system’s properties[24]. Moreover, learning to use multiple formal
systems is often more practical than redefining a new one. Therefore, a more
flexible and realistic approach is to combine various formal methods based
on actual system modeling and verification needs. For example, to address
the control flow modeling issues in the B-method and Event-B, researchers
proposed CSP ∥ B [25, 26, 27, 28, 29, 30, 31, 32] and CSP ∥ Event − B
[33, 34, 35, 36], which model CSP and B/Event-B separately and then inte-
grate them into a single framework for analysis and verification. Similarly, to
refine the temporal logic properties of Event-B models, S. Schneider and Thai
Song Hoang proposed strategies that combine Event-B and LTL[37, 38, 39],
which is more direct than using ProB.

The combined use of formal methods typically involves manual or auto-
matic transformation, where elements from one formal system are mapped
to corresponding parts in another. For instance, TLA+ models can be trans-
formed into B models to facilitate verification [40], and glue code can be
written to link ProB with the model checking tool LTSmin [41], enabling
reachability analysis of B models [42]. This approach of using multiple formal
systems for modeling and verification is known as combined formal methods
[43, 44].

8

2.1.2 Formal Verification of Safety-Critical System

Baumann et al. used the VCC verification tool in an avionics project to
verify all the function calls in the source code of the PikeOS partitioned op-
erating system, ensuring the correctness of the kernel services provided to
applications. They proposed a top-level abstract model and identified the
simulation relation theorem between this model and the actual implementa-
tion of the operating system and its applications. This theorem helped in
ensuring the overall correctness of the partitioned operating system kernel
by identifying the properties that all components must possess [45, 46, 47].
Since safety-critical systems built on PikeOS depend on the correct imple-
mentation of spatial isolation mechanisms, verifying it must consider the
correctness of memory isolation. Therefore, Baumann used the VCC tool to
perform source-level verification of PikeOS’s critical component, the memory
manager [48].

Richards et al. conducted a security verification of Green Hills Software’s
commercial partitioned operating system, INTEGRITY-178B [49]. Their
verification considered five key elements: (1) Formal specification of the sys-
tem’s relevant security properties; (2) Formal representation of the system’s
functional interfaces; (3) Semi-formal and abstract representation of the sys-
tem’s high-level design; (4) Semi-formal and detailed representation of the
system’s low-level design; (5)A model representing the correspondence be-
tween the above four elements. The system was modeled as a state transition
system, which receives current and external inputs to produce new system
states and external outputs. Using this approach, Richards verified the infor-
mation flow security of INTEGRITY-178B’s high-level model. The system’s
low-level design was modeled using the ACL2 theorem prover, ensuring that
the ACL2 model corresponded with the C code.

The kernel of the ARM-based embedded partitioned operating system,
PROSPER, consists of 150 lines of assembly code and 600 lines of C code.
Dam completed the formal verification of PROSPER’s information flow secu-
rity by proving the bisimulation relation between the abstract specification
and the kernel’s binary code [50]. The system model only considers two
partitions executing independently on two specific ARMv7 machines, com-
municating asynchronously via message passing. Dam ultimately verified
that, apart from communication through designated channels, there is no di-
rect or indirect influence between partitions. This was achieved by ensuring
that partitions cannot read or write to each other’s memory except through

9

explicitly using the pre-designated communication channels for message pass-
ing.

To ensure the information flow security of the Xenon partitioned oper-
ating system, Freitas and McDermott used Circus to create a formal model
of Xenon [51] Murray et al. modeled and verified the security of the seL4
partitioned operating system kernel using Isabelle/HOL [52]. They used the
specification of seL4 to verify the information flow security of the partitioned
operating system. The specification defined a partition-based round-robin
scheduling strategy, allocating fixed time windows to each partition.

The European EURO-MILS project aimed to precisely model PikeOS and
its security policies using Isabelle/HOL, designing a general partitioned oper-
ating system model called CISK (Controlled Interruptible Separation Kernel)
[53]. This model included several aspects of partitioned operating systems,
such as interrupts and context switching between partitions, with detailed
specifications suitable for the formal verification of industrial systems. Subse-
quently, they used the CISK method to verify the non-interference properties
of PikeOS’s inter-process communication API [54].

Sanan et al. used Isabelle/HOL in the ESA’s IMA for Space project to
construct a general partitioned operating system kernel functional model and
security model [55]. The specification used ARINC 653 as the functional re-
quirements and also covered hardware virtualization, CPU timers, and mem-
ory management. Zhao Yongwang et al. designed a top-level model of an
ARINC 653-compatible partitioned operating system using Isabelle/HOL,
considering partition management and other aspects of ARINC 653 [56].

2.1.3 Top-down Formal Modeling of Safety-Critical Sys-
tems

Z Notation, the B method, and the combined formal language Circus all sup-
port layer-by-layer refinement and correctness proofs, making them highly
suitable for implementation-oriented formal modeling. Craig [57] used Z No-
tation to design and refine a relatively complete operating system kernel,
proving that it could be directly translated into executable C code. Sub-
sequently, he further designed and refined a partitioned operating system
kernel, providing most of the functionalities of a partitioned operating sys-
tem, including: (1) Tables for basic process management; (2)Allocation of
partition memory spaces to non-overlapping addresses; (3) Inter-partition

10

communication through an asynchronous kernel-based messaging system; (4)
Handling of temporal isolation between partitions using a non-preemptive
scheduler and messaging system; (5) Clear interfaces and external process
identifiers to maintain kernel protection, defining secure kernel exit opera-
tions in case of illegal interface access. (6) Exporting kernel resources as
device processes. Craig used mathematical proofs to verify several basic
properties of the kernel. His formal specification of the partitioned operating
system is quite comprehensive, with a refinement level sufficient for direct
translation into C or Ada code. However, Craig’s work did not include a
model for processes within partitions, and the hardware device models were
relatively simplistic. All formal specifications and correctness proofs were
completed entirely by hand.

Building on Craig’s work, A. Velykis considered more security require-
ments and used automated Z Notation tools to further specify and verify the
partitioned operating system [58, 59]. Using the Z/Eves automated theo-
rem prover, Velykis formalized the specifications, eliminating syntax errors
in Craig’s model and verifying the feasibility and robustness of the API.
The improved formal model of the partitioned operating system was entirely
proven using automated theorem proving. However, Velykis’s formal spec-
ification did not address the temporal and spatial isolation of partitions.
Instead, the improved formal model focused on the core data structures of
the partitioned operating system kernel, such as process tables, queues, and
scheduling. The model mainly improved Craig’s scheduler model and con-
verted certain behavioral properties (e.g., deadlock analysis) from informal
requirements to mathematical invariants for proof. Other components, such
as message passing and memory management, were not proven using auto-
mated methods.

Critical Software’s Andre used the B method to design a secure parti-
tioning kernel (SPK) for a formal model of a secure partitioning operating
system kernel [60]. They first fully developed the top-level model of SPK,
completing the system architecture design, and used ProB [61] for simula-
tion and verification. The top-level abstract SPK model consisted of mem-
ory management, scheduling, kernel communication, flow policies, and clock
management. After verification, the top-level model was refined into a fully
formalized SPK. As part of SPK, the information flow policy for partitions
was refined to a level where C code could be automatically generated. This
refinement process was completed with the assistance of Atelier B.

Kawamorita and colleagues also applied the B method to develop a se-

11

cure partitioning operating system kernel for embedded devices, named OS-
K, and built a prototype on Intel’s IA-32 architecture [62]. They used the
B method as the development tool for the formal model and used Spin to
verify the model’s properties. The B4free tool was employed to generate and
check proof obligations. Almost all 2700 proof obligations, including verifi-
cations, were automatically verified by B4free. The final partitioning oper-
ating system kernel provided several functionalities: partition management,
inter-partition communication, access control for inter-partition communica-
tion, memory management, timer management, processor scheduling, device
driver operations, and interrupt handling for I/O interrupt synchronization.

2.1.4 Formal Modeling and Verification of Safety-Critical
System Specification

Gomes at the University of York used Circus to establish a formal model for
the ARINC 653 standard in the IMA system [63]. Zhao Yongwang and his
team at Beihang University proposed a refinement-based formal modeling
and information flow security analysis method for ARINC 653 [64], using Is-
abelle/HOL for the formal specification and information flow security proof
of ARINC 653. They reviewed industrial partitioning operating systems Vx-
Works 653 and two open-source partitioning operating systems, XtratuM and
POK, using this formal specification, and discovered security vulnerabilities
that could lead to information leakage [65].

Zhao Yongwang and his team also developed a formal model for the 57
services of ARINC 653 Part 1 using Event-B. They used the refinement
structure of Event-B to gradually refine the abstract model of ARINC 653
and transformed the service requirements of ARINC 653 into the lower-level
models. Zhao Yongwang utilized the formal reasoning capabilities of Event-B
to identify three hidden errors and incompleteness in the specification. Their
work included considering all factors required by a partitioned operating
system, such as clocks, message queues, partition scheduling, and processes
[65]. This comprehensive approach is a good example of using Event-B for
the modeling and verification of complex systems.

Recently, Zhao Yongwang proposed a method for combining the Web On-
tology Language (OWL2) and Event-B for modeling the ARINC 653 stan-
dard [56]. By using the ontology model of the partitioned operating system
as an intermediary between the non-formal specification of ARINC 653 and

12

the formal specification in Event-B, they achieved automatic conversion from
the ontology model to the Event-B model, resulting in a complete ARINC
653 specification described in Event-B. By introducing the ontology, the de-
gree of automatic verification of the Event-B specification for ARINC 653
was further improved.

2.2 Program Segment Testing

2.2.1 Human-Machine Pair Programming

Wang proposes a systematic framework for detecting and fixing security vul-
nerabilities during code construction [66]. The framework uses attack trees to
model various potential security threats in detail and generates vulnerability-
matching patterns based on these models. These patterns can detect code
vulnerabilities in real-time, providing detailed warning reports that include
the location of the vulnerability, possible attack types, and suggested fixes.
By leveraging the advantages of human-machine pair programming, devel-
opers and computers can work interactively to enhance the efficiency and
accuracy of vulnerability detection and repair.

Then, he introduces a novel approach for identifying security vulnerabil-
ities in software by using vulnerability nets, a special type of Petri net [67].
This method integrates data dependence graphs and control flow graphs to
enhance the detection of taint-style vulnerabilities such as buffer overflows
and injection vulnerabilities. The framework is tested on the Securibench
Micro benchmark, demonstrating its capability to accurately identify various
vulnerabilities with low false positive and false negative rates. The approach
aims to combine the strengths of static analysis tools and manual audits by
incorporating the expertise of security auditors into the vulnerability detec-
tion process.

The integration of artificial intelligence into HMPP has significantly trans-
formed this methodology in recent years. The paper [68] investigates the po-
tential for machine learning to enhance remote pair programming (RPP) by
addressing common challenges such as pair incompatibility, imbalanced roles,
and a preference for solo work. The authors collected a dataset of 3,436 utter-
ances from 18 participants in a simulated RPP environment. They evaluated
the effectiveness of machine learning algorithms in classifying dialogue acts,
creativity stages, and pair programming roles. The study found that while

13

RPP dialogue poses challenges due to its unstructured nature, the choice of
contextual dialogue features significantly improved the accuracy of machine
learning classifiers. The results suggest that integrating machine learning
agents into RPP could facilitate better coordination and collaboration in
global software development and online computer science education.

Hannay et al. explore the impact of the Big Five personality traits on
the performance of pair programmers, alongside other factors such as exper-
tise and task complexity [69]. The study involved 196 software professionals
from three countries, forming 98 pairs. The analysis, which included both
confirmatory and exploratory parts, revealed that personality traits have
a modest predictive value on pair programming performance compared to
expertise and task complexity. The results suggest that factors such as pro-
gramming skill and learning may be more influential. The study concludes
that while personality traits have some effect, other human-related factors
should be investigated to improve pair programming performance. The find-
ings indicate that a focus on collaborative measures might be more beneficial
for enhancing pair programming outcomes.

2.2.2 Runtime Exception

The paper [70] presents a comprehensive approach to identify and fix faults
in Java programs that lead to runtime exceptions. This method addresses
exceptions caused by incorrect value assignments, such as null pointer deref-
erences, arithmetic faults, and type faults. The technique combines dynamic
analysis using stack trace information with static backward data-flow anal-
ysis. Starting from the point of the runtime exception, it traces back to
the source statement where the erroneous value was assigned. The approach
not only identifies the exact source of the fault but also provides context
information to help developers repair the fault. The method is demonstrated
through its application to null pointer exceptions, showing its effectiveness
in locating and fixing faults compared to using static analysis or stack traces
alone. The paper also discusses the implementation of this technique and
presents empirical studies validating its advantages.

The paper [71] by Westley Weimer and George C. Necula, explores a
dataflow analysis technique to identify and correct error-handling mistakes in
programs. These mistakes often arise from improper resource management,
such as failing to release resources or clean up properly along all execution
paths. The analysis tracks obligations through the program paths, modeling

14

control flow in the presence of exceptions, and highlights violations of re-
source safety policies. The study identified over 800 error-handling mistakes
in nearly 4 million lines of Java code, which commonly resulted in resource
leaks, such as unclosed sockets, files, and database handles. The authors pro-
pose a programming language feature that ensures outstanding obligations
are discharged by keeping track of them at runtime. This feature improves
program reliability by systematically addressing the mistakes found through
their analysis, resulting in more consistent and efficient error handling.

In [72], they present a machine learning approach to predict runtime ex-
ceptions in Java methods using static code analysis. The proposed method,
D-REX (Deep Runtime EXception detector), leverages a neural network
model called the Location Aware Transformer to predict runtime exceptions
and identify exception-prone code elements. D-REX operates by construct-
ing an Action-Context Token Sequence (ACTS) from Java methods, which
captures key elements and their contexts within the code. This sequence is
fed into the Location Aware Transformer model, which uses self-attention
mechanisms to provide accurate predictions. The model is trained on a large
dataset of Java projects from GitHub, achieving 81% Top 1 accuracy in
predicting exception types and 75% Top 1 precision in identifying exception-
prone tokens. The paper demonstrates the superiority of D-REX over other
baseline models, such as Bi-LSTM and plain Transformer models, in both ac-
curacy and precision. This method not only predicts the types of exceptions
but also highlights the specific code elements likely to cause these excep-
tions, helping developers address potential issues proactively. The authors
highlight the importance of handling runtime exceptions to prevent severe
software failures and propose D-REX as a tool to assist developers in im-
proving code reliability and robustness.

Sonal Mahajan et al. introduce a technique and prototype tool named
Maestro [73]. Maestro aims to automatically recommend the most relevant
Stack Overflow (SO) post for fixing runtime exceptions (RE) in Java code.
The tool works by comparing the exception-generating scenario in the devel-
oper’s code with scenarios discussed in SO posts. Maestro extracts relevant
lines from SO posts’ code snippets using Abstract Program Graph (APG)
representations, which abstract and simplify the code structure for effective
comparison. Maestro’s evaluation on a benchmark of 78 Java runtime ex-
ceptions from top GitHub projects showed it could return highly relevant
posts in 71% of cases, outperforming other state-of-the-art tools. A user
study with 10 Java developers further validated its effectiveness, with partic-

15

ipants finding Maestro’s recommendations relevant or highly relevant in 80%
of instances.

2.2.3 Program Slicing

In [74], the authors introduce an innovative method for debugging Java run-
time exceptions. This approach integrates program slicing, backward data
flow analysis, and stack trace information to effectively identify the source
of runtime exceptions caused by erroneous value assignments. The method
begins with program slicing to narrow down the search scope to the rel-
evant parts of the program. Subsequently, a backward data flow analysis
is performed starting from the point where the exception occurred, using
stack trace information to guide the analysis in determining the exact source
statement responsible for the runtime exception. This combined approach
addresses the imprecision of static techniques and reduces the performance
overhead often associated with dynamic techniques.

Then, they present another method to identify the causes of null pointer
exceptions in Java programs [75]. This approach begins with a backward pro-
gram slicing from the dereference statement where the exception occurred,
using stack trace data to guide the process. It then conducts null identifica-
tion and alias analysis on the sliced program to accurately pinpoint the faulty
statements responsible for the exception. By combining dynamic and static
analysis, this technique mitigates the limitations of pure static methods, en-
hancing the precision of fault localization. Additionally, a visualization tool
is provided to help developers understand and analyze the results. The imple-
mentation and results confirm that this hybrid approach outperforms static
analysis alone in identifying null pointer exceptions.

Carlos et al. address the challenges of incorporating exception handling in
program slicing [76]. The study demonstrates that the System Dependence
Graph (SDG), commonly used in program slicing, can produce incorrect
and incomplete slices when dealing with exception-handling constructs. The
authors propose a new framework to correctly handle these constructs by
representing all possible exception throwing and catching mechanisms. They
introduce a new type of control dependence called conditional control depen-
dence, which ensures more precise slices in the presence of catch statements.
The proposed framework modifies the traditional construction of SDGs by
creating an exception-sensitive version, termed ES-SDG. This new approach
includes enhancements to control dependence computation, taking into ac-

16

count the unique behavior of exception handling constructs. The authors’
solution addresses incompleteness issues seen in previous methods, ensuring
that all relevant exception handling code is included in the slices when nec-
essary. This method is applicable to most modern programming languages
with exception handling capabilities, such as Java, C++, and JavaScript. By
enhancing the accuracy of program slices, the proposed approach improves
the effectiveness of program analysis and debugging, especially in scenarios
where exception handling plays a critical role.

In [77], Matthew Allen and Susan Horwitz extend the existing program
slicing techniques to accurately handle exception handling constructs in Java.
The paper addresses the shortcomings of current slicing algorithms, which
fail to account for the additional control and data dependencies introduced
by exceptions. By incorporating try, catch, and throw constructs into the sys-
tem dependence graph (SDG), the authors develop a method that correctly
identifies all relevant program components affected by exceptions. This en-
hanced slicing technique ensures that both control and data dependencies
are properly represented, providing a more accurate and complete slice of
Java programs that include exception handling. Through this extension,
the method supports better program understanding, debugging, and main-
tenance, especially in complex Java applications where exceptions play a
critical role.

The paper [78] compares the effectiveness of statistical fault localization
(SFL) and dynamic program slicing for identifying faulty code locations. In
a large-scale study of 457 bugs across 46 open-source C programs, it was
found that dynamic slicing was more effective for single faults, pinpointing
faults 62% more accurately and requiring programmers to inspect fewer lines
of code compared to the best performing SFL techniques. Conversely, SFL
performed better for multiple faults. The paper advocates a hybrid approach,
suggesting that starting with the top five most suspicious locations from SFL,
followed by dynamic slicing, yields the best results. This combined method
allows programmers to examine fewer lines of code, enhancing the efficiency
and accuracy of fault localization.

2.2.4 Software Testing

The paper [79] by Saurabh Sinha and Mary Jean Harrold explores the impact
of exception-handling constructs on various program analysis techniques,
such as control flow, data flow, and control dependence. These techniques

17

are crucial for tasks like structural and regression testing, dynamic execu-
tion profiling, static and dynamic slicing, and program understanding. The
paper highlights the challenges that arise when analyzing programs with ex-
plicit exception occurrences and presents new techniques and algorithms to
construct accurate representations of these programs, ensuring correct anal-
ysis results. The study emphasizes the importance of considering exception-
handling constructs in Java and C++ to avoid inaccurate analysis informa-
tion that can lead to unreliable software tools. Empirical results from the
study show the frequency and impact of exception-handling constructs in
Java programs, underscoring their significance in various analyses. The au-
thors propose algorithms to incorporate these constructs into control-flow
and control-dependence analyses, and discuss their application in program
slicing and structural testing. The paper concludes that accurate modeling
of exception handling is essential for effective software analysis and testing,
and provides a foundation for further research in this area.

In article [80], they discuss how AI and machine learning (ML) are rev-
olutionizing the field of clinical microbiology. The use of AI is explored in
various applications such as interpreting Gram stains, ova and parasite ex-
ams, digital plate reading of bacterial cultures, and advanced analysis of
MALDI-TOF mass spectrometry and whole genome sequencing data. AI
enhances the efficiency and accuracy of clinical microbiology by automating
tasks that traditionally required significant human effort, thereby improving
patient care. For instance, AI algorithms can automate the interpretation
of blood culture Gram stains, assist in the identification and classification of
parasites in stool samples, and streamline the analysis of bacterial cultures
on agar plates. These AI tools use convolutional neural networks (CNNs)
and other ML models to process and analyze complex datasets, offering sig-
nificant advantages over manual methods.

Samer et al. explore the limitations and solutions for automating UI tests
for dynamic web applications using the TestComplete tool [81]. The study
highlights the challenges faced when using TestComplete’s recorder tool for
dynamic web pages, such as the tool’s inability to recognize onscreen objects
that change properties between test runs, leading to failed tests. To ad-
dress these issues, the authors propose a methodology for writing robust test
scripts using TestComplete’s scripting API. By focusing on attributes that
remain consistent across test runs, such as idStr, innerText, and ObjectType,
testers can create more reliable and maintainable test scripts. The proposed
solution involves writing scripts that ensure the web page is fully loaded be-

18

fore interacting with onscreen elements and using stable attributes to locate
these elements. The authors conclude that while TestComplete’s recorder
tool has limitations, its scripting capabilities offer a powerful alternative for
creating robust automated tests for dynamic web applications.

Hongyu Zhou et al. provide a comprehensive overview of the advance-
ments in gesture recognition technologies and their applications in human-
computer interaction (HCI) [82]. The study covers the principles and devel-
opment of four primary gesture recognition methods: electromagnetic wave
sensing, mechanical sensing, electromyographic sensing, and visual sensing.
Each method’s strengths and weaknesses are discussed in terms of dataset
size, accuracy, biocompatibility, wearability, stability, and robustness. The
authors highlight the improvements in sensor structures, signal processing
algorithms, and the selection of characteristic signals that have enhanced
the effectiveness of gesture recognition technologies. They also address the
current challenges in gesture recognition, such as the biocompatibility of sen-
sor materials, the adaptability and wearability of devices, and the stability
and robustness of signal acquisition and analysis algorithms. The authors
conclude that gesture recognition technology holds significant promise for
applications in smart homes, medical care, sports training, and other fields,
offering more natural and intuitive means of interaction compared to tradi-
tional keyboard and mouse interfaces. This systematic review serves as a
valuable resource for researchers and developers working to innovate and im-
prove gesture recognition systems for enhanced human-computer interaction.

2.3 Existing Work and Gaps

Research in the field of software reliability has produced a variety of methods
and tools aimed at improving the correctness and robustness of software
systems. This section reviews existing work on formal verification techniques,
highlighting their development, applications, and the gaps this research aims
to address.

2.3.1 Formal Verification Techniques

Formal verification has been a well-established field of research for several
decades. Techniques such as Event-B and LTS have been widely used to
model and verify critical systems. Event-B, with its emphasis on incremen-

19

tal refinement, allows developers to start with an abstract model and grad-
ually introduce details while maintaining system correctness. This method
has been successfully applied in various domains, including transportation,
aerospace, and industrial control systems.

LTS provides a powerful framework for modeling the behavior of concur-
rent and distributed systems. By representing states and transitions, LTS
helps in understanding complex interactions and verifying properties such as
deadlock-freedom and reachability. Tools like the Label Transition System
Analyzer (LTSA) facilitate the construction and verification of LTS models,
making them accessible for practical applications.

Despite their strengths, formal verification techniques face several chal-
lenges:

1. Applicability to Safety-Critical Systems: - Formal verification tech-
niques are well-suited for safety-critical systems and specifications. They
provide a high degree of assurance that the system adheres to its specifi-
cations through rigorous mathematical proofs. However, these techniques
are less suitable for use during the iterative and evolving phases of software
development, such as in Human-Machine Pair Programming (HMPP).

2. Resource Intensity: - Formal verification requires significant computa-
tional resources and time, especially for complex systems. This can limit their
practicality and make them less appealing for projects with tight deadlines
or limited resources.

3. Expertise Required: - The steep learning curve and the need for sub-
stantial expertise in formal methods and mathematical modeling can be a
barrier to their widespread adoption in the software development industry.

2.3.2 Program Segment Testing (PST)

PST is a novel approach proposed in this research to address the limitations of
formal verification in the context of HMPP. Unlike formal verification, which
aims to provide comprehensive proof of system correctness for completed
systems, PST focuses on detecting runtime exceptions in both partial and
entire programs during the software development process. PST is designed
to work within the HMPP framework, enabling real-time error detection
without human intervention.

The key advantage of PST is its ability to provide timely feedback on
runtime errors, allowing developers to identify and fix issues early in the de-
velopment cycle. This approach is particularly useful in agile development

20

environments, where rapid iteration and continuous integration are critical.
By automatically monitoring the program and reporting errors in the back-
ground, PST enhances developer productivity and reduces the time spent on
debugging.

2.3.3 Gaps in Existing Research

While formal verification offers valuable tools for improving software reliabil-
ity in completed and safety-critical systems, there are several gaps in existing
research that this dissertation aims to address:

1. Suitability for Iterative Development:
Formal verification is not well-suited for the iterative and evolving nature

of software development in HMPP. There is a need for methods like PST that
can provide real-time feedback and error detection during the development
process.

2. Tool Support and Usability:
While tools exist for formal verification (e.g., Rodin for Event-B, LTSA for

LTS), they often require significant expertise to use effectively. Additionally,
there is a lack of dedicated tools for supporting PST, limiting its widespread
adoption. This research evaluates current tools and highlights the need for
improved tool support to facilitate the effective use of PST in real-world
development environments.

3. Practical Applications:
While formal verification has been successfully applied in various do-

mains, there is limited research on the practical application of PST in real-
world development environments. This research will provide case studies and
experiment evaluations to demonstrate the effectiveness of PST in detecting
runtime errors and improving software reliability.

By addressing these gaps, this research aims to provide a comprehen-
sive evaluation of formal verification and PST, highlighting their individual
strengths and limitations, and proposing practical solutions for enhancing
software reliability in complex systems.

21

22

Chapter 3

Formal Verification for
Software Reliability

3.1 Combined Formal Method

The combined formal methods approach involves using multiple formal meth-
ods to complete the modeling and verification of various system attributes
[83]. Clarke and others [24] pointed out in the 1990s that no single for-
mal method could fully address the core issues of complex system modeling
and verification in a completely satisfactory manner, suggesting the use of
combined formal methods. Recently, Almeida and colleagues [2] have also
argued that no current formal method can entirely meet the modeling and
verification needs of complex systems. They believe that, given the current
state of formal methods development, combining various methods and tools
is an attractive solution, hence advocating for the use of combined formal
methods.

Among the various combined formal methods, integrating model check-
ing and theorem proving is considered one of the most promising approaches
[24]. Ideally, this approach allows researchers to leverage the strengths of
both methods while avoiding their respective limitations. However, their
practical application still requires careful consideration of various factors. It
is crucial to clearly define the objectives and principles of the combination,
and to carefully choose the appropriate theorem proving frameworks and
model checking tools. Otherwise, it may increase the cost of modeling and
verification. To this end, we have summarized the typical views on the prin-

23

ciples and objectives of combined formal methods from existing research to
guide the application of these methods in this paper.

1) Objectives of Combined Formal Methods
The objectives of combined formal methods clarify the capabilities that

the newly obtained combined methods should possess after integrating two
or more individual methods. According to literature [43], when combining
model checking and theorem proving for system modeling and verification,
the following goals should be achieved to some extent:

• G1: The combined method should enable a higher degree of automated
verification for infinite state systems, minimizing the workload of in-
teractive proof that requires human intervention.

• G2: The combined method should be able to verify larger state spaces
than those that can be handled by using model checking alone, while
also being capable of verifying complex control systems that are difficult
to verify using theorem proving alone.

• G3: The combined method should be able to generate counterexam-
ples (i.e., traces that violate properties) for infinite state systems, thus
overcoming the limitation of theorem proving methods which can only
provide a result (correct or incorrect) without offering counterexamples.

2) Principles of Combined Formal Methods
In reality, not all formal systems can be combined with each other. There-

fore, when selecting two formal systems to be combined, the following prin-
ciples should be adhered to [43]:

• C1: The transformation from one formal system to another should
be correct, ensuring the behavioral semantic consistency between the
model before and after the transformation.

• C2: The transformation process should be bidirectional.

• C3: The transformation should be applicable at every refinement level
of the two heterogeneous models.

• C4: The theorem proving framework should be robust enough to be
compatible with most model checking techniques.

24

3) How to Combine
Even after selecting two or more formal systems as the sources for com-

bination, it is crucial to consider how to combine them effectively to achieve
the desired goals. Clarke [24] suggests that when combining model checking
and theorem proving methods, two key factors should be considered:

• F1: Choose an appropriate style to combine the formal methods. The
chosen style should ensure that the advantages of each formal method
are preserved. For example, languages like Z, B, and Event-B are known
for their ease of understanding and low learning curve, making them
accessible and easy to promote. When combining these languages with
other methods, it is important to retain these advantages. Otherwise,
the combination loses its significance.

• F2: Choose an appropriate meaning to combine the formal methods.
This means finding a common mathematical foundation for the par-
ticipating formal systems, such as LTS or automata. If the common
foundation is not well-defined, the combination may just result in a sim-
ple mix of the two formal systems, without providing any additional
benefits compared to using them separately. A clear interpretation of
the combination allows for the formal modeling of different aspects of
a system and facilitates the refinement and reasoning of the integrated
views.

3.2 System modeling and verification frame-

work based on combined formal methods

We adopt a modular decomposition approach to combine model checking
and theorem proving. This involves decomposing the system model within
the framework into verifiable fragments or components and then performing
integrated verification. Based on the objectives and principles outlined in
the previous section, and considering the strengths and weaknesses of vari-
ous methods as well as the modeling and verification needs of safety-critical
systems, this paper selects Event-B as the theorem proving framework and
LTS [84] as the model checking method.

25

3.2.1 Event-B Theorem Proving Framework

Event-B [12] is currently one of the most software engineering-friendly formal
languages. Its approach of gradual refinement and automatic code generation
ensures the correctness and consistency of models while providing strong
support for software engineering.

Based on the following reasons, this paper selects Event-B as the refine-
ment framework for theorem proving methods:

• Event-B has a strict proof obligation generation mechanism and can be
combined with many model checking tools for joint verification, which
aligns with ”Principle C4”.

• Event-B models lack inherent behavioral semantics, allowing users to
assign various behavioral semantics based on actual needs, such as LTS
semantics, automata semantics, etc. This meets the requirements of
”Factor F2” and ”Principle C4”.

• Event-B models can be easily transformed into LTS models for model
checking. Literature [33] indicates that an Event-B model can be
viewed as a complex LTS, and existing work [85, 86, 87] has demon-
strated the feasibility of this transformation. This aligns with ”Princi-
ple C1”.

• Event-B has a ”UML-like” front-end iUML-B, which uses a Statechart-
like graphical representation to express Event-B model variables and
their states, and supports the expression of refinement relationships.
This is very beneficial for decomposing Event-B models into sub-models
that can be verified by model checking tools. This meets the require-
ments of ”Factor F2” and ”Principles C2 and C3”.

We adopts a modular decomposition approach to combine Event-B with
other model checking methods. Specifically, the Event-B theorem proving
framework serves as the main framework, with model checking methods as-
sisting in property verification. This section first provides a brief overview of
the basic concepts of Event-B, including its modeling elements, refinement
framework, and proof obligations. It then analyzes the shortcomings of the
Event-B method, providing a basis for selecting model checking methods to
combine with the Event-B theorem proving framework.

1) Basic Modeling Elements

26

An Event-B model consists of two parts: the Context and the Machine
[12]. The Context part includes the static elements of the model, while the
Machine part contains the dynamic elements. Contexts can be extended by
other Contexts and can be referenced by a Machine. Each Machine can be
refined by other Machines. The main components and refinement principles
of an Event-B model are shown in Figure 3.1.

Machine

Variables

Invariants

Events

Theorems

Context

Carrier Sets

Constants

Axioms

Theorems

Other

Machines

Other

Contexts

Sees

Sees

Refines Extends

Sees

Figure 3.1: Main components and refinement principles of the Event-B model

The Context of a model can include definitions of sets and constants, as
well as axioms describing the properties of these sets and constants. The
Context can also contain theorems that must be proven to be consistent
with the existing axioms. A Context can be extended by other Contexts and
referenced by one or more Machines. Additionally, a Machine can indirectly
reference a Context. For instance, if a Machine M can reference another
Context C1 that extends Context C, then MachineM can indirectly reference
Context C.

The Machine in an Event-B model contains the description of the dynamic
behavior of the model. A Machine is composed of basic elements such as
V ariables, invariants, Events, and Theorems. Variables, like constants,
correspond to simple mathematical objects such as sets, binary relations,
functions, and numerical quantities. An invariant I(V) is a logical expression
defined over a set of variables, representing the properties that must hold true
when the Event-B model performs various behaviors. Therefore, when the
values of variables change, the invariants should always remain true. The
preservation of invariants must be proven through the fulfillment of proof
obligations.

An Event-B Machine can contain one or more Events, which define the
possible state transitions of the model. Each event is composed of four el-

27

ements: the event name, event parameters, guards, and actions. As shown
in Figure 3.2, guards are the necessary conditions for the event to be exe-
cuted, while actions describe the changes in state variables when the event
is executed.

Event

Name

Parameter

Guard

Action

Figure 3.2: The components of event in Event-B

An event can only be executed if its preconditions (guards) are satisfied.
When the guards of several events are true simultaneously, the specific event
to be executed is nondeterministic, meaning only one of the events can be
executed.

2) The Stepwise Refinement Framework of Event-B
In an ideal formal methods-based software development process (such

as the Correct-By-Construction approach), it is desirable to gradually add
design details from the highest level of abstract specification until the fi-
nal implementation specification is achieved. This introduces an important
concept: refinement consistency. Refinement consistency refers to how to
derive an implementation of a system from an abstract specification so that
it has behavior equivalent to the system specification. In other words, given
a concrete specification, how to ensure that its behavior is the same as the
system specification. This is a formal relationship problem between abstract
specifications and concrete specifications.

Refinement [88, 89] is a mechanism that allows model developers to grad-
ually add details to a system model until it becomes an implementable model,
ensuring the consistency between the refined model and the abstract model.
The main principle of refinement is that if the initial formal model is valid
and the refinement process is correct, then the stepwise refinement process
will yield a correct implementation model.

Refinement operators are mechanisms that support the transformation of
system models. They provide rules for converting an abstract model into a

28

more concrete implementation model while maintaining the required prop-
erties [90]. Originally developed for the refinement of sequential programs,
refinement operators were extended by Back [91] to handle distributed and
concurrent system models through action system refinement.

Morgan [92] proposed a rule-based refinement method, which uses rules
to automatically transform a model S from one form into another form S

′
.

This transformation S ⊑ S
′
(where S

′
refines S) is valid only if S

′
satisfies

all the expected properties of S. Since this method is rule-based, it ensures
that the concrete model is always a refinement of the abstract model.

Another refinement method is the ”posit-and-prove” method. This ap-
proach involves rewriting the concrete model based on the abstract model
(positing) and then using theorem provers or model checking tools to prove
that the concrete model is a correct refinement of the abstract model (prov-
ing). This method requires the modeler to manually verify the correctness
of the refinement, making it a non-automated approach.

Event-B and VDM use the typical ”posit-and-prove” refinement method.
As mentioned earlier, during the development of an Event-B model, the
abstract model is continuously rewritten into a more concrete model, and it
must then be proven that the concrete model is a correct refinement of the
abstract model. The required properties are specified as invariants, which
are predicates composed of state variables that must always hold true during
the refinement process. If the model needs to follow certain LTL properties
or timing constraints, these must also be specified as invariants and proven
to remain true throughout the refinement process.

According to Abrial [12], refinements in Event-B can be classified into
two categories: horizontal extension and vertical refinement. Horizontal ex-
tension involves introducing new objects into the model to meet system re-
quirements that were not modeled at the previous level, thus deferring these
needs to the next level. In a concrete Event-B model, this could mean in-
troducing new variables to represent the state of these objects and events.
For example, in an abstract model of a control system, only the controller
components might be included initially. In the next level of horizontal exten-
sion, controlled objects and the environment are gradually introduced until
the entire system is incorporated into the model.

Vertical refinement aims to add design and implementation details of
specific objects or components to the abstract model, further describing how
the system achieves a particular function. In Event-B models, this means
decomposing an event into more sub-events (edge refinement) or concretizing

29

abstract state variables (node refinement). For instance, when modeling a
file transfer protocol, an abstract model might include a ”send message”
event, which could be refined into ”assemble message”, ”buffer message”,
and ”transmit” events at a more concrete level.

In the actual system modeling process, both horizontal extension and ver-
tical refinement are typically used simultaneously. For concurrent systems,
horizontal extension is a very important method. It allows the modeler to
avoid facing all the system objects at once by gradually introducing each ob-
ject. Vertical refinement, on the other hand, allows for the behavior of each
object to be detailed from an initial abstract description to more concrete
implementation details.

Based on refinement operators, a theorem proving-based modeling lan-
guage can provide a framework for the stepwise refinement of a system. This
involves initially writing the highest-level abstract specification in mathemat-
ical language and then gradually refining the model step by step until it leads
to an implementation model. Each refinement step makes the model increas-
ingly concrete and closer to the actual implementation. In a theorem proving
framework, numerous related proof obligations ensure that each refinement
step is valid, meaning that the concrete model retains the properties of the
abstract model. Therefore, assuming the original model is correct and each
refinement step is proven to be valid, the system derived from or automati-
cally generated by the final model will have a high degree of reliability.

The stepwise refinement process of Event-B is as follows: the initial spec-
ification S is the initial model M0; then it can be refined into a more concrete
model M1, which is further refined into M2, and so on, until the final imple-
mentation Mn = E. This is show in Equation:

S = M0 ⊑M1 ⊑M2 ⊑M3 ⊑ ... ⊑Mn = E

3) Proof Obligations in Event-B
To ensure the well-formedness and correctness of refinements, the Event-

B modeling and verification process involves generating a large number of
proof obligations using theorem proving tools (such as Rodin [93]). These
proof obligations must be correctly discharged to validate the model. Another
use of proof obligations is to ensure that certain invariants are maintained,
thereby guaranteeing that the system satisfies specific properties. The Rodin
proof obligation generator creates several types of obligations:

• Well-Definedness (WD): Ensures that the axioms, invariants, guards,

30

and actions in the model are well-defined.

• Invariant Preservation (INV): Ensures that invariants are not violated
during state changes.

• Guard Strengthening (GRD): Ensures that the guards of concrete events
are a correct refinement of the corresponding guards in the abstract
model.

• Action Simulation (SIM): Ensures that the actions of concrete events
correctly refine the actions of the abstract events.

4) Limitations of Event-B
Although Event-B has many advantages, as Clarke pointed out, no single

formal system can meet all modeling and verification needs. Overall, the fol-
lowing limitations of Event-B make it challenging to fully meet the modeling
and verification requirements of partitioned operating systems:

(1) The Event-B Refinement Process Cannot Guarantee LTL Properties
From the analysis of the Event-B refinement process and proof obligations

in the previous section, it is clear that Event-B’s refinement is primarily at
the event level. This means the ”Action Simulation (SIM)” relationship only
ensures that if there is an event EA in the abstract model, there must be
a corresponding refined event ER in the refined model. The correctness
condition for both the abstract and refined models is simply that the guards
in the refined model are stronger than those in the abstract model.

However, there is an issue here: Does refining an event equate to refin-
ing behavior? Clearly not, because behavior is a sequence of events. In the
Event-B refinement process, even if the model fully complies with the Event-
B refinement process and all proof obligations are discharged, it cannot guar-
antee behavioral equivalence between the abstract and refined models. Here,
behavioral equivalence specifically refers to maintaining LTL properties.

As Schneider [37, 39] and Thai Song Hoang [38] pointed out, the Event-B
theorem proving framework does not specifically provide proof obligations
for maintaining LTL properties. Typically, behaviors are ensured by adding
the required properties to the invariant section and proving they are not
violated during the modeling and refinement process. Alternatively, one can
use model checking tools like ProB to verify certain temporal logic properties.
Therefore, tools are needed to ensure the behavioral equivalence between the

31

lower-level and upper-level models, thereby ensuring that LTL properties and
timing constraints are maintained throughout the refinement process.

(2) Event-B is Not Well-Suited for Expressing and Verifying Control Flow
As a modeling language based on first-order predicate logic, Event-B

inherently struggles to express the control flow of a system—the sequence of
events that occur. Although there has been extensive research on expressing
control flow in Event-B, such as the AD/ERS method, Flow method, and
CSP ∥ B method, these approaches have not been as intuitive as graph-based
formal systems for representing control flow. Essentially, an Event-B machine
consists of a ”flat” collection of events. Moreover, Event-B lacks inherent
behavioral semantics. While Butler has given Event-B behavioral semantics
using a behavioral systems approach, and Hoang has assigned refinement
semantics using the CSP method, these efforts still fall short of providing
direct behavioral formalism like LTS.

The lack of behavioral semantics poses a significant challenge to verify-
ing LTL properties in Event-B models. Extracting the behavioral semantics
directly from an Event-B model can require extensive learning and analysis.
For instance, the MBT (Model-Based Testing) method [94, 95, 96] acquires
the behavioral semantics of an Event-B model through model learning. How-
ever, this approach does not directly provide behavioral semantics within the
model. Providing explicit control flow constructs during the process of as-
signing behavioral semantics to Event-B models offers a more reasonable
path.

(3) Event-B Models Do Not Support Composition and Decomposition of
Concurrent Objects

Composition and decomposition have long been classic methods for ad-
dressing model state space explosion. Although theorem proving methods
can theoretically handle infinite state systems, the cost of proofs increases
dramatically as the scale reaches the limits of automatic tools. Therefore,
researchers have proposed various methods to support the composition and
decomposition of theorem proving languages, such as Obj-Z, VDM++, and
the Decomposition method in Event-B [97]. However, the Decomposition
method struggles to achieve true decomposition, meaning that multiple sub-
system models can execute in parallel within the same machine.

Researchers have also developed the Modularisation method for Event-B
[98, 99, 100], but this approach is limited to interface-level decomposition.
The fundamental issue with these methods is their difficulty in converting
to automata-based formal models that support composition and decomposi-

32

tion. Colin Snook’s UML-B [101, 102, 103, 104] and the subsequent iUML-B
method [105] use state machines to represent the transitions of concurrent
components or objects, which is closest to the model checking approach of
system modeling. However, current research on UML-B primarily focuses on
data refinement [106], with less emphasis on model composition and decom-
position.

Based on the above analysis, although Event-B provides a powerful theo-
rem proving framework, it has significant limitations in modeling and verify-
ing safety properties and supporting composition. These limitations make it
difficult to meet the modeling and verification requirements of safety-critical
systems. Therefore, it is necessary to complement Event-B with model check-
ing methods.

3.2.2 Choice of model checking methods

This paper chooses Finite State Process (FSP)[107] as the model checking
component in the combined formal methods framework.

1) LTS Modeling Language FSP
FSP, like CSP, is a formal specification language based on process algebra.

It provides a concise way to describe LTS using syntax similar to CSP, rather
than directly describing the system as a list of states and transitions between
them. The reasons for choosing LTS as the behavioral modeling language for
Event-B in this paper are as follows:

(1)Firstly, the foundation of model checking is the transition system [3].
The essence of model checking is to exhaustively search to determine whether
all states of a transition system satisfy (or do not satisfy) certain behavior
properties expressed in some form of temporal logic. Although researchers
have proposed numerous formal systems based on automata or process alge-
bra to model system behaviors, such as CSP [108], CCS [109], and Interface
Automata [110], these formal systems typically use LTS as their behavioral
semantics model. Therefore, this paper uses LTS as the behavioral seman-
tics model for Event-B, fundamentally addressing the limitations of other
methods (such as CSP ∥ B) that cannot be universally applied. Another
advantage of using the combination of LTS and Event-B is the ability to
further utilize variants of LTS, such as IOLTS and TIOTS, to achieve more
powerful analysis and verification capabilities.

(2)FSP was originally invented for modeling the behavior of multithreaded,
concurrent systems, making it highly suitable for the behavioral modeling of

33

safety-critical systems. Like CSP, the FSP model is an event-based model,
allowing the system to be described as a set of interacting components, each
modeled as a state machine. The visual state transition diagrams of FSP
provide valuable insights and support for understanding the control flow in
Event-B models. Using the FSP modeling language, two or more LTS can
be combined at any level of granularity. This is of great significance for mod-
eling control flow in the stepwise refinement process of Event-B models and
for the separate analysis of control flows between components.

(3)The FSP model provides a foundation for a wide range of automated
analysis techniques, particularly deadlock analysis, model simulation, and
model checking. Variants of linear temporal logic, such as Fluent Linear
Temporal Logic (FLTL) [111], can be used to check various temporal isola-
tion properties, including liveness and safety properties, of the LTS system
models.

3.3 Preliminary of Event-B and LTS

3.3.1 LTS and its Combinations

LTS belongs to a specific category of automaton, which is widely used to
model and analyze the behavior of concurrent and distributed systems [112].
LTS is a state transition system in which the transitions are marked as ac-
tions. The set of actions of the LTS is called its communication alphabet
[113]. The following is the formal definition of LTS and its composition.

Definition 1 (LTS [1]): Let States represent a universal set of states,
Acts represent a universal set of actions, and then an LTS P is defined as a
quaternion P = ⟨Q,Σ,∆, q⟩ where:

• Q ⊆ States, representing the state set of P;

• Σ = αP (αP ⊆ Acts), representing the action set of P ;

• ∆ ⊆ Q× Σ×Q, representing the transition relation in P , these tran-
sitions are labeled with the elements in Σ;

• q ⊆ Q, representing the initial state of P

If P
′
= ⟨Q,Σ,∆, q

′⟩, and (q, a, q
′
) ∈ ∆, LTS P can be converted to LTS

P
′
by action a(a ∈ Acts), denoted as P

a→ P
′
.

34

We need to use the parallel composition of LTSs to express the interaction
between multiple LTSs. The following gives the definition of LTS parallel
composition.

Definition 2: Parallel composition of LTSs: The parallel composition
of two LTS M = ⟨Q1,Σ1,∆1, q1⟩ and N = ⟨Q2,Σ2,∆2, q2⟩ is expressed as
LTS(M ∥ N) = ⟨Q1 × Q2,Σ1 × Σ2,∆, (q1, q2)⟩, where ∥ is a commutative
and associative operator, which means:

LTS(M ∥ N) = LTS(N ∥M)

In addition, ∆ is the minimum relation that satisfies the following con-
straints:

M
a→M

′

M ∥ N a→M ′ ∥ N
a /∈ αN (1)

N
a→ N

′

M ∥ N a→M ∥ N ′
a /∈ αM (2)

M
a→M

′
, N

a→ N
′

M ∥ N a→M ′ ∥ N ′
a ̸= τ (3)

where a ∈ Σ1 ∪ Σ2, τ denotes an action that is internal to a subsystem, and
therefore unobservable by its environment.

3.3.2 Event-B, iUML-B State Machine and Its Com-
bination

Event-B is a formal modeling language evolved from the B method. An
Event-B model consists of two parts: machine and context. The context
describes the static elements of the system, including sets, constants, axioms,
and theorems. The machine uses variables and events to describe the dynamic
behavior of the system. In Event-B, an event consists of guards and actions,
which can usually be expressed as:

e := WHEN guards THEN actions END

When the guards of the event are satisfied, the event can be triggered, and
the expression in the actions part describes the change in the state variable
when the event occurs.

35

However, since Event-B is based on set theory and first-order logic, there
is inevitably a problem that modeling is not intuitive enough. Therefore,
C. Snook invented a UML-like Event-B graphics front-end called UML-B [2].
UML-B uses common class diagrams and state diagrams to describe the state
and actions of the system. The system model represented by UML-B can
generate the corresponding Event- B code directly on the Rodin platform
[93]. As UML-B is continuously applied and expanded, UML-B has evolved
into iUML-B.

Each iUML-B state machine can automatically generate some code and
embed it into the Event-B model. When there are multiple iUML-B state
machines in an Event-B model, the behavior of the model is affected by
all automatically generated code. In order to facilitate the analysis and
verification of the behavior of these state machines, this article uses ”⊗” to
represent the combination of iUML-B state machines. Its definition is as
follows:

a_on ≙

WHEN

@guard1:r = 0

@guard2:a = 0

THEN

@action1:a≔ 1

END

r_off ≙

WHEN

@guard1:a=0

@guard2:r =1

THEN

@action1:r≔ 0

END

r_on ≙

WHEN

@guard1:a=1

@guard2:r= 0

THEN

@action1:r≔ 1

END

a_off ≙

WHEN

@guard1:r = 1

@guard2:a = 1

THEN

@action1:a≔ 0

END

Combinations of

State Machines
Event-B Model

⊗
Generate Code

Automatically

Generate Code

Automatically

Figure 3.3: Combination of iUML-B state machines

Definition 3: Combination of iUML-B state machines: The Event-B
model generated by the combination of two iUML-B state machines Stm1

36

and Stm2 is symbolically expressed as:

M = Stm1 ⊗ Stm2

Further, the Event-B model generated by the combination of N iUML-B
state machines Stm1, Stm2, ..., StmN is symbolized as

M = ⊗N
i=1 Stmi

For example, the Event-B model shown in Figure 3.3 is the combination
of the state machine in the upper left corner and the state machine in the
upper right corner.

3.4 Methodology

In order to combine Event-B and LTS in the process of system modeling and
verification, we first work out the differences and connections between the
event-based refinement process of Event-B and the state-based refinement
process of LTS. Then we propose to use the graphical front-end iUML-B of
Event-B to obtain a unified representation with LTS, and verify the bisimula-
tion equivalence between them. Finally, we briefly discuss the improvements
of this method.

3.4.1 Refinement Process in Event-B and LTS

1) Event-based Refinement Process

Refinement is a technology in which engineers build abstract models for soft-
ware based on requirements documents in requirements analysis, and the
process of modeling will build a series of more and more accurate models
of software. Therefore, the refinement process is a process of increasing the
function of the system and adding details. The establishment and refinement
of the entire system model are completed by the decomposition and addition
of events. Take Figure 3.4 as an example, in general, the refinement of the
Event-B model follows the following process:

• Define an abstract event (E1 0)

• Perform one or more of the following two operations:

37

– Refine abstract events into (one or more) concrete events (E1 0 is
decomposed into E1 1 and E2 1) and add order constraints between
concrete events (E1 1 occurs before E2 1); or

– Add a new event (E3 2) and add a constraint relationship between
the new event and the original event (E3 2 occurs before E1 2).

• Repeat the second step until the final refined model is obtained.

E1_0

E2_1

Refinement

M0

M1

M2

...

Mn

E2_2 E3_2

E2_x E3_x Ek_x

Refinement

E2_n E3_n Em_nEk_n

E1_1

E1_2

E1_x

E1_n

3 Add new events

1 Abstract event decomposed

into refined events

4 Add constraints between

new and old events

Refinement

Refinement

2 Add constraints between

refined events

Figure 3.4: Event-based refinement process

This approach is very beneficial for expressing event-based systems, but it
also brings about several problems: First, the refinement process is not clear,
and there is no clear distinction between horizontal expansion (i.e., adding
new objects) and vertical refinement (i.e., decomposition of the original ob-
ject), for example, it is difficult to distinguish whether E2 1 is decomposed
from E1 0 or a newly added event in the model. Second, it is difficult to model
and analyze concurrent objects. In Figure 3.4, the newly added objects and
the interaction and constraints between these new objects and the original
objects cannot be seen. Third, the event-based refinement process is difficult
to smoothly transform into a state-based expression.

2) State-based Refinement Process

The refinement of an LTS refers to a transformation from an abstract state
machine into a concrete machine. An LTS model can be constructed by

38

means of a number of refinement steps. Specifically, such a refinement process
includes the following actions:

• Establish an abstract behavior model of the system, usually an object
containing a few states (an object O1 containing states A and B).

• Perform one or more of the following two operations:

– Decompose the state (transition) in the object into several con-
crete states (transitions) (state A is decomposed into D and C,
and event e is decomposed into e1, e, e2), and/or

– Add new states, which is to add new objects (an object O2 com-
posed of state G, I and K) and add behavioral constraints between
new and existing objects (some constraints between objects O1

and O2).

• Repeat the second step until the final refined model is obtained.

A B
e

e
D

C

E

F

A B

e1 e2

M0

M1

M2

...

2 Add new objects

1)Abstract state decomposed

into refined states

e
D

C

E

F

A B

e1 e2

G I
e3

K
e5

e4

e6

S
e3

K
e5

J

e7 e8

e4
I

e6

G

3 Add constraints between

new and existing objects

Refinement

Refinement

Refinement

O1

O1 O2

O1 O2

Figure 3.5: State-based behavior refinement process

The state-based refinement process is depicted in Figure 3.5. It can be
seen that this refinement process is actually the decomposition and addition
of the state in the object. The advantage of this expression is the ability

39

to clearly express the objects that make up the system and the interactions
between the objects. The weakness is that the refinement relationship be-
tween the abstract model and the refined model is not clear. People cannot
understand the correspondence between transitions or states in the refined
model, and corresponding elements in the abstract model even by analyz-
ing the model. For example, it is difficult to distinguish the correspondence
between the states C, D, E, F in M1 and A, B in M0 in the model.

It can be seen that event-based refinement and state-based refinement
have their own advantages and disadvantages. The former is strong in main-
taining the vertical refinement relationship between the refined model and
the abstract model, while the expressive ability in the addition of concur-
rent objects is weak. The latter is just the opposite. It can clearly express
the behavioral interactions between objects, but lack the ability to express
the refinement relationship of the model. Although studies have been con-
ducted on how to transform an Event-B model to LTS, neither has been able
to fundamentally resolve the syntactic and semantic gap between the two
expressions, making it difficult to achieve a unified representation [4].

3.4.2 Unified Representation

This section uses the graphical front-end iUML-B of Event-B to obtain a
unified representation with LTS, so as to reduce the syntactic and semantic
gap between LTS and Event-B, thus realizing the purpose of achieving an ap-
propriate combination. We achieve the combination by taking the following
actions:

(1) The iUML-B state machine is used as a bridge between Event-B and
LTS. We use the iUML-B state machine to express the state transition and
time-lapse of an object, and use the combination of these state machines to
express the behavioral interaction of concurrent objects. Here, we use the
slightly modified BRP protocol model in Abrial’s article as a case for an
explanation [5]. As shown in Figure 3.6, this model contains three objects:
sender, receiver, and timer. The sender is responsible for sending data to
the channel, the receiver is responsible for receiving the data in the channel,
and the timer is used to record the time. We model them separately. When
they are combined, some behavioral interactions occur. For example, after
the sender sends the data (send data), at this time, each time the tick tock
event is triggered, the timer t will increase by one time unit. If the receiver
receives the data within five time units, it means the reception is successful

40

(rcv success), so the guard of this event is ”t ≤ 5”, which is the prerequisite
for the event to occur. However, if there is no reception within five time units,
it means the reception failed (rcv failure). Therefore, the precondition for
this event to occur is ”t > 5”. Regardless of whether the reception is suc-
cessful or unsuccessful, the timer will be reset, so the action of rcv success
and rcv failure is ”t:= 0”, which is the result of the event.

In this way, we use the iUML-B state machine to simulate the expression
of LTS in system modeling, that is, to separate the objects in the system and
model them separately, which provides a basis for completing the smooth
transition from Event-B to LTS.

(a) Sender State Machine (b) Receiver State Machine

(c) Timer State Machine

Action: t:=t+1

Guard: t<=5

Action: t:=0

Guard: t>5

Action: t:=0

Figure 3.6: Timer State Machine

(2) In the vertical refinement direction, the node refinement of the iUML-
B state machine is used to represent the node refinement and edge refinement
in the state transition system [6], that is, state decomposition and transition
decomposition. Figure 3.7(a) is an initial state transition model. If we want
to refine the event part into an event sequence enter → loop∗ → part (*
means this event can occur from 0 to countless times), then we can adopt
node refinement and edge refinement respectively to complete.

Node refinement is to replace a state in the abstract model with a super
state in the refined model, then add new states within the super state, and
add events between the states. As shown in Figure 3.7(b), the state I in
the abstract model is replaced with the super state I , in which a state I
with the same name and a new state J are added, two opposite edges are
added between state I and J to represent the events enter and part, and
add a reflexive edge to the state J to get the required sequence of events and
complete the refinement.

41

A EI
init

part

drop

sort
A EI

init

I drop

sort

J

entr part

loop

I IJ
entr

I loop

part

(a)Abstract Model (b)Node Refinement (c)Edge Refinement

Figure 3.7: State refinement and edge refinement

Edge refinement is to replace the edge between the source state and the
target state with a super state, and add some intermediate states to satisfy
the target event sequence. As shown in Figure 3.7(c), first replace the edge
part with the super state I , then add an intermediate state J , and finally
use the edge marked by the event to connect the states to complete the
refinement.

(a)Abstract model (b)Refined model

Node

Refinement

Figure 3.8: Node refinement of iUML-B state machine

For a state transition system like LTS, both state-based refinement meth-
ods can be uniformly represented by the node refinement of the iUML-B state
machine. After node refinement of the abstract model in Figure 3.8(a), the
refined model shown in Figure 3.8(b) is obtained.We retained the original
I state and made it a super state. Since the state with the same name is
not allowed in the iUML-B state machine, we add an I1 node to replace the
original I node, and the rest of the states and transitions are constructed as
shown in Figure 3.7(b), that is, the refined model is obtained.

This means that all vertical refinement of LTS can also be achieved by the
iUML-B state machine. Since the iUML-B state machine model is consistent
with its automatically generated Event-B model, it can ensure the consis-

42

tency between the event-based vertical refinement process of the Event-B
model and the state-based vertical refinement process of the LTS model.

add constraint
(a1)Controller (b1)Motor

(a2)Controller (b2)Motor

(a0)Controller

add new object

Figure 3.9: Combination of LTSs

(3) In the horizontal expansion direction, we achieve the purpose of adding
new objects in the state transition system by adding new iUML-B state ma-
chines, and adding transition edges between states to add constraints between
new objects and existing objects. The Press system [13] includes multiple
components such as controller and motor. In the abstract model, there is
only the controller LTS, and correspondingly only the controller iUML-B
state machine, as shown in Figure 3.9(a0) and Figure 3.10(a0) respectively.
When we want to add a motor object, the first is to add the motor iUML-B
state machine, then consider adding the constraints between the motor and
the controller. For example, if the controller issues a start command, the
motor must respond. To put it bluntly, after the treat start motor event
occurs, the motor start event must occur immediately. In order to meet this
constraint, we can add a reflexive edge ”motor start” to the ”ma working”
state in the controller iUML-B state machine. Other constraints can be
added one by one using similar operations, and finally we get an iUML-B
model with the same behavior as the LTS model.

The horizontal expansion of LTS can be realized by adding new states
and events in iUML-B. Similarly, because the iUML-B state machine model

43

⊗

⊗

add constraint
(a1)Controller (b1)Motor

(a2)Controller (b2)Motor

(a0)Controller

add new object

Figure 3.10: Combination of iUML-B state machines

and the Event-B model are consistent in behavior, it also means that the
horizontal expansion of the Event-B model is supported, thereby ensuring the
consistency of the event-based horizontal expansion process of the Event-B
model and the state-based horizontal expansion process of the LTS model.

In the introduction, we mentioned that one of the main problems of the
current integrated formal method is that there are gaps in the syntax and
semantics of different formal methods, and that the system is modeled from
different perspectives by modeling objects separately. There is no guaran-
tee that the final system models will meet the same system requirements.
Therefore, we consider first establishing the iUML-B model of the system,
and then transforming it to the LTS model.

Since the iUML-B state machine itself is only an expression of the Event-
B, which cannot directly obtain the corresponding LTS model. Therefore,
we need to transform the iUML-B state machine model into the LTS model.
When constructing the LTS behavioral semantic model, the central idea is
to treat the Event-B model as a combination of all state variables, and at
the same time treat each state variable of the Event-B model as an atomic
LTS. Therefore, the LTS behavioral semantics model of the Event-B model
is a parallel combination of all atomic LTS.

According to the description in our previous work [7], we use the following
transformation rules:

Rule1: Each variable in the Event-B model is modeled as an atomic LTS,

44

and all possible values for this variable form the state space of this atomic
LTS.

Rule2: For each atomic LTS P , if an event e in the Event-B model changes
the value of its corresponding variable from s1 to s2, then we add an element
(s1

e→ s2) to the transition set of this atomic LTS.

iUML-B State

Machine Model

Event-B

Model

LTS

Model

Automatic

Generate
Mutual

Representation

System Requirement

Construction

LTL Property

ExpressionsManual Transform Properties

Verification

Construction

Figure 3.11: System modeling and verification process

During the construction of the model, Rodin will generate a large number
of proof obligations for the Event-B model. Only when these proof obliga-
tions are correctly proved can the correctness of the model be guaranteed. In
addition, invariant proofs are also used to verify whether the system violates
the corresponding properties, including safety properties and liveness proper-
ties. However, the Rodin platform’s ability to automatically prove properties
is weak, which means that interactive proofs are required to manually derive
property expressions, which consumes a lot of time and energy, and requires
researchers to have a high mathematical foundation. LTS can use LTSA,1
a highly automated tool, to perform the lineal temporal logic (LTL) prop-
erty expressions constructed according to the system requirements to verify
whether the model meets the required properties. Therefore, we consider the
property verification of the Event-B model to be done indirectly by verifying
the properties of the LTS model. The premise is that there is equivalence
between the Event-B model and the corresponding LTS model, which we
prove in Section 3.4.

The application of these rules can be illustrated by a simple example as
shown in Figure 3.11. When we model and verify the actual system, we first

45

establish its iUML-B state machine model according to the system require-
ments, secondly use the Rodin tool to automatically generate its Event-B
model, then convert it to the corresponding LTS model according to the
transformation rules. Finally, we verify whether the LTS model satisfies the
necessary properties.

3.4.3 Proof of Equivalence

In order to prove that our method is correct, we give a proof of the bisimu-
lation equivalence between the LTS model and the Event-B model, so as to
ensure that the Event-B model generated from iUML-B model is consistent
with the LTS model translated from the same iUML-B model. First, we give
the definition of bisimulation [8].
Definition 4 (Bisimulation Equivalence): Let LTSi = (Qi,Σi,∆i, qi), i
= 1,2, be labeled transition systems over the actions set Σ. A bisimulation
for (LTS1, LTS2) is a binary relation R ⊆ Q1 ×Q2 such that

• for the initial state q1 and q2, (q1, q2) ∈ R

• for any (s1, s2) ∈ R, it holds that

– if s1
a→1 s

′
1, then s2

a→2 s
′
2 with (s

′
1, s

′
2) ∈ R for some s

′
2 ∈ Q2

– if s2
a→2 s

′
2, then s1

a→1 s
′
1 with (s

′
1, s

′
2) ∈ R for some s

′
1 ∈ Q1

LTS1 and LTS2 are bisimulation equivalent, denoted as LTS1 ∼ LTS2, if
there exists a bisimulation R for (LTS1, LTS2). The bisimulation equivalence
relationship is transmitted, i.e., LTS1 ∼ LTS2 ∧LTS2 ∼ LTS3 −→ LTS1 ∼
LTS3.

In the previous section, we mentioned that a system LTS is composition
of multiple atomic LTSs:

LTS(System) =∥ni=1 AtomicLTSi (4)

where i is the sequence number of the atomic LTS, and n is the total number
of atomic LTSs.

The following is the proof process:
(1) We first establish an atomic LTS AtomicLTS = ⟨Q,Σ,∆, q⟩ based on

the atomic iUML-B state machine. The construction process is as follows.

46

(a) An ”atomic iUML-B state machine” is defined as AtomicStm =
⟨Node,E,Edge, InitNode⟩, where Node represents a set of nodes in the
iUML-B state machine; E represents the set of events that linked on the
edges of the iUML-B state machine; Edge ⊆ Node × E × Node represents
the set of edges in the iUML-B state machine; InitNode represents the initial
node of the iUML-B state machine, which is the target node of the edge that
is linked to the Initialization event.

(b) In the process of establishing the atomic LTS, let Q = Node,Σ =
E,∆ = Edge, q = InitNode. For example, if there is a node s1 (edge e) in
atomic iUML-B state machine, a state s1 (transition t) is also added in the
corresponding atomic LTS. This mapping process is very easy to operate,
and we will not explain it further.

(c) Generate the Event-B code from the iUML-B state machine using the
automatic code generation tool Rodin.

(2) In the following, we prove that the Event-B model generated by Atom-
icStm is bisimulation equivalent to the AtomicLTS translated from the same
AtomicStm.

We define an Event-B model as M = ⟨V,Event,Guard,Action, Vinit⟩,
where V represents variables set of M , Event represents event set of M ,
Guard represents guard set of M , Action represents action set of M , and
Vinit represents the initial value set for each element in the V. We define the
LTS corresponding to the M as LTS(M) = (QM ,ΣM ,∆M , qM).

We named an Event-B model generated by AtomicStm as MA = ⟨VA,
EventA, GuardA, ActionA, VinitA⟩. It should be emphasized that at this time
there is only one element var in VA, and VinitA is the initial value of this
element, because an AtomicStm only describes the change of one variable.
EventA represents events that modify the value of var, and GuardA repre-
sents those guards that contain var in the when clause of an event. Similarly,
ActionA represents actions that modify the value of var. We assume that
the type of var is D, that is, var ∈ D, then the state space of var is D.

Since the code of MA is generated by AtomicStm, we have LTS(Atomic
Stm) ∼ LTS(MA) = (QMA,ΣMA,∆MA, qMA). If an Event-B model M is
generated by a combination of multiple atomic iUMLB states machines, then
we have

LTS(M) =∥ni=1 LTS(MAi) (5)

where i is the sequence number of the atomic iUML-B state machine, and n
is the total number of atomic iUML-B state machines.

47

We explain the equivalence between AtomicLTS andMA according to the
rules of Rodin for generating Event-B code from the iUML-B state machine.

(a) First, Rodin will generate a variable based on one AtomicStm and
automatically generate a SET which contains all possible values of this vari-
able. For example, an AtomicStm named node which contains n nodes (e.g.,
s1, s2, ..., sn) will generate

partition(Node, {s1}, {s2}, ..., {sn}) (6)

which means node ∈ Node. As we mentioned in (1) (b), Q = Node. There-
fore, the state space D of variable node of Event-B model MA is equal to Q,
and then QMA = Q.

(b) Secondly, Rodin generates the following code based on the edge that
links the Initialization event:

INITIALISATION := BEGIN node = s1 END (7)

Since s1 = q (in the construction process (1) (b)), we have Vinit = q, and
then qMA = q.

(c) Rodin will generate an event named ”event i” in the Event-B model
MA according to the event ”event i” which has been linked on the edge of
iUML-B state machine, and will generate the following code according to
each edge from the node si to sj (where si and sj are the node name):

event i := when node = si then node := sj (8)

Therefore, for a transition si
a→ sj in AtomicLTS, there will be a cor-

responding transition si
event i→ sj in LTS (MA). At the same time, for each

action a in AtomicLTS, there will be an event event i corresponding to it in
the Event-B model MA. So, we have ∆MA = ∆.

(d)The reverse mapping process from MA to AtomicLTS is similar, and
we will not repeat them here.

(e) We can define a mapping relationship R so that AtomicLTS and LTS
(MA) comply with the requirement of bisimulation equivalence. In fact, this
R can be a renamed function, such as R(Sender) = sender. Now we get

LTS(AtomicStm) ∼ LTS(MA) ∼ AtomicLTS (9)

(3) Finally, we use the theorem in the literature [8].

48

Lemma 5 (Congruence w.r.t LTS Composition): For labeled transition
systems LTS1 and LTS

′
1 over Σ1, LTS2 and LTS

′
2 over Σ2, and H ⊆ Σ1∩Σ2,

it holds that
LTS1 ∼ LTS

′

1

LTS2 ∼ LTS
′

2

impliesLTS1 ∥H LTS
′

1 ∼ LTS2 ∥H LTS
′

2 (10)

According to expression (4) and expression (5) and Lemma 1, we have

∥ni=1 LTS(MAi) ∼∥ni=1 AtomicLTSi (11)

That is, the LTS model LTS (System) of the system and the LTS model
LTS(M) of Event-B model obtained according to the mapping rule of (1) are
bisimulation equivalent:

LTS(M) ∼ LTS(system) (12)

3.4.4 Discussion about the Ability of the Method

Having presented the proposed method, we need to discuss about the ability
of the method in modeling and verification. We focus on the following four
points for the discussion:

(1) LTS does not support model refinement, but the combination with
Event-B gives it the ability for refinement.

(2) Use iUML-B state machines to model the behavior of concurrent ob-
jects and make up for the defects of Event-B in the expression of control
flow.

(3) The iUML-B state machine is used to simulate the process of modeling
concurrent objects in LTS. In the simulation, the combination/decomposition
of the Event-B model is transformed into the combination/decomposition of
the iUML-B state machine to avoid the learning of some complex methods
in Event-B, such as Decomposition [9].

(4) iUML-B expresses the interaction between concurrent objects by means
of constantly adding new state machines, which solves the problem that
Event-B is difficult to express the interaction semantics of concurrent ob-
jects.

49

3.5 Experiment

To demonstrate the practicality of the method proposed in the previous sec-
tion, we use an ARINC653 specification example to describe how it is used
in practical applications in this section.

3.5.1 Introduction to the ARINC653 Specification

The ARINC653 software specification describes the kernel and related ser-
vices of the standard APEX (Application Executive) [10]. These services
are supported by a variety of safety-critical real-time operating systems
(RTOS) for use in avionics. The APEX services specified in ARINC653 Part1
mainly include partition management, process management, time manage-
ment, intra-partition (inter-process) communication, inter-partition commu-
nication, health monitoring, etc. These services determine the highly con-
current features of a Partition Operating System.

• Partition management services: In the ARINC653 specification, only
the mode of the partition and the service of obtaining/setting the par-
tition mode are specified. The partition mode includes IDLE, COLD
START, WARM START, and NORMAL four working modes. The
specification does not specify how the partition mode switching is im-
plemented. Therefore, in the specification level modeling, only the
phenomenon needs to be concerned, and there is no need to consider
the object that triggers the phenomenon.

• Process management services: these services include creation, suspend,
resume, stop, start, get process identifier and state, disable/allow pro-
cess scheduling, and other functions. When modeling the state transi-
tion of the process, it is necessary to consider the mode in which the
partition is located. For example, a process can start only when the
partition is in NORMAL mode.

• Time management services: these services include services such as de-
layed waiting, periodic waiting, increasing process time budget, and
obtaining current time value, etc.

• Inter-partition communication services: these services are mainly com-
posed of queue port services and sampling port services, including ser-

50

vices such as creation, read/write, and status acquisition of these two
types of ports.

• Intra-partition communication services: the intra-partition commu-
nication specifies various services that can be used for synchroniza-
tion and mutual exclusion between processes within a partition. It is
mainly designed around four objects, including buffers, blackboards,
semaphores, and events.

• Health monitoring services: the health monitoring specifies the fault
response and processing mechanism of the partition operating system,
including three monitoring levels: system level, module level, and par-
tition level.

Partition

iUML-B

Model

Partition

iUML-B

Model

Process

iUML-B

Model

Partition

iUML-B

Model

Process

iUML-B

Model

Ports

iUML-B

Model

Objects

iUML-B

Model

Refine

Refine

Refine

Partition

Event-B

Model

Partition

Event-B

Model

Process

Event-B

Model

Partition

Event-B

Model

Process

Event-B

Model

Ports

Event-B

Model

Objects

Event-B

Model

Refine

Refine

Refine

Partition

LTS

Model

Partition

LTS

Model

Process

LTS

Model

Partition

LTS

Model

Process

LTS

Model

Ports

LTS

Model

Objects

LTS

Model

Refine

Refine

Refine

S0

S1

S4

M0

M1

M4

L0

L1

L4

Automatic

Generated

Automatic

Generated

Automatic

Generated

Manual

Transform

Si(iUML-B Model) Mi(Event-B Model) Li(LTS Model)
Automatic

Generated

‖

‖

‖

‖

‖

⊗

⊗

⊗ ⊗

⊗

Manual

Transform

Manual

Transform

Manual

Transform

Figure 3.12: Modeling process of the ARINC653 model

51

3.5.2 ARINC653 Specification Modeling

In this section, we use our method to model the ARINC653 specification.
Separate the concurrent objects that produce phenomena in the specification
in the horizontal direction and model the interaction between these objects.
In the vertical direction, we gradually refine the behavior of concurrent ob-
jects to ensure the behavioral consistency between the concrete model and
the abstract model.

In order to reach the goal of making concurrent objects separated, we
divide the objects involved in the specification into partitions, processes,
inter-partition communication objects (queue port and sampling port), intra-
partition communication objects (buffer, blackboard, event, semaphore), and
use the method proposed in the previous section to complete the modeling
of ARINC653 specification model, as shown in Figure 3.12.

We start with building the abstract model that only contains partitions,
and then take four refinement steps to complete the modeling of all the
required services except the health monitoring service. Figure 3.12 shows
the final specification containing the models of partitions, processes, intra-
partition communication objects and inter-partition communication objects.
Next, in this paper, we use partitions and processes as an example to describe
our modeling process.

a Partition initial iUML-B model c Partition initial LTS model

create_partition ≙

STATUS

ordinary

ANY

PartId

WHERE

isin_Init : part(PartId) = Init

THEN

enter_Partition_Mode : part(PartId)≔ Partition_Mode

END

partition_mode_transition ≙

STATUS

ordinary

ANY

PartId

WHERE

isin_Partition_Mode : part(PartId) = Partition_Mode

THEN

skip

END

b Partition initial Event-B model

Figure 3.13: Partition initial model

52

Partition

In the abstract model M0 of the system, we introduce the initial partition
model, including the established partition iUML-B state machine model,
the automatically generated partition Event-B model, and the transformed
partition LTS model, as shown in Figure 3.13. It should be mentioned that
in order to more easily and effectively simulate the model, we define two
partitions in the model.

a Partition_Schedule b Partition_Mode

Figure 3.14: Partition model in iUML-B

After a partition is created (create partition), the partition performs
mode transition (partition mode transition). However, in the initial model,
the mode of the partition is only modeled as one state (Partition Mode),
paving the way for being split into multiple partition mode states in subse-
quent refinements.

a Partition Scheduling LTS b Partition Mode Transition LTS

Figure 3.15: Partition model in LTS

The initial model is refined layer by layer to obtain the final partition
iUML-B state machine model and the transformed LTS model, as shown in

53

Figure 3.14 and Figure 3.15, respectively. Since the code of the Event-B
model is too large, we will not present it. The model consists of two parts,
Partition Schedule controls the scheduling of the partition, and Partition
Mode shows the mode transition of a single partition.

At any one time, only one partition can be scheduled. As shown in
Figure 3.14 (a), when a partition is scheduled for the first time, the scheduler
schedules the partition to the running state by the partition start event.
When the time window allocated to the partition ends, the scheduler sets it
to the suspended state by activating the partition suspend event, and waits
for the next time window of the partition to arrive and then schedules the
partition again by the partition resume event.

In Figure 3.14 (b), one partition has four modes: WARM START ,
COLD START , NORMAL, and IDLE. After a partition is scheduled
in a specified time window, it can be transformed between four modes in
different ways. For example, when the partition is in COLD START or
WARM START mode, it can be transformed into NORMAL mode by the
set partition mode to normal event.

Process

The operating system views the execution of a process as a transition between
a series of continuous process states. In order to complete the modeling of
the process, we introduce the initial model of the process in the first-level
refined model M1 and obtain the following iUML-B model, Event-B model,
and LTS model, as shown in Figure 3.16. For the same reason, we only define
two processes in the model.

The final process iUML-B state machine model and LTS model obtained
by refinement describe the more specific process state and state transitions
conforming to the partition mode, as shown in Figure 3.17 and Figure 3.18,
respectively.

Combination of Partition and Process

After completing the construction of the partition model and the process
model respectively, we need to consider how to add the constraints brought
about by their combination in the model. For example, only when the parti-
tion is in Normal mode, can the process perform the startup operation. In
other words, all events related to process startup in the process model can

54

a Process initial iUML-B model c Process initial LTS model

create_process ≙

STATUS

ordinary

ANY

ProcId

WHERE

isin_Init1 : proc0(ProcId) = Init1

THEN

enter_Process_State : proc0(ProcId)≔ Process_State

END

process_schedule ≙

STATUS

ordinary

ANY

ProcId

WHERE

isin_Process_State : proc0(ProcId) = Process_State

THEN

skip

END

b Process initial Event-B model

process_state_transition ≙

STATUS

ordinary

ANY

ProcId

WHERE

isin_Process_State : proc0(ProcId) = Process_State

THEN

skip

END

Figure 3.16: Process initial model

Figure 3.17: Process state transition model in LTS

only occur when the partition is in Normal mode. In order to meet this con-
dition, we need to add the reflexive edges of these events to the Normal state
in the partition model, as shown in Figure 3.19. The remaining constraints
can be added one by one using similar operations until the correct behavior
model is constructed.

3.5.3 Property Verification of the ARINC 653 Specifi-
cation Model

Labeled Transition Systems Analyzer (LTSA) is a tool that can be used to
check whether the specification of a concurrent system satisfies the required

55

Figure 3.18: Process state transition model in iUML-B

Figure 3.19: Constriants from combination

behavioral properties. It models LTS and properties as state machines, and
then performs compositional reachability analysis between them to exhaus-
tively search for violations of the desired properties. In this section, we use
LTSA to perform the written LTL property expressions for property verifica-
tion on the established system LTS model, so as to ensure that the model we
built satisfies the requirements of the system. Table 3.1 presents the statistics
for the properties that are automatically proved in the model.

Table 3.2 gives the informal description of some properties that need to
be verified, and their formalization is given in Table 3.3. The symbols ”□”
and ”♢” in Table 3 represent ”Always” and ”Final” in LTL, respectively,

Table 3.1: Number of properties that are automatically proved
Refinement Layer Safety Properties Liveness Properties

L0 1 1
L1 3 6
L2 12 17
L3 18 29
L4 29 44

56

while the symbols ”¬” and ”→” represent ”negative” and ”implication” in
propositional logic, respectively.

We use LTSA to combine these property expressions with the constructed
system LTS model to verify the behavior of the system. If there is a behavior
in the model that violates these properties, LTSA will give the sequence of
events corresponding to the behavior. On the contrary, it means that the
model satisfies these properties.

Table 3.2: Informal description of properties to be verified in the system
model

The serial
number of

requirements

Informal description of requirements

SAF 1 Two or more processes cannot write into the same buffer
at the same time

SAF 2 Two or more partitions cannot be scheduled at the same
time

LIV E 3 As long as the process is waiting for resources, it will
eventually get resources or timeout

LIV E 4 As long as the process requests the port, it will
eventually get the port or timeout

LIV E 5 As long as the start process event occurs, the stop event
of the periodic process or aperiodic process will
eventually occur

LIV E 6 As long as the time wait event occurs, the time out
event will occur

After verification, we do not get any information that violates the proper-
ties. In other words, as far as the current situation is concerned, the model we
have established is no error, but it does not mean that it is correct. However,
what we can confirm that as long as we write more property expressions and
no errors are reported after verification, the reliability of the system model
will be higher.

57

Table 3.3: The formal description of properties to be verified in the system
model

The serial
number of

requirements

Formal description of requirements

SAF 1 □(¬(Process[1].send buffer∧Process[2].send buffer))
SAF 2 □(¬(Partition[1].schedule ∧ Partition[2].schedule))
LIV E 3 □(Process[i].req busy resource→

♢(Process[i].receive buffer available ∨
Process[i].time out))

LIV E 4 □(Process[i].send buffer withfull→
♢(Process[i].receive buffer needwakeupsendproc ∨
Process[i].time out))

LIV E 5 □(Process[i].start→
♢(Process[i].periodicprocess finished ∨
Process[i].aperiodicprocess finished))

LIV E 6 □(Process[i].timed wait→ ♢Process[i].time out)

3.6 Results and Discussion

In this section, we compare our work with the work of Zhao et al., who used
Event-B alone to establish the system model of the ARINC653 specification
in Section 3.5.2 [11]. The simulation results on the Rodin platform show that
in each layer, the event traces of the model obtained using our method are
consistent with theirs. In their work, all Event-B code is hand-written by
the research team, which involves a large number of variables, invariants,
guards, actions and other elements. Such a huge workload requires a lot of
time and energy, and text-based programming also makes the code extremely
prone to errors.

The growth trend of these elements is shown in Figure 3.20. From the
perspective of statistical data, we can find a phenomenon: as the layer of
refinement increases, the number of codes grows extremely fast. The total
number of variables, invariants, guards and actions is 1374 when refinement
reaches the 4th layer. Moreover, it can be seen that the growth rate of guards
is the fastest, followed by actions. For more complex multi-level control
systems, this phenomenon will be more obvious, which means that the slope
of the two curves will be greater.

58

Figure 3.20: Statistics in the Event-B model of the ARINC653 speicification

Figure 3.21: Statistics in the iUML-B model of the ARINC653 speicification

In our work, we first use the states and edges linked with events in the
iUML-B to build system models, and use the pattern state machine proposed
in our previous work to improve reuse rate and programming efficiency [20],
and then use Rodin tools to automatically generate the Event-B model. The
growth trend of the main elements in the iUML-B model with the increase
of the refinement layer is shown in Figure 3.21. Since one edge can link mul-
tiple events, the number of edges is greatly reduced, and modeling becomes
easier [12]. Although the variables and invariants in the code still need to be
written manually, the guards and actions with the highest proportion can be
automatically generated. In other words, the percentage of manual coding
we can save is roughly (833 + 390)/1374 = 89%.

59

Another benefit of our method is that the control flow and behavioral
interaction become visible. Compared with Event-B’s event-based textual
representation, iUML-B state machine can express and analyze the event
order of the system easily.

Finally, we pointed out in [13] that we choose LTS as the behavioral
semantic model of Event-B, and convert the Event-B model to the corre-
sponding LTS model, so that the behavioral properties of the Event-B model
can be analyzed and verified. From the point of view of behavioral semantic
verification of event-based method, this is an advantage.

60

Chapter 4

Program Segment Testing for
Software Reliability

4.1 Overview of Program Segment Testing

Identification of

Program Segment

Testing of

Sub-Program

Construction of

Sub-Program

Workflow of Program Segment Testing

segment

sub-program

Program

test result

Feedback

Programming

Figure 4.1: Workflow of Program Segment Testing

The PST consists of three steps, as shown in Figure 4.1. During the
programming process, the developer works on the machine while the ma-
chine automatically monitors the code to identify program segments with
the potential to cause corresponding runtime exceptions. The program slic-
ing technique is then employed to construct a sub-program that creates a
suitable testing environment for the identified segments. Subsequently, the
testing phase takes place to determine whether the program segment will
cause a runtime exception. The test results are promptly provided as feed-
back to the programmer to help them correct the bug, if any. This entire
process is carried out by the machine in the background, ensuring it does not

61

interfere with the ongoing activities of human developers involved in software
construction.

As bugs are discovered and eliminated, the subsequent bugs are con-
tinuously exposed, indicating an iterative process in the utilization of this
technique. This iterative approach is dedicated to developing programs that
ultimately do not have bugs leading to runtime exceptions.

Let us provide a detailed definition of the relevant concepts involved in
PST and the Algorithm 1 that implements it.

Definition 1 (Segment). Let P be the program under construction, Si

Algorithm 1 Implementation of Program Segment Testing
Input: Program P
Output: Test Result
1: P ← program
2: SEG← empty set
3: V AR← empty set
4: SUB ← empty set
5: while P not ended do
6: SEG← ANTLR Detect(P)
7: for each seg in SEG do
8: V ARseg ← Extract V ariables(seg)
9: SUBseg ← empty set

10: for each v in V ARseg do
11: SUBseg ← SUBseg ∪ Program Slice(P, v)
12: end for
13: if Has Input(SUBseg) then
14: Input V arsseg ← Identify V ars(SUB seg)
15: T ← Fuzz Test Generation(Input V arsseg)
16: for each t in T do
17: Result← Analyze Test(t)
18: if Result then
19: Report Error(t, Result)
20: end if
21: end for
22: end if
23: end for
24: end while

62

the i-th statement in P. Then SEGi is a segment of continuous statements
in the program that starts with the i-th statement:

SEGi = {Si, Si+1, . . . , Si+ni−1}

where ni is the number of statements encapsulated within this segment.
Our practical observations have led us to recognizing that a segment

typically encompasses a single statement. Nonetheless, in scenarios where
adjacent lines of code contain operations that could possibly trigger the same
type of exception, we opt for efficiency by grouping these lines together as a
single segment. We will provide a more detailed introduction to this approach
in Section 4.2.2. Once the target segment is identified, the next step is to
create a suitable environment for testing these segments.

The initiation of exceptions within a segment frequently stems from incor-
rect assignments to specific variables, which we identify as our slicing criteria
of interest. Sole reliance on the program slice that pertains to a particular
variable to assess the likelihood of an exception being triggered proves to
be insufficient. This insufficiency arises because other variables in the code
segment might influence the value of the target variable, potentially precipi-
tating an exception. For example, the array access operation arr[i] could lead
to an exception if the index variable i is improperly assigned. However, the
significance of i is not fully appreciated unless it is evaluated in conjunction
with the array variable arr. In isolation, slicing the program based solely on
the variable i does not provide the comprehensive insight required for our
analysis.

To address this issue, we undertake program slicing for each variable
within the code segment. We then amalgamate the statements from these
slices, eliminating any duplicates and reordering them by their line numbers
to construct a sub-program tailored specifically for testing. This sub-program
encapsulates the collection of interactions and dependencies critical for un-
derstanding the behavior of the code segment under test. A detailed proof
of the feasibility of such an operation will be given in Section 4.2.2. Subse-
quently, we will provide a formalized definition of the sub-program derived
from a code segment.

Definition 2 (subProgram). Let P be the program under construction,
Si the i-th statement in P, V j

si
the j-th variable in Si, SEGi is a segment of

continuous statements in the program that starts with the i-th statement,
SLj

i is a slice obtained by performing program slicing on P with ⟨Si, V
j
si
⟩ as

63

the slicing criterion. Then, a sub-program for SEGi is

subProgrami =

i+ni−1⋃
i

SLj
i , where j = 1, 2, . . . , numi

where numi denotes the number of variables in Si, ni represents the number
of lines of statement in SEGi.

To generate specific test cases for the subprogram designated for segment
SEGi, we employ fuzz testing. This method uses a fuzzer to automatically
generate a large volume of random or semi-random input data for the in-
put variables. These test cases are designed to exercise different scenarios
and edge cases within subProgrami. Mathematically, we can describe this
process as T = Fuzz Test Generation(Input V arsseg).

To observe if an exception occurs during the execution of the gener-
ated test cases T, we define an exception function Analyze Test: T →
{true, false} that maps the executed test case to the occurrence of an excep-
tion. Analyze Test takes a test case t ∈ T and returns true if an exception
occurs, and false otherwise.

From the analysis above, it is evident that to implement PST effectively,
we must address the following three key challenges:

• RQ1: How to identify program segments that have the potential to
cause runtime exceptions?

• RQ2: How to construct sub-programs to provide a suitable testing
environment for these segments identified?

• RQ3: How to perform the testing to determine whether these segments
will trigger runtime exceptions?

Each runtime exception can be located using different methods to identify
the corresponding suspicious code segments. Additionally, generating test
cases requires various techniques. Therefore, we will use index out-of-bounds
exceptions and arithmetic exceptions as representative examples to illustrate
the application of PST in handling runtime exceptions and addressing these
research issues.

64

4.2 PST for Arithmetic Exception

4.2.1 Preliminary

Program Slicing

Program slicing is a powerful technique in software engineering, originally in-
troduced by Mark Weiser in 1981, that focuses on extracting relevant subsets
of a program for specific computations or debugging tasks [114]. This method
simplifies the process of analyzing software by creating a System Dependency
Graph (SDG) which illustrates the flow of data and control between various
program statements [115]. By analyzing this graph, program slicing identifies
subsets of statements and variables that influence a particular computation
or behavior—referred to as the slicing criterion, which could be a variable,
event, condition, or any program element.

The resultant subset, known as a program slice, encompasses all state-
ments that directly or indirectly contribute to the value of a specified variable
or influence a specific execution point in the program. This creates a con-
cise view of the program’s behavior, reducing the code size and complexity
needed for analysis or debugging purposes.

Program slicing is highly useful in several key areas of software devel-
opment. During program comprehension, it allows developers to focus on
specific functionalities or understand the impact of changes on a particular
part of the program [116]. In debugging, slicing helps isolate the code seg-
ments that are likely connected to a bug, thus enabling developers to focus
on a smaller portion of the code to efficiently locate and resolve issues [117].
Additionally, in the context of software maintenance, slicing can demonstrate
how changes in one section might affect other parts of the program, helping
to prevent unintended consequences [118]. It is also beneficial in test case
generation, where identifying relevant code segments for specific testing sce-
narios can significantly streamline the testing process [119].

Let us use a short program to demonstrate program slicing. In static
slicing, the slicing criterion has the form of ⟨i, v⟩ where i is the serial number
of a statement in the program and v the variable set. We use ⟨10, product⟩
to perform static backward slices on the program on the left in Fig. 4.2,
and the slice on the right will be obtained, in which statements irrelevant to
product are excluded.

65

Figure 4.2: An example program for static backward slicing

Fuzz Testing

Fuzz testing, also known as fuzzing, was introduced by Barton Miller at
the University of Wisconsin in 1988 during his course experiments [120].
The core concept of fuzz testing involves inputting automatically or semi-
automatically generated random data into a program and monitoring for
exceptions such as crashes, assertion failures, to identify potential program-
ming errors like memory leaks.

Modern fuzz testing follows a structured procedure that begins with se-
lecting a corpus of “seed” inputs to test the target program [121]. The fuzzer
repeatedly mutates these inputs and assesses the program’s behavior. If an
input produces “interesting” behavior, such as a crash or uncovering a new
execution path, the fuzzer preserves this input for future tests and docu-
ments the findings. Fuzzing ends either upon achieving a specific goal, like
identifying a particular bug, or after a predefined timeout.

Different fuzzers vary in their observational methods when executing pro-
grams. In “black box” fuzzing, the only observation made is whether the pro-
gram crashes. “Grey box” fuzzing captures intermediate information about
the execution, such as the sequence of basic block identifiers, which helps
trace execution paths. “White box” fuzzing delves deeper by analyzing the
source or binary code of the application, enabling more sophisticated obser-
vations and adjustments based on the semantics of the code. This deeper
analysis adds overhead but aims to enhance the effectiveness in bug detection.

The ultimate goal of a fuzzer is generally to generate an input that causes
the program to crash. Depending on the configuration, a fuzzer might ter-
minate upon detecting a crash or continue to explore for additional crashes.

66

For example, libfuzzer [122] typically stops when a crash is found, whereas
AFL continues in an attempt to identify multiple crashes[123]. Observations
of prolonged execution times may also indicate potential vulnerabilities due
to algorithmic complexity [124]. The results from fuzzing, including specific
inputs and configurations, allow software developers to confirm, reproduce,
and debug the identified issues.

4.2.2 Case Study

Example Program for Explanation

Listing 4.1: An example program with arithmetic exceptions

1main () {

2 Scanner scanner = new Scanner(System.in);

3 int p = 12;

4 int q = scanner.nextInt();

5 int r = 2;

6 System.out.println(p/r);

7 int result = testme (p, q, r);

8 System.out.println(result);

9}

10int testme (int p, int q, int r){

11 int s = twice(q);

12 int t = p/(s-r);

13 int result = p/(t-r);

14 return result;

15}

16int twice(int s){

17 return s*2;

18}

Our method is effectively integrated into the construction process, though
it currently lacks automated tool support, necessitating manual implemen-
tation. Before detailing the workflow of the PST, let us consider a case
study program to illustrate its application. Imagine a program that defines
three integer variables: p, q, and r. The variables p and r are initialized
to 12 and 2, respectively, while the value of q is provided by the user at

67

runtime. Additionally, a function named twice is defined to return double
the value of its input parameter. Another function, testme, which performs
a series of operations on its input parameters and returns a result, also needs
to be defined. The program requirements include outputting the result of
p divided by r, as well as the result of passing p, q, and r as arguments
to the testme function. We assume the program is developed sequentially
from top to bottom as illustrated in Listing 4.1, with particular attention to
the automated handling of parentheses in development environments such as
IntelliJ IDEA[125] and Eclipse[126]. For example, when a developer types
an opening parenthesis, these tools automatically insert the corresponding
closing parenthesis, allowing the developer to continue coding within them.
For example, the parenthesis on line 9 is typically completed in conjunction
with the completion of line 1. Thus, for the purposes of this discussion,
we presume the program does not contain syntax errors related to missing
parentheses.

Determination of Suspicious Segments for RQ1

The first step involves using ANTLR (Another Tool for Language Recogni-
tion) to identify the target program segments in which potential exceptions
may occur during execution. ANTLR is a powerful tool designed to process
and parse programming languages, construct lexical analyzers and parsers,
and generate Abstract Syntax Trees (ASTs). This process is further detailed
in several steps as illustrated in the accompanying Figure 4.3.

The initial step involves defining grammar rules, which includes creat-
ing a “.g4” file containing lexical rules (for identifying identifiers, keywords,
literals, etc.) and syntax rules (defining the grammatical structure of the
language). This file establishes the rules for converting source code text into
an AST. Using the ANTLR tool, lexer and parser code for Java is then gener-
ated based on the “.g4” grammar file. This results in a series of Java classes
capable of processing the source code and constructing its AST. Following
this, the generated lexer and parser are utilized to parse the target source
code file. This parsing process reads the source code, conducts lexical and
syntactic analysis according to the rules defined in the “.g4” file, and ulti-
mately produces the corresponding AST. An AST is a tree-like data structure
representing the hierarchical structure of the source code, where each node
reflects a construct in the code, such as declarations and expressions. The
final step involves writing code to traverse the AST, employing the Visitor

68

Pattern—a design pattern that allows operations to be performed on ele-
ments of an object structure without changing the classes of the elements.
We extend the visitor class provided by the ANTLR-generated parser to im-
plement our custom traversal logic. During traversal, this logic is employed
to identify code constructs that could trigger runtime exceptions, such as
array access operations and division operations.

In the programming process, once a code fragment that may give rise to
an exception is identified, the statement containing that fragment is deter-
mined and labeled as a suspicious segment. Note that the term “suspicious”
is used because while there is a possibility of an exception being thrown,
the authenticity of this possibility needs to be confirmed through subsequent
testing. However, the process does not end there; we continue to monitor
the program’s development. If the subsequent statement also contains a frag-
ment that could potentially trigger the same exception, it is merged into the
previously established suspicious segment. This merging continues until a
statement is encountered that no longer contains such a fragment. This ap-
proach is based on our experience that consecutive lines of code containing
fragments potentially triggering the same exceptions are usually closely re-
lated. For example, lines 12 and 13 in Listing 4.1, and common scenarios in
various sorting algorithms where multiple lines of code might trigger array
index out-of-bounds exceptions during element swapping. The purpose of

Define Grammar Rules

Generate Parser

Construct AST

Identify Suspicious Segments

Figure 4.3: Process of determination of suspicious segments

69

this merging analysis operation is to enhance efficiency. For instance, testing
line 13 independently would inevitably involve the code in line 12.

In the development process of the program depicted in Listing 4.1, lines
6, 12, and 13 were identified as suspicious segments because they each con-
tained division operations that could potentially lead to arithmetic excep-
tions. Moreover, according to Definition 1 regarding the segment, they are
recognized respectively as seg6, seg12.

Construction of Sub-program for RQ2

As previously discussed, our objective in this phase centers around employing
program slicing techniques to create a sub-program that serves as a testing
environment for each identified suspicious segment. This step can be further
broken down into detailed processes as illustrated in Figure 4.4.

Determine Slicing Criterion

Perform Program Slicing

Merge Slices

Build New Sub-Programs

Figure 4.4: Process of construction of sub-program

Initially, the target variables and statements for slicing need to be iden-
tified. In this context, the target statements are those that might trigger
arithmetic exceptions, such as line 12 in Listing 4.1. The target variables are
those whose inappropriate values could lead to the triggering of exceptions,
such as the variables s and r in divisor. However, since the ultimate goal is to
execute a sub-program for testing, other variables in that line of code, such

70

as the denominator variable p and the division result variable t, which do not
have a direct causal relationship with the exception, must also be included to
ensure the executability of the sub-program. This means that the target vari-
ables for a suspicious segment include all variables within that segment. The
next step involves performing program slicing on the original program using
these slicing criteria to obtain the program slices. In this paper, we utilize
JavaSlicer—a Java program slicer based on SDG—to accomplish this task
[127]. After obtaining program slices for different variables, the next task
is to consolidate these slices. In the consolidated slices, there may be many
repetitive statements, especially those sharing the same dependencies. It is
necessary to identify and remove these duplicate statements, keeping only
unique instances to form a new, smaller sub-program. This consolidation
process also poses some challenges: whether the sub-program is executable
and maintains the original program’s behavior. Next, we provide a mathe-
matical proof to address these issues.

To validate that the merged slices result in an executable sub-program,
it is crucial to define a few key concepts and build a logical framework for
proof. Here are the definitions and an outline of the proof:

Key Definitions

• System Dependence Graph(SDG): An SDG is a directed graph G =
(V,E), where each node v ∈ V represents a statement in the program,
and each edge e ∈ E represents a dependency within the program,
including data dependencies and control dependencies.

• Program Slice: Given an SDG G = (V,E) and a slicing criterion (typ-
ically a pair (v, V ars), where v is a node in the SDG and Vars is a
set of variables), a program slice is a subgraph G

′
= (V

′
, E

′
) of G.

V
′
includes all nodes that are relevant to the slicing criterion, i.e., all

nodes that can be reached by tracing back through E starting from v,
along with all their interdependencies E

′
.

• Executability: A sub-program is executable if it can run independently
of the original program without causing syntax or runtime errors.

Proof Outline
To prove that the merged slices are executable, we need to demonstrate

the following:

71

• Preservation of All Necessary Dependencies: This means that for any
statement or expression in the slice, all its data dependencies and con-
trol dependencies are still satisfied in the merged slice.

• No Introduction of Syntax or Runtime Errors: This means that the
merging process does not lead to issues such as variable scope errors,
type mismatches, and maintains the program’s control flow structure.

Mathmetical Proof Framework

• Preservation of Dependencies:

– Suppose there are two program slices G1 = (V1, E1) and G2 =
(V2, E2), each corresponding to variables V1 and V2 related to the
same exception trigger.

– The merged slice G
′
= (V

′
, E

′
) is the union of G1 and G2, where

V
′
= V1 ∪ V2 and E

′
= E1 ∪ E2.

– Proof: For any node v inG1 andG2, its dependencies are preserved
in G

′
since E

′
includes all dependencies from E1 and E2. Thus,

any dependency from nodes in V1 or V2 is retained in G
′
.

• No Introduction of Syntax or Runtime Errors:

– Proof: Since each slice G1 and G2 is extracted from the same SDG
G, they adhere to the syntax and runtime rules defined in G. The
merging operation merely combines these slices without altering
any internal logic of nodes or introducing new nodes, thereby not
introducing new syntax or runtime errors.

Conclusion
Based on the proof framework outlined, it can be concluded that the

merged sub-program is executable. This ensures that the program can run
without new errors and maintains all necessary dependencies, validating the
effectiveness of our slicing and merging strategy in maintaining program in-
tegrity while isolating critical segments for error analysis.

Continuing with the example from Listing 4.1, we illustrate the steps in-
volved in this phase. When we type out line 6 in the program, responsible
for outputting the result of variable r divided by p, it is identified as a sus-
picious statement, labeled as seg6. Subsequently, line 7 does not reveal any

72

fragments that could trigger an arithmetic exception, thus seg6 includes only
line 6. Through analysis, it is found that seg6 includes only variables r and
p, setting the slicing criteria as ⟨6, r⟩ and ⟨6, p⟩. Using these slicing criteria,
program slices for variables r and p are derived separately. Once the slices
for these two variables are obtained, the next step is to merge them and elim-
inate any redundant statements, resulting in a new, executable sub-program
for seg6. This resulting sub-program, which is devoid of redundancies and
organized in a sequential manner, is illustrated in Listing 4.2. Since variable
q does not influence the values of p and r, the original lines 2 and 4, which
read the user input for q, are excluded from the sub-program.

Listing 4.2: The slice obtained from the segment seg6

1main () {

2 int p = 12;

3 int r = 2;

4 System.out.println(p/r);

5}

The process outlined above clearly illustrates how a sub-program is gen-
erated from a suspicious segment that has been identified. Continuing with
this approach, when programming reaches seg12, unlike seg6, it includes both
lines 12 and 13, which involve five variables: t, p, s, r, and result. When the
slicing criterion ⟨12, s⟩ is applied to the original program to perform program
slicing, it is discovered that the value of variable s is the return value of the
function twice. However, at this stage, the twice function has not yet been
written, meaning the sub-program generated is not executable. Therefore,
seg12 must be temporarily suspended until the function is implemented, after
which the process can be restarted.

This situation introduces a challenge: how to determine when the nec-
essary function has been completed in practice. Our current approach in-
volves monitoring the programmer’s ongoing coding activity. When the cur-
sor moves into the function we are concerned with, it indicates that the func-
tion is being written. If the cursor moves out of the function for some time
or begins coding other parts, it may suggest that the function is complete,
at which point we can restart testing the suspicious segment. Of course, it is
also possible that the function may still be incomplete, so to prevent infinite
loops, we set a limit on the number of retests. Once this limit is reached,
further attempts will cease.

73

As mentioned earlier, since PST is performed by machines in the back-
ground, it does not interfere with our current programming activities. When
programming reaches line 18, after the completion of the twice function,
seg12 will be retested for the first time. After merging all slices obtained for
the five variables, the resulting sub-program lacks lines 6 and 8 compared to
the original program.

The comparison between the sub-program and the original program demon-
strates that this method can significantly reduce the scale of the test program,
thus enhancing testing efficiency. This is particularly evident in large-scale
programs, as shown by the systematic experiments discussed in Section 4.2.3.

Implementation of Testing for RQ3

In the process of testing a new sub-program, the initial action is to determine
the presence of inputs. If no inputs exist, the program can be executed
directly to assess its behavior. Conversely, if the program does accept input,
the next crucial step involves identifying the input variables involved in the
program’s operation, as shown in Figure 4.5.

Once the input variables are recognized, the focus shifts to the generation
of test cases, employing fuzz testing techniques. As discussed in Section 4.2.1,
Fuzz testing is an automated technique that involves providing data as inputs
to the program. For our purposes, we have chosen AFL++ as our fuzzer. The
primary goal of fuzz testing in this context is to uncover potential exceptions
or unexpected behavior, such as arithmetic errors when the divisor could be
zero.

After generating the test cases, the actual testing is conducted. This
stage involves running the program with all the generated test cases and
closely monitoring the software’s behavior for any runtime exceptions. Ana-
lyzing the test results is crucial; if any of the test cases cause an exception
to be thrown, it indicates the presence of bugs. Identifying and recording
the specific conditions and input values that trigger exceptions is vital for
understanding the reasons behind these exceptions and guiding future code
repair recommendations.

If the developer needs to modify the code, such analysis helps pinpoint
the exact issues needing attention. Conversely, if no bugs are found and
the program operates as expected across all test scenarios, no feedback is
necessary. This approach ensures that feedback provided to programmers
is constructive, specifically enhancing the robustness of the program under

74

various input conditions, thereby contributing to the development of more
reliable and fault-resistant software.

The sub-program derived from the segment seg6, as depicted in Listing
4.2, does not require any user input and executes without throwing any arith-
metic exceptions, suggesting that this segment is secure within the context
of this program. Thus, no further testing or feedback to the developer is
necessary for this segment.

Conversely, the sub-program from the segment seg12, which does involve
user input for the variable q, highlights a critical aspect of testing. In this
sub-program, the only input variable is q, which becomes the focus of our test
cases. For instance, when q is set to 1, the value of s becomes 2, leading to a
division by zero in line 12, thus triggering an arithmetic exception. Similarly,
when q is set to 4, the value of s becomes 8, and the value of t becomes
2, resulting in another division by zero in line 13 and again triggering an
arithmetic exception. This indicates that a single segment can have multiple
test values that can lead to exceptions, reinforcing our choice of AFL++ as
our fuzzer, as it is designed to exhaustively identify all test values that could
cause the program to crash.

Following these findings, the system prompts the programmer to mod-
ify the program to prevent q from taking values that could lead to runtime
crashes, such as 1 and 4. However, it’s important to note the inherent limita-
tions of fuzz testing: while it is effective in randomly generating test values,
it may not always produce specific values like 1 and 4 within the constraints

Identify the Input Variables

Generate Test Cases

Perform Testing

Determine whether Input Exists

Execute Directly

Analyze the Test Results

Feedback to Programmer

Yes No

Figure 4.5: Process of implementation of testing

75

of time and resources available. This limitation means that sometimes, fuzz
testing might not detect all potential exceptions, thus not guaranteeing the
absence of defects that could trigger exceptions in the program.

4.2.3 Experiment

In this section, we acknowledge that the tools required to fully support the
PST are still under development. Consequently, a comprehensive perfor-
mance evaluation is not feasible at this time. Instead, we will manually
assess the effectiveness of the PST through a series of code evaluations. We
will also describe our experiment setup, present our findings, and analyze the
results.

Experiment Design

We conduct the experiments manually with the help of four doctoral stu-
dents. For simplicity in this discussion, they will be referred to as Student 1,
Student 2, Student 3, and Student 4. Student 1 is responsible for analyzing
our experiment program to determine the actual number of effective code
lines in each program used for the experiment. Student 2 is tasked with us-
ing our predefined logic to identify suspicious segments within the programs.
Student 3 takes charge of using program slicing to construct a sub-program
that serves as a testing environment for each identified suspicious segment.
Student 4 is responsible for generating the corresponding test cases, execut-
ing the tests, and recording the test results. To mitigate potential biases
in the evaluation of experiment results, we ensure that the outcomes are al-
ways reviewed under the supervision of an independent party. Specifically,
we choose an ’academic peer’—a colleague from a different academic depart-
ment who has no involvement in our project. This step is crucial to maintain
objectivity and ensure that the results are interpreted accurately and impar-
tially. To lend credibility to our experiment, we chose several programs from
the Software Artifact Infrastructure Repository for analysis [128]. These
programs are considered ”real” in the sense that they are non-trivial appli-
cations developed by experienced software programmers to address actual
problems, rather than being crafted specifically for research or educational
purposes. This choice was made because these programs are commonly used
in fault localization and software testing studies, emphasizing their relevance
and importance in our study [129, 130, 131, 132].

76

T
ab

le
4.1:

O
verv

iew
of

th
e
ex
p
erim

en
t
resu

lts

P
rogram

N
am

e
L
O
C

O
P

S
u
sp
iciou

s
L
O
C

S
P

I
V

O
P

I
V

S
P

E
x
p
ected

A
ctu

al
S
egm

en
t

R
esu

lt
R
esu

lt
A
ccou

n
tS
u
b
T
y
p
e

124
68

69
2

2
×

×
A
llo

cation
V
ector

127
77

36
4

1
×

×

B
in
ary

H
eap

76
189

63
1

1
✓

✓
195

70
1

✓
✓

B
in
ary

S
earch

T
ree

209
261

192
2

2
✓

✓

B
ou

n
d
ed
B
u
ff
er

88
76

25
5

5
×

×
86

29
5

×
×

136
39

5
✓

×

C
ru
iseC

on
trol

262

309
65

0

0
×

×
313

52
0

×
×

317
48

0
×

×
319

59
0

×
×

D
isjoin

t
77

130
42

2
2

✓
✓

L
in
ked

L
ist

176
16

13
2

2
✓

✓
O
rd
S
et

230
56

17
5

1
✓

✓

P
ip
er

85
28

27
4

4
×

×
35

32
4

×
×

48
34

4
×

×

P
ro
d
u
cerC

on
su
m
er

134
75

32
4

4
×

×
104

32
4

×
×

R
ax

E
x
ten

d
ed

160
22

38
2

1
×

×

77

Result Analysis

The findings from our experiment, summarized in Table 4.1, offer a de-
tailed view of the different programs we analyzed, and the results obtained
through our application of the PST. LOC OP represents the number of ef-
fective code lines in each original program, excluding blank and comment
lines, as meticulously identified by Student 1. As identified by Student 2,
Suspicious Segment refers to segments within the program that could poten-
tially trigger arithmetic exceptions. For clarity in the table, these segments
are represented by the subscript. LOC SP , also determined by Student 1,
represents the number of effective code lines in each sub-program constructed
for the suspicious segments.

The box plot depicted in Figure 4.6 encapsulates the ratio of LOC in sub-
programs relative to their respective original programs, providing a statistical
summary of the distribution of efficiency gains from slicing. The median
ratio, marked at approximately 0.49, indicates that the central tendency
of LOC reduction is just under half of the original program size. This is
supported by the mean, signified by the ’X’, which is slightly above the
median, suggesting a distribution that’s mildly right-skewed—there are a
few instances where slices retain a larger proportion of the original LOC. The
interquartile range, representing the middle 50% of the data, is quite narrow,

Figure 4.6: The ratio of LOC in sub-programs relative to their respective
original programs

78

between roughly 0.23 and 0.28, indicating consistency in slicing efficiency
across various programs; most slices tend to be about a quarter of the size of
the full program. The outliers at 0.83 and 0.92 show exceptional cases where
the slices have a higher LOC ratio, possibly indicating complex dependencies
that result in less reduction. The extent of the upper whisker up to 0.92 and
the lower whisker down to 0.07 demonstrates the variability in the efficiency of
program slicing. A whisker reaching down to 0.07 denotes that in some cases,
slices can be extremely efficient, reducing the original program’s LOC to just
7%. The absence of outliers below the lower whisker further emphasizes the
consistency of achieving significant LOC reduction through slicing. Overall,
the box plot suggests that our method is generally effective at reducing the
size of code to a significant extent.

In addition to the reduction in size of the sub-programs compared to their
original programs, our analysis also revealed that the number of input vari-
ables contained in the programs sometimes decreased. This is indicated by
two metrics: IV OP , which represents the number of input variables in each
original program, and IV SP , which denotes the number of input variables
in each sub-program. For instance, in the case of the OrdSet program, the
number of input variables was reduced from five in the original program to
just one in the sub-program. This reduction occurred because the target
suspicious segment did not involve the use of the other variables. Therefore,
these unrelated input variables were excluded during the construction of the
sub-program. The reduction in the number of input variables also implies a
geometric decrease in the number of test cases required, which significantly
reduces the time needed for testing. This efficiency gain from size and vari-
able reduction not only streamlines the testing process but also enhances
the focus on the critical parts of the code that are more likely to affect the
program’s behavior, allowing for more targeted and effective testing.

Expected Result refers to whether the suspicious segment is expected to ac-
tually trigger an arithmetic exception, as determined by the lead researcher.
A mark of ”×” indicates that the segment will not trigger an exception in the
current context of the program, whereas a ”✓” suggests the opposite. Nor-
mally, exceptions may be triggered by incorrect values of certain variables.
However, there are special cases where the context of the program prevents
an exception from being triggered. For example, consider the synchronized
put method in the ProducerConsumer program as displayed in Listing 4.3,
which is used to place objects into a buffer. The sixth line of code updates
the in variable, indicating the next position to place an object. Theoreti-

79

cally, an arithmetic exception could be triggered when the buffer size size
is zero. However, if size is zero, it means there is no space in the buffer,
no interaction between the producer and consumer occurs, and the count of
objects remains zero. As the while loop in the second line indicates, the
thread will be suspended indefinitely, and the sixth line of code will never
execute, hence the exception will never be triggered.

Listing 4.3: The synchronized put method in the ProducerConsumer program

1public synchronized void put(Object o) {

2 while (count==size)

3 wait();

4 buf[in] = o;

5 ++count;

6 in=(in+1) % size;

7 notify();

8}

Actual Result represents the outcome obtained from testing the sub-
program with our method, performed by Student 4. As previously men-
tioned, the programs used in our experiments are non-trivial, created by
experienced software programmers to address real-world problems, and typi-
cally involve relatively small input values. To enhance efficiency, we generally
limit the range of generated test cases to between -100 and 100. Additionally,
due to the resource constraints, we set the testing period to 24 hours. Of
course, testers can adjust the timing flexibly based on actual requirements.
After comparing with the Expected Result, we found, for instance, that in the
BoundedBuffer, Seg136 was expected to trigger an exception, but the actual
test results showed it did not. This was due to the inability to generate test
cases within the limited time that could trigger the exception. Yet, we believe
that with sufficient time to generate enough test cases, we would eventually
produce cases that cause the expected exception.

Although our testing method shows some limitations under conditions of
constrained resources and time, it generally succeeds in accurately predicting
program behavior in most cases. This indicates that our testing strategy is
fundamentally effective. While it is only testing and cannot provide the
exact certainty of model checking or formal verification, it suffices for most
practical scenarios.

80

4.3 PST for index out of bounds exceptions

4.3.1 Preliminary

Index out of Bounds Exceptions in Java

An index out of bounds exception is an error that occurs when trying to
access an element with an index that is outside the bounds of a defined array,
collection, or string. When this happens, the system may return a random
value, leading to unpredictable results. In addition, out of bounds errors
often result in buffer overflows. The empirical study in [133] indicates that
approximately 34% of buffer overflows are caused by index out of bounds
errors. Unfortunately, almost all programming languages do not perform
bounds checking to improve program execution speed, which can lead to
crashes at runtime. The Common Weakness Enumeration (CWE) TOP 25
is a list of the most dangerous software weaknesses that provide attackers
with a way to take over a system, steal data, or prevent applications from
working [134]. Out of bounds are the most common weakness on this list.
Therefore, it is crucial to identify the bugs that have the potential to cause
them in order to prevent them from arising at runtime.

Index out of bounds exceptions in Java can be roughly classified into
three categories, including array index out of bounds exceptions, collection
index out of bounds exceptions, and string index out of bounds exceptions.
These exceptions are primarily instigated by unauthorized access attempts
on elements with arrays, collections, and strings.

ArrayIndexOutOfBoundsException. This occurs when attempting
to access to an element of an array with an index that is outside its permis-
sible range. Java arrays adhere to a zero-based indexing convention, where
the valid index range for an array named arr is from 0 to arr.length -1.
Access is typically performed using the syntax arr[i], where i is the index.
If i is set to a value less than 0 or greater than or equal to arr.length, an
ArrayIndexOutOfBoundsException is triggered.

CollectionIndexOutOfBoundsException. In Java’s collection frame-
work, the Collection interface is the root interface with List and Set as its
primary sub-interfaces. These interfaces provide specific methods to manip-
ulate collection elements. Methods such as remove, get, set, and subList are
commonly used with lists and require an index parameter. Providing an
index beyond the collection’s current size results in an IndexOutOfBound-

81

sException. It is crucial to note that while the List interface supports index-
based operations, the Set interface does not, reflecting its inherent unordered
nature.

StringIndexOutOfBoundsException. Strings in Java, along with
their mutable counterparts, StringBuilder and StringBuffer, necessitate the
use of built-in methods for character manipulation. For the String class,
methods like charAt and substring can lead to exceptions if the index pro-
vided is outside the string’s length. Similarly, StringBuilder and StringBuffer
classes offer methods such as delete, replace, insert, and setCharAt. These
methods, while providing mutable operations on the string, also carry the
risk of throwing an exception if the index is improperly used.

Boundary Value Analysis

To introduce the concept of boundary value analysis, it is first necessary
to explain the method of equivalence class partitioning. Equivalence class
partitioning is a black box testing technique that involves dividing the input
domain of a program into distinct data classes, from which test cases are
derived [135]. The input set is partitioned into subsets or classes, each of
which represents a set of test inputs with similar features and specifications.
By testing one condition from each class, we can assume that all conditions in
that class will be treated in the same way by the software, thereby reducing
the number of test cases required.

The validity of each subset or class depends on the input constraints.
For instance, a program that only accepts one-digits integers would have a
valid equivalence class of integers ranging from -9 to 9, while the invalid
equivalence classes would be integers less than -9 and greater than 9.

During software development, dealing with the boundary values of equiv-
alence classes can be a source of errors for programmers. To address this
challenge, boundary value analysis is another black box testing method that
is used to create test cases that exercise the boundaries of input and output
classes [136]. This method involves identifying both valid and invalid bound-
aries within the equivalence classes and deriving test cases from them. To
perform BVA effectively, the following guidelines should be followed:

1. If an input condition specifies a variable with a range of values between
m and n, test cases should be designed with four values and divided
into four cases as shown in Table 4.2.

82

2. If an input condition specifies multiple values, the minimum and max-
imum values, and values just above the maximum value and below the
minimum value should be used as test cases.

Test Cases = {Min,Max,Min− 1,Max+ 1}

Table 4.2: Input conditions and their corresponding test cases
Input Condition Test Cases
var ∈ (m,n) {m, n, m + 1, n - 1}
var ∈ [m,n) {m, n, m - 1, n - 1}
var ∈ (m,n] {m, n, m + 1, n + 1}
var ∈ [m,n] {m, n, m - 1, n + 1}

Looking back at the aforementioned program that accepts only one-digit
integers, whose valid equivalence class is integers from -9 to 9, that is,
input ∈ (−10, 10) ∩ Z. However, if the restriction added to the input is
erroneously written as input ≤ 10 && input ≥ −10, then the test case
will be Test Cases = {−11,−10, 10, 11}. This error leads to the program
accepting invalid inputs. Furthermore, when the input is given -10 or 10,
no error is reported, which violates the requirements. This illustrates that
there is a design flaw in the program that does not conform to the specific
requirements.

4.3.2 Case Study

Example Program for Explanation

Assuming that such a program is implemented now, in which an array of
int type with a length of 10 is defined. The variable i and j are both index
variables of the array, the value of i is initialized to 3, while the value of j
is input by the user during runtime. Moreover, a function called swap has
been defined to exchange the position of two elements in the array. It is
required to output the i-th element of the array and then output the array
after swapping the i-th element with the j-th element by calling the swap
function. Such a program realized according to the above requirements is
shown in Listing 4.4.

83

Listing 4.4: An example program with array index out of bounds exceptions

1main () {

2 int[] arr = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 int i = 3;

4 int j = ?;

5 print arr[i];

6 int[] newarr = swap (arr, i, j);

7 print newarr;

8}

9int[] swap (int[] arr, int i, int j){

10 int t = 0;

11 if(i >=0 && i<=arr.length && j >=0 && j<=arr.length){

12 t = arr[i];

13 arr[i] = arr[j];

14 arr[j] = t;

15 }

16 return arr;

17}

Determination of Suspicious Segments for RQ1

In addition to ANTLR, we can also use regular expressions to identify the
target suspicious segments .

Table 4.3: Regular expressions corresponding to arrays, collections, and
strings

Type Pattern Regular Expression

Array ArrayName[index]
(?<!new)\b[a-zA-Z]+\w*\[[^
]]+\]

Collection
CollectionName.

MethodName(index, ...)

\b[a-z]+\w*\.(get|set|remove|sub
List)\((\((?<c>)|[^()]|\)(?<-c>)
)+(?(c)(?!))\)(?! \(| {)

String
StringName.

MethodName(index, ...)

\b[a-z]+\w*\.(charAt|substring|
delete|replace|insert|setCharAt)
\((\((?<c>)|[^()]|\)(?<-c>))+(?
(c))\)(\[.+\])?

84

As mentioned in Section 4.3.1, that an index out of bounds exception
is thrown means that there is an operation that attempts to access an ele-
ment in an array, collection, or string using an unexpected index. We have
discussed common methods with the potential to cause such exceptions. In
fact, identifying suspicious segments involves searching for statements that
contain these methods in the program. In this paper, we make use of regular
expressions corresponding to arrays, collections and strings shown in Table
4.3 to match these methods.

The program depicted in Listing 4.4 is subjected to matching, and the
analysis reveals that there exist four statements (i.e., fifth, twelfth, thirteenth
and fourteenth statements) containing array element access operations. Sub-
sequently, according to the rules described in Algorithm 1, these four state-
ments are identified as two suspicious segments to wait for further analysis,
which gives seg5, seg12.

Construction of Sub-program for RQ2

As discussed earlier, our objective in this phase is to create a sub-program
that serves as a testing environment for each identified suspicious segment.
Continuing with the example of the program in Listing 4.4. The segment
seg5 is responsible for outputting the i-th element of the array. To effectively
analyze seg5, we identify the variables engaged in this operation, which are
arr (the array) and i (the index). We then apply the slicing criterion ⟨5, arr⟩
to derive a program slice for the variable arr. This slice is comprised of all
the statements that have a direct or indirect impact on the value of arr.
Analogously, we utilize the slicing criterion ⟨5, i⟩ to generate a program slice
for the variable i. Once we have acquired the program slices for both arr
and i, we proceed to remove any overlapping code between the two slices.
The goal is to consolidate these slices into a single, cohesive sub-program
that encompasses all necessary elements to facilitate the testing of seg5. The
resulting sub-program, which is devoid of redundancies and organized in a
sequential manner, is then illustrated in Listing 4.5.

Similarly, for the segment seg12, which involves exchanging the position
of the i-th and j-th elements in the array arr in the formal parameter, we use
the variables involved in the segment as slicing criteria to slice the program
and obtain another sub-program depicted in Listing 4.6. By replicating this
procedure for each suspicious segment, we can systematically generate sub-
programs for all identified segments.

85

Listing 4.5: The slice obtained from the segment seg5

1main(){

2 int[] arr = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 int i = 3;

4 print arr[i];

5}

Listing 4.6: The slice obtained from the segment seg12

1main () {

2 int[] arr = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 int i = 3;

4 int j = ?;

5 int[] newarr = swap (arr, i, j);

6}

7int[] swap (int[] arr, int i, int j){

8 int t = 0;

9 if (i>=0 && i<=arr.length && j>=0 && j<=arr.length){

10 t = arr[i];

11 arr[i] = arr[j];

12 arr[j] = t;

13 }

14 return arr;

15}

Implementation of Testing for RQ3

For index out of bounds exceptions, we utilize a specialized test case gener-
ation method. It also begins with determining whether there is any input
from the user in the segment. If not, it will be executed directly. Otherwise,
a series of steps as shown in Figure 4.7 will be taken to complete the testing
process. The first step is to identify the input variables and the restrictions
on them by means of the lexical analysis of the code, and then determine
their boundary values. Next, specific test cases are defined according to the
generation rules outlined in Section 4.3.1. However, in some cases, it is not
always possible to obtain the boundary values of the input variables. In this
case, fuzz testing is needed to randomly generate test cases. Then, the test-

86

Determine whether input exists

Identify the input variables

Execute the segment directly

Determine the boundary values

Define the test cases

Perform Testing

Analyze the test results

Yes No

BVAFuzz

Figure 4.7: The process of the testing

ing is conducted, which runs the program with all the generated test cases.
Finally, these results are analyzed to identify bugs or defects.

The sub-program obtained from the segment seg5 in Listing 4.5 does
not involve any user input. Upon execution, no array index out of bounds
exceptions is thrown, leading to the conclusion that this segment is exception-
safe in this program. Therefore, there is no necessity to perform any further
operations on it or provide any feedback to the developer.

For the sub-program from the segment seg12 in Listing 4.6, in which the
value of the variable j is input by the user when the program is executed.
Variable j is the index variable of the array arr, whose restriction in the
program is j ≥ 0 && j ≤ arr.length. Therefore, it can be seen from the
generation criteria in Table 4.2 that test cases should be designed with values
0 and arr.length, as well as values just below 0 and above arr.length, that is,
Test Cases = {−1, 0, arr.length, arr.length+ 1}.

When the test case is -1, 0 and arr.length+1, the program runs normally
or outputs an incorrect result but no exception will be thrown. However,
when j is assigned the value of arr.length, which exceeds the bound of the
array, it will cause the program to throw an exception. At this time, the
system requires the developer to modify the program so that the program
will not be terminated during runtime.

87

4.3.3 Experiment

This section introduces our study to evaluate PST and compare it with three
other existing fault detection techniques using a set of programs. We will first
provide an overview of the three techniques and then describe our experiment.
Finally, we will present the results of the experiment and provide an analysis
of them.

Java Fault Detection Tools

Checker Framework. The Checker Framework significantly enhances Java’s
type system, providing developers with tools to detect and prevent errors in
their Java code more effectively than Java’s built-in type system [137]. It in-
cludes a variety of compiler plug-ins, known as checkers, which are designed
to identify bugs or verify their absence. These checkers cover a wide range of
error types, from null pointer exceptions to concurrency flaws. Moreover, the
framework allows for the creation of custom checkers, enabling developers to
enforce specific correctness properties unique to their applications.

SpotBugs is an analysis tool for Java, which uses a series of ad-hoc tech-
niques designed to balance precision, efficiency and usability [138]. One of
the main techniques SpotBugs uses is to examine a class or JAR file, com-
paring the bytecode to a set of bug patterns to find potential vulnerabilities.
For example, SpotBugs checks whether creating an IO stream object in a
Java program using classes such as FileInputStream and InputStream is ac-
companied by a close operation, which is considered a safe operation in most
cases. In some cases, SpotBugs also employs data flow analysis to check for
bugs. For example, SpotBugs uses simple intraprocedural data flow analysis
to check for null pointer references.

SpotBugs allows users to configure detection rules, that is, users can
determine the types of bugs reported after program detection, such as bad
practice and malicious code vulnerability. Futhermore, SpotBugs can be
extended by implementing unique validation rules, although this requires
inheriting its interface when customizing a specific bug pattern.

ESC/JAVA, the Extended Static Checking system for Java, performs for-
mal verification of properties of Java source code depending on theorem
proving [139]. ESC uses an automatic theorem-prover to reason about the

88

semantics of the program, which allows ESC to give static warnings for er-
rors caught at runtime. ESC allows program developers to record design
decisions in Java, and issues warning when the program violates these de-
sign decisions. Moreover, ESC/Java is designed so that it can produce some
useful output even without any specification, which is how we use it in our
study. In this case, ESC/Java is able to detect runtime exceptions such as
null pointer dereferences, index out of bounds.

Experiment Design and Analysis

We conduct the experiments with the assistance of four doctoral students and
an assistant professor, who are experienced in software development, software
fault detection, and the PST method respectively. For brevity, they will be
referred to as student 1,2,3 and 4 in the following discussion. Student 1,
with a background in software development, is tasked with employing regu-
lar expressions to identify suspicious segments within the programs. Student
2 analyzes the code to ascertain the actual effectiveness of these suspicious
segments. Student 3 is responsible for injecting bugs into the original pro-
grams, while the assistant professor conducts tests on them using our PST
method. To mitigate potential biases in the evaluation of test results, we
ensure that the outcomes are always reviewed under the supervision of the
authors. To lend credibility to our experiment, we chose several programs
from the Software Artifact Infrastructure Repository for analysis. These
programs were selected due to their common use in fault localization and
software testing, highlighting their relevance and importance in our study
[129, 130, 131, 132].

Table 4.4 offers a comprehensive summary of the various programs utilized
in our study and presents the findings obtained through our method. LOC
stands for the Lines Of Code in each program, specifically referring to any
text line that is neither a blank line nor a comment line, as identified by
the first author. The term Matched Suspicious Segment (MSS) denotes the
number of segments identified by Student 1 that could potentially cause index
out of bounds exceptions, as detected using the regular expression techniques
described in Section 3.1. However, the number of segments that actually
result in exceptions may differ from those identified through matching due
to various factors. Consequently, Student 2 evaluates the program to provide
the actual count of Effective Suspicious Segments (ESS), reflecting the true
number of problematic segments.

89

T
ab

le
4.4:

O
verv

iew
of

th
e
ex
p
erim

en
t
p
rogram

an
d
ex
p
erim

en
t
resu

lts
u
sin

g
P
S
T

P
rogram
N
am

e
L
O
C

M
atch

ed
S
u
sp
iciou

s
S
egm

en
t

E
ff
ective

S
u
sp
iciou

s
S
egm

en
t

In
jected
B
u
gs

F
au

lty
V
ersion

S
u
ccessfu

l
D
etection

F
ailed

D
etection

A
ccou

n
t

146
12

12
2

2
2

0
A
larm

C
lo
ck

338
12

12
2

3
3

0
A
rray

P
artion

63
8

8
1

1
1

0
L
in
ked

L
ist

138
13

13
3

4
3

1
S
leep

in
gB

ar
154

2
2

1
1

1
0

L
an

g
2448

71
71

5
10

8
2

P
ro
d
u
cerC

on
su
m
er

193
11

11
2

2
2

0
V
ector

454
21

29
4

7
7

0

90

For example, in the AlarmClock program, both the MSS and ESS figures
are initially twelve, which might seem consistent. Yet, upon closer examina-
tion, we find that the elementAt method, flagged for its suspicious operation
of accessing an array element, is overridden in the program but never in-
voked, thus it would not trigger an exception. This oversight suggests that
the ESS should be adjusted to eleven. Nevertheless, the program includes a
removeElement method, akin to Java’s remove function, which is employed
once. This method, not originally flagged as suspicious, was missed in the
regular expression match, leading to a false negative. Accordingly, the ac-
curate count for ESS is corrected back to twelve. Similarly, in the Vector
program, the discrepancy of eight additional ESS compared to MSS is at-
tributed to the inclusion of getElement and modifyElement methods. These
methods are designed to obtain and modify a specific element in the vector
respectively, and are invoked eight times within the program.

The Injected Bugs column in our data illustrates the number of bugs
that Student 3 introduced into various programs, each designed to trigger an
exception during runtime. These modifications resulted in different versions
of the programs, each harboring one or more deliberate bugs. A version
is deemed to have achieved Successful Detection if all introduced bugs are
identified; otherwise, it falls under Failed Detection, as determined by the
assistant professor. The data reveals that our method did not completely
detect the bugs in two versions of the Lang program and one version of the
LinkedList program. This outcome underscores a limitation in our approach
when applied to entire programs that contain multiple bugs, a topic we plan
to explore further in Section 4.5.

The Detected Bugs column reflects the count of distinct bugs discovered
in all faulty versions of the programs, as verified by Student 4. A compar-
ative analysis between this column and the Injected Bugs column reveals a
discrepancy in the Vector program, where one less bug was detected than the
number initially injected. Specifically, a bug introduced into the previously
discussed getElement function was not flagged as a suspicious statement dur-
ing the matching process, culminating in a false negative.

Experiment Results and Analysis

In Figure 4.8, we present the comparative outcomes concerning suspicious
segments that could potentially lead to exceptions within the programs, as
delineated in Table 4.4. The illustration indicates that our method did not

91

Figure 4.8: Comparison results of suspicious statements

seamlessly match all suspicious segments, evidenced by the discrepancies be-
tween the MSS and the ESS. Particularly, in programs such as AlarmClock
and Vector, there are noticeable instances of false positives/negatives, which
highlight the challenges in accurately identifying all problematic segments of
code. Nonetheless, the overall results demonstrate a substantial degree of
accuracy. Specifically, our method successfully identified a significant pro-
portion of the true positives, which is indicative of the precision of the regular
expressions used and the effectiveness of the subsequent analysis. Despite the
challenges, an accuracy rate of 150 out of 158, or 94.9%, provides a compelling
indication of the method’s reliability. This high accuracy rate is critical be-
cause it lays a robust foundation for attaining a significant fault detection
rate in the ensuing phases of our research. Moreover, it also suggests that
with further refinement, particularly in reducing the false positives/negatives
as seen in the red columns of the chart, the method could be made even more
effective.

The experiment results comparing the injected bugs with the actual de-
tected bugs will be discussed in the next section when we compare our tool
with others.

92

Experiment Comparison

In this section, we engage in a comparative analysis of bug detection results
using established and widely adopted tools as compared to those obtained
via our method, a process undertaken by the second author. Consistent with
standard practice, we evaluate and compare these tools based on their effec-
tiveness and efficiency, as cited in references [131, 140]. However, given that
our method is not yet supported by an automated tool and is implemented
manually, the comparison in terms of efficiency, that is, the time required to
perform the detection, is of no reference value. Therefore, our comparison
focuses solely on effectiveness, which we measure by the count of successfully
detected injected bugs. A higher number of detected bugs is indicative of
a tool’s greater effectiveness. The findings of this evaluation are organized
in Table 4. This table features several columns for easy reference: the first
column specifies the names of the programs tested, the second column enu-
merates the number of bugs injected into each program, and the subsequent
columns (third to sixth) present the detection results garnered by PST and
the other tools that were introduced earlier in Section 4.1.

Spotbugs is a powerful tool capable of detecting bugs across ten major
categories, each containing dozens or even hundreds of more precise bug
types. For example, it can identify Security issues, such as the use of unsafe
external inputs; Multithreaded Correctness, which includes code that might
lead to deadlocks; and Malicious Code Vulnerability, where the code is at
risk of being attacked by malicious software, such as returning a mutable
reference stored in an object field, among others. Of particular interest is the
Correctness category, which points out code that may cause runtime errors,
such as index out of bounds. Unfortunately, despite these capabilities, the

Table 4.5: Experiment comparison results using PST and three other tech-
niques

Program Name Injected Bugs Program Segment Testing Index Checker SpotBugs ESC/Java
Account 2 2 2 0 1

AlarmClock 2 2 0 0 0
ArrayPartition 1 1 1 0 0
LinkedList 3 3 0 1 0
SleepingBar 1 1 0 0 1

Lang 5 5 3 1 1
ProducerConsumer 2 2 2 0 1

Vector 4 3 0 1 0

93

performance of Spotbugs in analyzing the results is not always satisfactory.
ESC/JAVA employs an automatic theorem-prover to perform formal ver-

ification of properties of Java source code, which allows it to give static
warnings for potential runtime errors. Analysis of the ESC detection results
reveals that the warnings primarily fall into three types: (1) The prover can-
not establish an assertion; (2) Precondition conjunct is false; (3) Associated
declaration. The first type can be further subdivided into multiple sub-types,
such as PossiblyNegativeIndex, which indicates that the index of the array
may be negative, PossiblyTooLargeIndex, which suggests that the value of the
index may be too large, such as exceeding the upper bound of the Int type
variable, and ArithmeticOperationRange, which implies that the prover can-
not verify the loop condition of a loop structure when it contains arithmetic
operations. Upon close examination of these warnings, it is evident that ESC
will issue a warning for any operation that accesses array elements, much like
the operation of identifying suspicious statements in our method. However,
ESC’s focus is limited to arrays, which constrains its utility for methods that
access elements in strings or collections. Furthermore, ESC predominantly
performs tests in extreme cases, such as determining if the value of a variable
exceeds the upper and lower bounds of the Int variable or 0. It lacks the ca-
pability to verify more nuanced conditions, such as whether a variable is less
than a fixed value like the length of an array. The experiment results clearly
indicate that only when exceptions that the tool is capable of handling occur
in the program, can it manage to provide a report, albeit an imprecise one.
Consequently, the number of exceptions detected is quite sparse.

The Checker Framework utilizes a series of custom type systems that
operate as plugins for the javac compiler to find and prevent various bugs
within programs. The Index Checker, specifically designed to warn against
potential out-of-bounds accesses to sequence data structures, prevents In-
dexOutOfBoundsException that may arise if an index expression is likely
to be negative or equal to or greater than the sequence’s length. This is
achieved by writing annotations to indicate which expressions are indices
for which sequences. For example, if a variable i is used as an index for
an array myArray, we annotate the type of i with @IndexFor(”myArray”)
during its declaration. This annotation ensures that the variable i is always
non-negative and less than the length of myArray during runtime, that is,
0 ≤ i < myArray.length. The Index Checker prohibits any operations that
could potentially violate these properties and utilizes them when verifying
index operations.

94

Figure 4.9: Experiment comparison results using PST and three other tech-
niques

However, the Index Checker is limited to checking only fixed-size data
structures, whose sizes cannot change after creation, such as strings and ar-
rays. This implies that it is not suitable for mutable data structures like lists,
which can alter their size through methods like add and delete. This limita-
tion was clearly confirmed in programs such as LinkedList and AlarmClock.
Additionally, the Index Checker does not check for arithmetic overflow; thus,
if there is a potential risk of overflow in the expressions of a program, the
Index Checker will not provide warnings. While this is unlikely to be a con-
cern in most practical developments, we also confirmed this limitation in
the SleepingBar program. In other scenarios, the Index Checker can provide
warnings as long as appropriate annotations are placed correctly within the
program. This presupposes familiarity with the various annotations of the
checker and their meanings, ensuring that the framework’s annotations are
correctly understood and applied. However, this can be daunting for large
codebases that lack prior type annotations.

In conclusion, to present the comparison results more intuitively, we trans-
late the data from Table 4.5 into a line graph, as shown in Figure 4.9. In
this graphical representation, the line corresponding to our method appear
higher than those of all other methods. This visual elevation of the PST line
in the graph clearly illustrates its effectiveness and superiority, corroborating
the analytical findings previously discussed.

95

4.4 Threats to Validity

Addressing threats to validity is crucial in ensuring the reliability of ex-
periment results in software engineering research. Here we discuss various
measures implemented to mitigate such threats during our experiment.
1. Selection and Diversity of Target Programs

One potential threat involves the number and complexity of the target
programs used for testing. To enhance the reliability of our results, we se-
lected programs from the Software Artifact Infrastructure Repository. These
programs are commonly employed in studies involving fault localization and
fault detection, covering typical issues encountered in software development,
such as producer-consumer problems and sorting algorithms. While the pro-
grams used may not suffice for an exhaustive evaluation of our method due
to their limited scope, they serve well for initial observations and analyses
in smaller-scale scientific research experiments. Although no instances were
encountered where our method underperformed or proved invalid, extending
our approach to a broader array of programs might reveal different outcomes.
Therefore, conducting larger-scale empirical studies is essential for a more
comprehensive evaluation of our method in diverse software environments.
2. Human Factors

Human factors significantly threaten the validity of experiment results
due to the potential for bias and subjective influences. To mitigate these
threats, we adopted a blind experiment design. In this setup, individuals
involved in specific tasks were kept unaware of the activities of others partic-
ipating in the experiment. This method helps prevent biases or preconceived
notions from affecting the outcomes, as experimenters do not have prior
knowledge about what the expected results should be.

Moreover, to further reduce the impact of subjective human errors, all
experiment interactions and evaluations were recorded and periodically re-
viewed by an independent party not involved in the experiment phases. This
process of external review helps to identify any inconsistencies or biases in
the handling or interpretation of data collected during the experiments. By
incorporating these checks, we aim to ensure that our experiment conclu-
sions are based on objective observations and are not unduly influenced by
the experimenters’ expectations or personal experiences.
3. Experiment Controls and Repetition

To further solidify the integrity of our findings, we maintained strict con-
trol over the experiment conditions. This included consistent use of equip-

96

ment, settings, and methodologies across all test scenarios. Repeating ex-
periments under the same conditions helps in identifying any anomalies or
inconsistencies in the results, thereby providing a more robust set of data to
support our conclusions.

By addressing these potential threats to validity, we aim to ensure that
our findings are not only insightful but also dependable and applicable in real-
world settings. Future studies could expand upon this foundation, exploring
larger datasets and more complex program structures to fully validate and
potentially enhance the efficacy of our proposed method.

4.5 Discussion about PST

PST is a dynamic and automated testing methodology specifically designed
to identify and handle runtime exceptions during the software development
process. Initially developed for Java, PST focuses on detecting common
runtime exceptions such as arithmetic errors, which are prevalent during the
execution phase of software.
1. Expansion to Other Exception Types

The fundamental approach of PST, which involves identifying potentially
problematic code segments, setting up a targeted testing environment, and
conducting tests, can indeed be expanded to detect other types of runtime
exceptions. For instance, adaptations of PST could effectively pinpoint issues
like null pointer exceptions. These are typical errors that can also cause
significant disruptions in software operations.

To extend PST to cover these additional exception types, the detection
logic and testing mechanisms need to be appropriately modified. This in-
volves adjusting the criteria for segment selection and enhancing the testing
algorithms to recognize and react to the specific nuances of each new type of
exception.
2. Adaptability Across Programming Languages

Moreover, the core principles of PST are not confined to Java and can
be seamlessly adapted to other programming languages. This adaptability is
crucial given the diverse programming environments and the specific error-
handling mechanisms inherent to each language.

• C++: Adapting PST to C++ would involve integrating with its excep-
tion handling and memory management features. C++ programs may

97

face unique issues related to pointer arithmetic and memory allocation,
which PST could be tailored to monitor and test.

• Python: For Python, adapting PST would mean focusing on dynam-
ically typed variable issues and runtime errors common in a scripting
environment, such as type errors or index errors in lists.

• JavaScript: In the context of JavaScript, PST could be adapted to
handle errors typically found in asynchronous programming and event-
driven architectures, such as callback errors and promises rejections.

98

Chapter 5

Comparative Analysis and
Discussion

5.1 Introduction

This chapter provides a comparative analysis of formal verification techniques
and PST, highlighting their respective strengths, limitations, and comple-
mentary nature. The aim is to understand how these techniques can be
leveraged together to enhance software reliability and to identify scenarios
where each method is most effective.

5.2 Strengths of Formal Verification Techniques

Formal verification techniques, such as Event-B and LTS, offer several strengths:
1. Rigor and Precision:
Formal verification provides a mathematically rigorous way to ensure soft-

ware correctness. By using formal methods, developers can create precise
models of system behavior, eliminating ambiguities and reducing the risk of
errors.

2. Proof of Correctness:
These techniques allow for the comprehensive proof of system properties,

ensuring that the software adheres to its specifications. This is particularly
important for safety-critical systems, where failures can have severe conse-
quences.

3. Modeling Complex Interactions:

99

Techniques like LTS are effective in modeling and analyzing concurrent
and distributed systems. They provide a clear representation of system states
and transitions, helping to identify potential issues such as deadlocks and race
conditions.

5.3 Limitations of Formal Verification Tech-

niques

Despite their strengths, formal verification techniques face several limita-
tions:

1. Resource Intensity:
Formal verification can be highly resource-intensive, requiring significant

computational power and time to model and verify complex systems. This
can limit its practicality, especially for large-scale projects with tight dead-
lines.

2. Expertise Required:
The steep learning curve and the need for substantial expertise in formal

methods and mathematical modeling can be a barrier to widespread adop-
tion. Many development teams may lack the necessary skills to effectively
use these techniques.

3. Limited Real-Time Feedback:
Formal verification is typically performed after the software design is com-

plete, making it less suitable for providing real-time feedback during the
development process. This can delay the detection and correction of errors.

5.4 Strengths of PST

PST offers several advantages that complement the strengths of formal veri-
fication:

1. Real-Time Error Detection:
Integrated within the HMPP framework, PST provides real-time feedback

on runtime exceptions. This allows developers to identify and fix issues early
in the development cycle, enhancing productivity and reducing debugging
time.

2. Applicability to Iterative Development:

100

PST is particularly well-suited for agile development environments, where
software is developed incrementally. It can be applied to both partial and
entire programs, providing continuous error detection as the software evolves.

3. Reduced Expertise Requirement:
PST does not require the same level of mathematical and formal methods

expertise as formal verification. This makes it more accessible to a broader
range of development teams.

5.5 Limitations of PST

PST also has its limitations:
1. Scope of Error Detection:
While PST is effective in detecting runtime exceptions, it may not provide

the comprehensive proof of system correctness that formal verification offers.
It focuses on identifying specific types of errors rather than verifying all
system properties.

2. Tool Support:
Dedicated tools for PST are still under development, limiting its widespread

adoption. The effectiveness of PST is heavily influenced by the availability
and usability of these tools.

5.6 Complementary Nature of Formal Verifi-

cation and PST

Formal verification and PST have distinct strengths that make them com-
plementary:

1. Enhanced Reliability:
By combining the rigor of formal verification with the real-time error de-

tection capabilities of PST, developers can achieve higher software reliability.
Formal verification ensures that the software adheres to its specifications,
while PST provides continuous monitoring and immediate feedback during
development.

2. Improved Development Workflow:
The integration of both techniques into the software development lifecycle

can streamline the process. Formal verification can be used to validate the

101

initial design and critical components, while PST can be employed to monitor
and test the software as it is being developed.

3. Balanced Resource Utilization:
Combining both techniques allows for a balanced approach to resource

utilization. Formal verification can be applied to the most critical parts of the
system, while PST can be used more broadly across the entire development
process, providing a practical and efficient solution.

5.7 Discussion

The comparative analysis highlights that formal verification and PST are not
mutually exclusive but rather complementary techniques. By leveraging the
strengths of both methods, developers can enhance software reliability in a
comprehensive and efficient manner. The key is to integrate these techniques
thoughtfully into the software development lifecycle, using formal verification
for critical components and design validation, and PST for continuous mon-
itoring and error detection during development.

102

Chapter 6

Conclusion and Future Work

6.1 Summary of Key Findings

This dissertation set out to enhance software reliability through the evalua-
tion and application of formal verification techniques and PST. The research
aimed to address the limitations of each method by leveraging their respec-
tive strengths in different phases of the software development process. The
key findings from this research are summarized as follows:

1. Effectiveness of Formal Verification Techniques:
Formal verification techniques, specifically Event-B and LTS, have been

shown to be highly effective in ensuring software correctness and reliability
for safety-critical and completed systems. The application of these techniques
to the ARINC653 specification demonstrated their ability to rigorously prove
system properties and ensure adherence to specifications.

2. Challenges and Limitations of Formal Verification:
Despite their strengths, formal verification techniques face significant

challenges in dynamic and iterative development environments such as HMPP.
These challenges include resource intensity, the need for substantial expertise,
and limited real-time feedback capabilities.

3. Development and Evaluation of PST:
PST has been developed and evaluated as a complementary technique to

formal verification. Integrated within the HMPP framework, PST provides
real-time error detection without human intervention. The experiments and
case studies demonstrated PST’s effectiveness in identifying runtime excep-
tions early in the development cycle, enhancing productivity and reducing

103

debugging time.
4. Comparative Analysis:
The comparative analysis highlighted the complementary nature of formal

verification and PST. Formal verification provides rigorous proof of system
correctness, while PST offers practical, real-time error detection during de-
velopment. Together, these techniques can significantly enhance software
reliability.

6.2 Implications for Theory and Practice

The findings from this research have several important implications for both
theory and practice:

1. Theory:
This research contributes to the theoretical understanding of software re-

liability by demonstrating the complementary strengths of formal verification
and PST. It provides a framework for integrating these techniques in a way
that leverages their respective advantages.

2. Practice:
For practitioners, the research offers practical insights into how formal

verification and PST can be integrated into the software development lifecy-
cle. By applying formal verification to critical components and using PST
for continuous monitoring, developers can improve the reliability of their
software in a resource-efficient manner.

6.3 Future Research Directions

Based on the findings and limitations identified in this research, several future
research directions are proposed:

1. Tool Development:
Continued development and refinement of tools to support PST is es-

sential. These tools should be made more accessible and user-friendly to
facilitate widespread adoption.

2. Integrated Frameworks:
Research should focus on developing integrated frameworks that seam-

lessly combine formal verification and PST. Such frameworks would provide
a cohesive solution for enhancing software reliability across various domains.

104

3. Empirical Studies:
Further empirical studies are needed to validate the effectiveness of com-

bining formal verification and PST in different domains and development
environments. These studies would help to generalize the findings and pro-
vide additional evidence of their benefits.

4. Education and Training:
Enhancing education and training programs to equip developers with the

necessary skills to effectively use both formal verification and PST is crucial.
This would help to bridge the expertise gap and promote the adoption of
these techniques.

6.4 Conclusion

This dissertation has demonstrated that formal verification and PST are
powerful techniques for enhancing software reliability. While formal verifi-
cation provides rigorous proof of system correctness, PST offers practical,
real-time error detection during development. By leveraging the strengths of
both techniques, developers can achieve higher software reliability and im-
prove the efficiency of the development process. The insights gained from
this research provide valuable guidance for future research and practical im-
plementation, ultimately contributing to the development of more reliable
software systems.

105

106

Chapter 7

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advi-
sor, Professor Shaoying Liu. His unwavering support, guidance, and encour-
agement throughout my doctoral research have been invaluable. Not only did
he provide critical academic insights, but he also offered advice on personal
development and career planning.

I am also grateful to all the faculty and staff of the School of Advanced
Science and Engineering for their support and assistance during my PhD
studies.

A special acknowledgment goes to the members of my dissertation com-
mittee for their valuable feedback and suggestions throughout my research
plan and dissertation writing process. Without their help, this dissertation
would not have been possible.

I would like to extend my heartfelt thanks to my fellow students and
friends, who have provided immense support and encouragement both aca-
demically and personally. The discussions and exchanges with them have
given me many valuable insights and assistance.

Lastly, I am profoundly grateful to my family. Their unconditional sup-
port and love have been the driving force behind the completion of this
research. Special thanks to my parents, whose constant encouragement and
support have enabled me to persevere.

Once again, I extend my sincere gratitude to everyone who has helped
and supported me throughout this journey. Your support and assistance have
made it possible for me to complete this challenging yet rewarding task.

107

108

Reference

[1] N. Plat, J. van Katwijk, and H. Toetenel, “Application and benefits of
formal methods in software development,” Software Engineering Jour-
nal, vol. 7, no. 5, pp. 335–346, 1992.

[2] J. B. Almeida, M. J. Frade, J. S. Pinto, S. Melo de Sousa, J. B. Almeida,
M. J. Frade, J. S. Pinto, and S. Melo de Sousa, “An overview of formal
methods tools and techniques,” Rigorous Software Development: An
Introduction to Program Verification, pp. 15–44, 2011.

[3] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[4] J. M. Schumann, Automated theorem proving in software engineering.
Springer Science & Business Media, 2001.

[5] J. Souyris, V. Wiels, D. Delmas, and H. Delseny, “Formal verification
of avionics software products,” in FM 2009: Formal Methods: Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009.
Proceedings 2, pp. 532–546, Springer, 2009.

[6] T. Lecomte, T. Servat, G. Pouzancre, et al., “Formal methods in safety-
critical railway systems,” in 10th Brasilian symposium on formal meth-
ods, pp. 29–31, 2007.

[7] J. Yoo, T. Kim, S. Cha, J.-S. Lee, and H. S. Son, “A formal software
requirements specification method for digital nuclear plant protection
systems,” Journal of Systems and Software, vol. 74, no. 1, pp. 73–83,
2005.

[8] S. Siegl, K.-S. Hielscher, R. German, and C. Berger, “Formal specifica-
tion and systematic model-driven testing of embedded automotive sys-

109

tems,” in 2011 Design, Automation & Test in Europe, pp. 1–6, IEEE,
2011.

[9] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman,
“Iotsat: A formal framework for security analysis of the internet of
things (iot),” in 2016 IEEE conference on communications and network
security (CNS), pp. 180–188, IEEE, 2016.

[10] T. Grandison, E. M. Maximilien, S. Thorpe, and A. Alba, “Towards a
formal definition of a computing cloud,” in 2010 6th World Congress
on Services, pp. 191–192, IEEE, 2010.

[11] D. Poole, A. Mackworth, and R. Goebel, “Computational intelligence:
a logical approach. 1998,” Google scholar google scholar digital library
digital library, 1998.

[12] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[13] J. M. Spivey, Understanding Z: a specification language and its formal
semantics, vol. 3. Cambridge University Press, 1988.

[14] P. G. Larsen, K. Lausdahl, N. Battle, J. Fitzgerald, S. Wolff, S. Sa-
hara, M. Verhoef, P. W. Tran-Jørgensen, T. Oda, and P. Chisholm,
“Vdm-10 language manual,” Internet: overturetool. org/documenta-
tion/manuals. html [Oct. 5, 2020], 2013.

[15] E. Durr and J. Van Katwijk, “Vdm++, a formal specification language
for object-oriented designs,” in CompEuro 1992 Proceedings Computer
Systems and Software Engineering, pp. 214–219, IEEE, 1992.

[16] R. Duke, G. Rose, and G. Smith, “Object-z: A specification language
advocated for the description of standards,” Computer Standards &
Interfaces, vol. 17, no. 5-6, pp. 511–533, 1995.

[17] C. Snook and M. Butler, “Uml-b: Formal modeling and design aided
by uml,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 15, no. 1, pp. 92–122, 2006.

[18] C. Fischer, “Csp-oz: a combination of object-z and csp,” Formal Meth-
ods for Open Object-based Distributed Systems: Volume 2, pp. 423–438,
1997.

110

[19] O. U. T. C. Group, “Timed csp: Theory and practice,” in Real-Time:
Theory in Practice: REX Workshop Mook, The Netherlands, June 3–7,
1991 Proceedings, pp. 640–675, Springer, 1992.

[20] J. Hoenicke and E.-R. Olderog, “Csp-oz-dc: A combination of speci-
fication techniques for processes, data and time,” Nord. J. Comput.,
vol. 9, no. 4, pp. 301–334, 2002.

[21] C. Sühl, “Rt-z: An integration of z and timed csp,” in IFM’99: Proceed-
ings of the 1st International Conference on Integrated Formal Methods,
York, 28-29 June 1999, pp. 29–48, Springer, 1999.

[22] J. Woodcock and A. Cavalcanti, “The semantics of circus,” in Interna-
tional Conference of B and Z Users, pp. 184–203, Springer, 2002.

[23] A. Cavalcanti, A. Sampaio, and J. Woodcock, “Unifying classes and
processes,” Software & Systems Modeling, vol. 4, pp. 277–296, 2005.

[24] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4,
pp. 626–643, 1996.

[25] M. Butler and M. Leuschel, “Combining csp and b for specification and
property verification,” in FM 2005: Formal Methods: International
Symposium of Formal Methods Europe, Newcastle, UK, July 18-22,
2005. Proceedings, pp. 221–236, Springer, 2005.

[26] M. Butler, “csp2b: A practical approach to combining csp and b,”
Formal Aspects of computing, vol. 12, pp. 182–198, 2000.

[27] S. Colin, A. Lanoix, O. Kouchnarenko, and J. Souquières, “Towards
validating a platoon of cristal vehicles using csp—— b,” in Algebraic
Methodology and Software Technology: 12th International Conference,
AMAST 2008 Urbana, IL, USA, July 28-31, 2008 Proceedings 12,
pp. 139–144, Springer, 2008.

[28] A. A. McEwan and S. Schneider, “Modelling and analysis of the amba
bus using csp and b,” Concurrency and Computation: Practice and
Experience, vol. 22, no. 8, pp. 949–964, 2010.

111

[29] S. Schneider and H. Treharne, “Csp theorems for communicating b
machines,” Formal Aspects of Computing, vol. 17, no. 4, pp. 390–422,
2005.

[30] S. Schneider and H. Treharne, “Changing system interfaces consis-
tently: a new refinement strategy for csp ∥ b,” Science of Computer
Programming, vol. 76, no. 10, pp. 837–860, 2011.

[31] S. Schneider, H. Treharne, and N. Evans, “Chunks: Component veri-
fication in csp ∥ b,” in Integrated Formal Methods: 5th International
Conference, IFM 2005, Eindhoven, The Netherlands, November 29-
December 2, 2005. Proceedings 5, pp. 89–108, Springer, 2005.

[32] H. Treharne and S. Schneider, “Using a process algebra to control b op-
erations,” in IFM’99: Proceedings of the 1st International Conference
on Integrated Formal Methods, York, 28-29 June 1999, pp. 437–456,
Springer, 1999.

[33] S. Schneider, H. Treharne, and H. Wehrheim, “A csp approach to con-
trol in event-b,” in Integrated Formal Methods: 8th International Con-
ference, IFM 2010, Nancy, France, October 11-14, 2010. Proceedings
8, pp. 260–274, Springer, 2010.

[34] S. Schneider, H. Treharne, and H. Wehrheim, “Bounded retransmis-
sion in event-b ∥ csp: a case study,” Electronic Notes in Theoretical
Computer Science, vol. 280, pp. 69–80, 2011.

[35] S. Schneider, H. Treharne, and H. Wehrheim, “Stepwise refinement in
event-b csp. part 1: safety,” 2011.

[36] S. Schneider, H. Treharne, and H. Wehrheim, “A csp account of event-b
refinement,” arXiv preprint arXiv:1106.4098, 2011.

[37] S. Schneider, H. Treharne, and H. Wehrheim, “The behavioural se-
mantics of event-b refinement,” Formal aspects of computing, vol. 26,
pp. 251–280, 2014.

[38] T. S. Hoang, S. Schneider, H. Treharne, and D. M. Williams, “Foun-
dations for using linear temporal logic in event-b refinement,” Formal
Aspects of Computing, vol. 28, pp. 909–935, 2016.

112

[39] S. Schneider, H. Treharne, H. Wehrheim, and D. Williams, “Manag-
ing ltl properties in event-b refinement. arxiv: 1406: 6622,” to appear
IFM2014, 2014.

[40] D. Hansen and M. Leuschel, “Translating tla+ to b for validation with
prob,” in Integrated Formal Methods: 9th International Conference,
IFM 2012, Pisa, Italy, June 18-21, 2012. Proceedings 9, pp. 24–38,
Springer, 2012.

[41] S. Blom, J. van de Pol, and M. Weber, “Ltsmin: Distributed and sym-
bolic reachability,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22, pp. 354–359, Springer, 2010.

[42] J. Bendisposto, P. Körner, M. Leuschel, J. Meijer, J. van de Pol, H. Tre-
harne, and J. Whitefield, “Symbolic reachability analysis of b through
prob and ltsmin,” in Integrated Formal Methods: 12th International
Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016, Proceed-
ings 12, pp. 275–291, Springer, 2016.

[43] T. E. Uribe, “Combinations of model checking and theorem prov-
ing,” in International Workshop on Frontiers of Combining Systems,
pp. 151–170, Springer, 2000.

[44] S. Berezin, Model checking and theorem proving: a unified framework.
PhD thesis, Carnegie Mellon University, 2002.

[45] C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Formal verifi-
cation of a microkernel used in dependable software systems,” in In-
ternational Conference on Computer Safety, Reliability, and Security,
pp. 187–200, Springer, 2009.

[46] C. Baumann and T. Bormer, “Verifying the pikeos microkernel: first
results in the verisoft xt avionics project,” in Doctoral Symposium on
Systems Software Verification (DS SSV’09) Real Software, Real Prob-
lems, Real Solutions, p. 20, 2009.

[47] C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Better avion-
ics software reliability by code verification,” in Proceedings, embedded
world Conference, Nuremberg, Germany, 2009.

113

[48] C. Baumann, T. Bormer, H. Blasum, and S. Tverdyshev, “Proving
memory separation in a microkernel by code level verification,” in 2011
14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pp. 25–32,
IEEE, 2011.

[49] R. J. Richards, “Modeling and security analysis of a commercial real-
time operating system kernel,” in Design and Verification of Micropro-
cessor Systems for High-Assurance Applications, pp. 301–322, Springer,
2010.

[50] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz,
“Formal verification of information flow security for a simple arm-based
separation kernel,” in Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pp. 223–234, 2013.

[51] L. Freitas and J. McDermott, “Formal methods for security in the
xenon hypervisor,” International journal on software tools for technol-
ogy transfer, vol. 13, pp. 463–489, 2011.

[52] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “sel4: from general purpose to a proof
of information flow enforcement,” in 2013 IEEE Symposium on Security
and Privacy, pp. 415–429, IEEE, 2013.

[53] F. Verbeek, S. Tverdyshev, O. Havle, H. Blasum, B. Langenstein,
W. Stephan, Y. Nemouchi, A. Feliachi, B. Wolff, and J. Schmaltz,
“Formal specification of a generic separation kernel,” Archive of For-
mal Proofs, vol. 2014, no. 2014-07-18, 2014.

[54] F. Verbeek, O. Havle, J. Schmaltz, S. Tverdyshev, H. Blasum, B. Lan-
genstein, W. Stephan, B. Wolff, and Y. Nemouchi, “Formal api spec-
ification of the pikeos separation kernel,” in NASA Formal Methods:
7th International Symposium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings 7, pp. 375–389, Springer, 2015.

[55] D. Sanán, A. Butterfield, and M. Hinchey, “Separation kernel verifi-
cation: The xtratum case study,” in Working Conference on Verified
Software: Theories, Tools, and Experiments, pp. 133–149, Springer,
2014.

114

[56] Y. Zhao, D. Sanán, F. Zhang, and Y. Liu, “Formal specification and
analysis of partitioning operating systems by integrating ontology and
refinement,” IEEE Transactions on Industrial Informatics, vol. 12,
no. 4, pp. 1321–1331, 2016.

[57] I. D. Craig, Formal models of operating system kernels. Springer Science
& Business Media, 2007.

[58] A. Velykis, “Formal modelling of separation kernels,” Master’s thesis,
2009.

[59] A. Velykis and L. Freitas, “Formal modelling of separation kernel com-
ponents,” in Theoretical Aspects of Computing–ICTAC 2010: 7th In-
ternational Colloquium, Natal, Rio Grande do Norte, Brazil, September
1-3, 2010. Proceedings 7, pp. 230–244, Springer, 2010.

[60] A. Passos, J. M. Faria, and S. M. de Sousa, “Assessing the formal de-
velopment of a secure partitioning kernel with the b method,” Critical
Software, ADCSS, vol. 2009, 2009.

[61] M. Leuschel and M. Butler, “Prob: A model checker for b,” in FME
2003: Formal Methods: International Symposium of Formal Methods
Europe, Pisa, Italy, September 8-14, 2003. Proceedings, pp. 855–874,
Springer, 2003.

[62] K. Kawamorita, R. Kasahara, Y. Mochizuki, and K. Noguchi, “Ap-
plication of formal methods for designing a separation kernel for em-
bedded systems,” International Journal of Computer and Information
Engineering, vol. 4, no. 8, pp. 1349–1357, 2010.

[63] A. Oliveira Gomes, Formal specification of the ARINC 653 architecture
using circus. PhD thesis, University of York, 2012.

[64] Y. Zhao, D. Sanán, F. Zhang, and Y. Liu, “Refinement-based specifi-
cation and security analysis of separation kernels,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 1, pp. 127–141, 2017.

[65] Y. Zhao, Z. Yang, D. Sanán, and Y. Liu, “Event-based formalization
of safety-critical operating system standards: An experience report on
arinc 653 using event-b,” in 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), pp. 281–292, IEEE, 2015.

115

[66] P. Wang, S. Liu, A. Liu, and F. Zaidi, “A framework for modeling
and detecting security vulnerabilities in human-machine pair program-
ming,” Journal of Internet Technology, vol. 23, no. 5, pp. 1129–1138,
2022.

[67] P. Wang, S. Liu, A. Liu, and W. Jiang, “Detecting security vulnerabili-
ties with vulnerability nets,” Journal of Systems and Software, vol. 208,
p. 111902, 2024.

[68] P. Robe, S. K. Kuttal, Y. Zhang, and R. Bellamy, “Can machine learn-
ing facilitate remote pair programming? challenges, insights & impli-
cations,” in 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 1–11, IEEE, 2020.

[69] J. E. Hannay, E. Arisholm, H. Engvik, and D. I. Sjoberg, “Effects
of personality on pair programming,” IEEE Transactions on Software
Engineering, vol. 36, no. 1, pp. 61–80, 2009.

[70] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold,
“Fault localization and repair for java runtime exceptions,” in Proceed-
ings of the eighteenth international symposium on Software testing and
analysis, pp. 153–164, 2009.

[71] W. Weimer and G. C. Necula, “Finding and preventing run-time error
handling mistakes,” in Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages, and
applications, pp. 419–431, 2004.

[72] F. Farmahinifarahani, Y. Lu, V. Saini, P. Baldi, and C. Lopes, “D-rex:
Static detection of relevant runtime exceptions with location aware
transformer,” in 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation (SCAM), pp. 198–208, IEEE,
2021.

[73] S. Mahajan, N. Abolhassani, and M. R. Prasad, “Recommending
stack overflow posts for fixing runtime exceptions using failure scenario
matching,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 1052–1064, 2020.

116

[74] S. Jiang, H. Zhang, Q. Wang, and Y. Zhang, “A debugging approach
for java runtime exceptions based on program slicing and stack traces,”
in 2010 10th international conference on quality software, pp. 393–398,
IEEE, 2010.

[75] S. Jiang, W. Li, H. Li, Y. Zhang, H. Zhang, and Y. Liu, “Fault lo-
calization for null pointer exception based on stack trace and program
slicing,” in 2012 12th International Conference on Quality Software,
pp. 9–12, IEEE, 2012.

[76] C. Galindo, S. Pérez, and J. Silva, “Program slicing with exception
handling,” in 11th Workshop on Tools for Automatic Program Analysis,
2020.

[77] M. Allen and S. Horwitz, “Slicing java programs that throw and catch
exceptions,” ACM SIGPLAN Notices, vol. 38, no. 10, pp. 44–54, 2003.

[78] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating faults
with program slicing: an empirical analysis,” Empirical Software En-
gineering, vol. 26, pp. 1–45, 2021.

[79] S. Sinha and M. J. Harrold, “Analysis and testing of programs with
exception handling constructs,” IEEE Transactions on Software Engi-
neering, vol. 26, no. 9, pp. 849–871, 2000.

[80] K. P. Smith, H. Wang, T. J. Durant, B. A. Mathison, S. E. Sharp, J. E.
Kirby, S. W. Long, and D. D. Rhoads, “Applications of artificial intelli-
gence in clinical microbiology diagnostic testing,” Clinical Microbiology
Newsletter, vol. 42, no. 8, pp. 61–70, 2020.

[81] S. Al-Zain, D. Eleyan, and J. Garfield, “Automated user interface test-
ing for web applications and testcomplete,” in Proceedings of the CUBE
International Information Technology Conference, pp. 350–354, 2012.

[82] H. Zhou, D. Wang, Y. Yu, and Z. Zhang, “Research progress of human–
computer interaction technology based on gesture recognition,” Elec-
tronics, vol. 12, no. 13, p. 2805, 2023.

[83] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe, “Step: Deductive-algorithmic verification of
reactive and real-time systems,” in Computer Aided Verification: 8th

117

International Conference, CAV’96 New Brunswick, NJ, USA, July 31–
August 3, 1996 Proceedings 8, pp. 415–418, Springer, 1996.

[84] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[85] D.-H. Vu, Y. Chiba, K. Yatake, and T. Aoki, “Checking the confor-
mance of a promela design to its formal specification in event-b,” in
Formal Techniques for Safety-Critical Systems: Third International
Workshop, FTSCS 2014, Luxembourg, November 6-7, 2014. Revised
Selected Papers 3, pp. 110–126, Springer, 2015.

[86] D.-H. Vu, Y. Chiba, K. Yatake, and T. Aoki, “A framework for ver-
ifying the conformance of design to its formal specifications,” IE-
ICE TRANSACTIONS on Information and Systems, vol. 98, no. 6,
pp. 1137–1149, 2015.

[87] D. H. Vu, Y. Chiba, K. Yatake, and T. Aoki, “Verifying osek/vdx
os design using its formal specification,” in 2016 10th International
Symposium on Theoretical Aspects of Software Engineering (TASE),
pp. 81–88, IEEE, 2016.

[88] W.-P. De Roever and K. Engelhardt, Data refinement: model-oriented
proof methods and their comparison. Cambridge University Press, 1998.

[89] A. Edmunds and M. Butler, “Linking event-b and concurrent object-
oriented programs,” Electronic Notes in Theoretical Computer Science,
vol. 214, pp. 159–182, 2008.

[90] D. Carrington, “Vdm and the refinement calculus: a comparison of two
systematic design methods,” tech. rep., Citeseer, 1993.

[91] R.-J. Back, “Refinement calculus, part ii: Parallel and reactive pro-
grams,” in Stepwise Refinement of Distributed Systems Models, For-
malisms, Correctness: REX Workshop, Mook, The Netherlands May
29–June 2, 1989 Proceedings, pp. 67–93, Springer, 1990.

[92] C. Morgan, Programming from specifications. Prentice-Hall, Inc., 1990.

[93] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in

118

event-b,” International journal on software tools for technology trans-
fer, vol. 12, pp. 447–466, 2010.

[94] I. Dincǎ, “Multi-objective test suite optimization for event-b models,”
in International Conference on Informatics Engineering and Informa-
tion Science, pp. 551–565, Springer, 2011.

[95] F. Ipate, A. Stefanescu, and I. Dinca, “Model learning and test gen-
eration using cover automata,” The Computer Journal, vol. 58, no. 5,
pp. 1140–1159, 2015.

[96] I. Dinca, F. Ipate, and A. Stefanescu, “Model learning and test gen-
eration for event-b decomposition,” in International Symposium On
Leveraging Applications of Formal Methods, Verification and Valida-
tion, pp. 539–553, Springer, 2012.

[97] T. S. Hoang and J.-R. Abrial, “Event-b decomposition for parallel pro-
grams,” in Abstract State Machines, Alloy, B and Z: Second Interna-
tional Conference, ABZ 2010, Orford, QC, Canada, February 22-25,
2010. Proceedings 2, pp. 319–333, Springer, 2010.

[98] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K. Varpaaniemi, D. Ilic, and T. Latvala, “Supporting reuse in
event b development: modularisation approach,” in Abstract State
Machines, Alloy, B and Z: Second International Conference, ABZ
2010, Orford, QC, Canada, February 22-25, 2010. Proceedings 2,
pp. 174–188, Springer, 2010.

[99] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K. Varpaaniemi, P. Väisänen, D. Ilic, and T. Latvala, “Verifying
mode consistency for on-board satellite software,” in Computer Safety,
Reliability, and Security: 29th International Conference, SAFECOMP
2010, Vienna, Austria, September 14-17, 2010. Proceedings 29,
pp. 126–141, Springer, 2010.

[100] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K. Varpaaniemi, D. Ilic, and T. Latvala, “Developing mode-rich
satellite software by refinement in event-b,” Science of Computer
Programming, vol. 78, no. 7, pp. 884–905, 2013.

119

[101] C. Snook and M. Butler, “Uml-b and event-b: an integration of lan-
guages and tools,” in The IASTED International Conference on Soft-
ware Engineering - SE2008, (Innsbruck, Austria), February 12-14 2008.

[102] F. Bernin, M. Butler, D. Cansell, S. Hallerstede, K. Kronlöf, A. Krupp,
T. Lecomte, M. Lundell, O. Lundkvist, M. Marchetti, et al., “The uml-
b profile for formal systems modelling in uml,” UML-B specification for
proven embedded systems design, pp. 69–84, 2004.

[103] C. Snook and M. Butler, “Uml-b: A plug-in for the event-b tool set,”
ABZ 2008: The First International Conference on Abstract State Ma-
chines, B and Z, vol. 5238, 2008.

[104] C. Snook, V. Savicks, and M. Butler, “Verification of uml models by
translation to uml-b,” in Formal Methods for Components and Objects:
9th International Symposium, FMCO 2010, Graz, Austria, November
29-December 1, 2010. Revised Papers 9, pp. 251–266, Springer, 2012.

[105] T. S. Hoang, C. Snook, L. Ladenberger, and M. Butler, “Validating
the requirements and design of a hemodialysis machine using iuml-b,
bmotion studio, and co-simulation,” in Abstract State Machines, Alloy,
B, TLA, VDM, and Z: 5th International Conference, ABZ 2016, Linz,
Austria, May 23-27, 2016, Proceedings 5, pp. 360–375, Springer, 2016.

[106] M. Y. Said, M. Butler, and C. Snook, “A method of refinement in
uml-b,” Software & Systems Modeling, vol. 14, pp. 1557–1580, 2015.

[107] J. Magee and J. Kramer, State models and java programs. wiley Hobo-
ken, 1999.

[108] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[109] R. Milner, A calculus of communicating systems. Springer, 1980.

[110] L. De Alfaro and T. A. Henzinger, “Interface automata,” ACM SIG-
SOFT Software Engineering Notes, vol. 26, no. 5, pp. 109–120, 2001.

[111] A. Badica and C. Badica, “Fsp and fltl framework for specification
and verification of middle-agents,” International Journal of Applied
Mathematics and Computer Science, vol. 21, no. 1, p. 9, 2011.

120

[112] K. K. Sheridan-Barbian, A survey of real-time operating systems and
virtualization solutions for space systems. PhD thesis, Monterey, Cali-
fornia: Naval Postgraduate School, 2015.

[113] G. Gigante and D. Pascarella, “Formal methods in avionic software cer-
tification: the do-178c perspective,” in International Symposium On
Leveraging Applications of Formal Methods, Verification and Valida-
tion, pp. 205–215, Springer, 2012.

[114] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[115] N. Walkinshaw, M. Roper, and M. Wood, “The java system dependence
graph,” in Proceedings Third IEEE International Workshop on Source
Code Analysis and Manipulation, pp. 55–64, IEEE, 2003.

[116] A. De Lucia, A. R. Fasolino, and M. Munro, “Understanding func-
tion behaviors through program slicing,” in WPC’96. 4th Workshop
on Program Comprehension, pp. 9–18, IEEE, 1996.

[117] T. Gyimóthy, A. Beszédes, and I. Forgács, “An efficient relevant slicing
method for debugging,” ACM SIGSOFT Software Engineering Notes,
vol. 24, no. 6, pp. 303–321, 1999.

[118] K. B. Gallagher, Using program slicing in software maintenance. Uni-
versity of Maryland, Baltimore County, 1990.

[119] V. M. Vedula, J. A. Abraham, and J. Bhadra, “Program slicing for hi-
erarchical test generation,” in Proceedings 20th IEEE VLSI Test Sym-
posium (VTS 2002), pp. 237–243, IEEE, 2002.

[120] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
software security testing and quality assurance. Artech House, 2018.

[121] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the 2018 ACM SIGSAC conference on com-
puter and communications security, pp. 2123–2138, 2018.

[122] L. Project, “Libfuzzer – a library for coverage-guided fuzz testing.”
https://llvm.org/docs/LibFuzzer.html.

121

https://llvm.org/docs/LibFuzzer.html

[123] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “{AFL++}: Combin-
ing incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20), 2020.

[124] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slowfuzz: Au-
tomated domain-independent detection of algorithmic complexity vul-
nerabilities,” in Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 2155–2168, 2017.

[125] JetBrains, “Intellij idea: The capable and ergonomic java ide.” https:

//www.jetbrains.com/idea/.

[126] E. Foundation, “Eclipse foundation.” https://www.eclipse.org/.

[127] JavaSlicer, “https://github.com/mistupv/javaslicer.”

[128] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact.,” Empirical Software Engineering: An International Journal,
vol. 10, no. 4, pp. 405–435, 2005.

[129] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, H. N. A. Hamed, and
M. D. M. Suffian, “Test case prioritization using firefly algorithm for
software testing,” IEEE access, vol. 7, pp. 132360–132373, 2019.

[130] H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software
engineering research,” in Proceedings of the FSE/SDP workshop on
Future of software engineering research, pp. 411–414, November 2010.

[131] J. A. Jones and M. J. Harrold, “Empirical evaluation of the taran-
tula automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, pp. 273–282, 2005.

[132] A. Dutta, R. Jain, S. Gupta, and R. Mall, “Fault localization using a
weighted function dependency graph,” in 2019 International Confer-
ence on Quality, Reliability, Risk, Maintenance, and Safety Engineer-
ing (QR2MSE), pp. 839–846, IEEE, 2019.

[133] T. Ye, L. Zhang, L. Wang, and X. Li, “An empirical study on de-
tecting and fixing buffer overflow bugs,” in 2016 IEEE International

122

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.eclipse.org/

Conference on Software Testing, Verification and Validation (ICST),
pp. 91–101, IEEE, 2016.

[134] A. Summers, “Common weakness enumeration.”
https://cwe.mitre.org/top25/archive/2022/2022 cwe top25.html,
2022.

[135] B. W. Boehm, “Software engineering,” IEEE Trans. Computers,
vol. 25, no. 12, pp. 1226–1241, 1976.

[136] A. Bhat and S. Quadri, “Equivalence class partitioning and bound-
ary value analysis-a review,” in 2015 2nd International Confer-
ence on Computing for Sustainable Global Development (INDIACom),
pp. 1557–1562, IEEE, 2015.

[137] M. Kellogg, V. Dort, S. Millstein, and M. D. Ernst, “Lightweight veri-
fication of array indexing,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 3–14,
July 2018.

[138] S. Developers, “Spotbugs.” https://github.com/spotbugs/spotbugs,
2024. Accessed: [2024.4.25].

[139] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended static checking for java,” in Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pp. 234–245, May 2002.

[140] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in 15th International symposium on software
reliability engineering, pp. 245–256, IEEE, 2004.

123

124

Chapter 8

Publication List of the Author

• Conference

(1) Lei Rao, Shaoying Liu, and Ai Liu. ”Testing Program Segments to
Detect Runtime Exceptions in Java.” International Workshop on Struc-
tured Object-Oriented Formal Language and Method. Cham: Springer
International Publishing, 2022: 93-105.

(2) Lei Rao, Shaoying Liu. Program Segment Testing for Software Fault
Prevention. Proceedings of the Software Engineering Symposium 2021,
2021: 191-195.

• Journal

(1) Lei Rao, Shaoying Liu, and Ai Liu. ”Testing Program Segments to
Detect Software Faults during Programming.” International Journal of
Performability Engineering, 17 (11), 2021. (Scopus)

(2) Lei Rao, Shaoying Liu, and Han Peng. ”An integrated formal
method combining labeled transition system and Event-B for system
model refinement.” IEEE Access 10 (2022): 13089-13102. (SCI)

(3) Lei Rao, Shaoying Liu, and Ai Liu. ”Program Segment Testing for
Human-Machine Pair Programming”. International Journal of Soft-
ware Engineering and Knowledge Engineering. (Has been accepted for
publication) (SCI)

(4) Han Peng, Lei Rao, et al. ”A Time Refinement Framework Based on
iUML-B State Machine”. Scientific Programming, 2021: 1-21. (SCI)

125

	Introduction
	Background and Motivation
	Research Objectives and Scope
	Limitations
	Thesis Structure

	Literature Review
	Formal Verification
	Formal Methods
	Formal Verification of Safety-Critical System
	Top-down Formal Modeling of Safety-Critical Systems
	Formal Modeling and Verification of Safety-Critical System Specification

	Program Segment Testing
	Human-Machine Pair Programming
	Runtime Exception
	Program Slicing
	Software Testing

	Existing Work and Gaps
	Formal Verification Techniques
	Program Segment Testing (PST)
	Gaps in Existing Research

	Formal Verification for Software Reliability
	Combined Formal Method
	System modeling and verification framework based on combined formal methods
	Event-B Theorem Proving Framework
	Choice of model checking methods

	Preliminary of Event-B and LTS
	LTS and its Combinations
	Event-B, iUML-B State Machine and Its Combination

	Methodology
	Refinement Process in Event-B and LTS
	Unified Representation
	Proof of Equivalence
	Discussion about the Ability of the Method

	Experiment
	Introduction to the ARINC653 Specification
	ARINC653 Specification Modeling
	Property Verification of the ARINC 653 Specification Model

	Results and Discussion

	Program Segment Testing for Software Reliability
	Overview of Program Segment Testing
	PST for Arithmetic Exception
	Preliminary
	Case Study
	Experiment

	PST for index out of bounds exceptions
	Preliminary
	Case Study
	Experiment

	Threats to Validity
	Discussion about PST

	Comparative Analysis and Discussion
	Introduction
	Strengths of Formal Verification Techniques
	Limitations of Formal Verification Techniques
	Strengths of PST
	Limitations of PST
	Complementary Nature of Formal Verification and PST
	Discussion

	Conclusion and Future Work
	Summary of Key Findings
	Implications for Theory and Practice
	Future Research Directions
	Conclusion

	Acknowledgements
	Publication List of the Author

