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Abstract

This thesis focuses on developing collective behaviors for Multi-Agent Systems (MASs).
An MAS is a system composed of multiple autonomous agents interacting with each other
and the environment without relying on a centralized control structure. Although agents
in MASs can have pre-designed behaviors, complex environments often make it difficult
or even impossible to develop appropriate agent behaviors in advance. Learning-based
methods offer an alternative approach, allowing agents to learn new behaviors online
to improve the performance of the entire MAS steadily. The two main learning-based
methods used in MAS are Evolutionary Robotics (ER) and Deep Reinforcement Learning
(DRL). This thesis presents contributions to the field of MASs from the following two
aspects.

Firstly, this thesis discusses how the evolutionary robotics approach can be applied to
develop controllers with image inputs. The ability of agents to perceive and interpret their
environment is crucial for effective interaction. Among various sensory inputs, camera
inputs play a pivotal role, providing rich visual information that can be critical for ob-
ject recognition and coordination among agents. However, evolutionary algorithms have
limitations when used with high-dimensional inputs. Therefore, a deep neuroevolution
method is proposed to generate collective behaviors. The results of computer simulations
show that the proposed method outperforms Deep Q-Learning, a typical DRL approach,
and demonstrates higher flexibility, scalability, and fault tolerance.

Secondly, this thesis investigates how the DRL approach can be applied to generating
collective behaviors for MASs. Although DRL has achieved many successes in static
environment tasks, it suffers from the sparse reward problem, where it is difficult for
the agent to obtain rewards during exploration, resulting in slow learning speeds and
poor performance. An intuitive solution is reward shaping, where denser rewards are
designed for various agent behaviors. However, in some complex scenarios, it is practically
infeasible to design rewards for specific behaviors of agents due to the vast state and
action space. An alternative solution is Hierarchical Reinforcement Learning (HRL),
where the original task is decomposed into multiple sub-tasks. Sub-controllers are first
trained to complete corresponding sub-tasks. The high-level controller is then trained to
activate different trained sub-controllers to accomplish the original task. However, when
the training environment changes, it is hard to guarantee that pre-trained sub-controllers
can still stably complete the corresponding sub-tasks. This thesis proposes novel methods
integrating DRL with Imitation Learning (IL) and HRL to overcome the sparse reward
problem. The collective behaviors are evaluated in a beach volleyball game and a key-to-
door transport task. The results show that the proposed methods overcome the sparse

reward problem and outperform conventional DRL and HRL methods.






Contents

1 Introduction 1
1.1 Background and Motivation . . . . . .. .. ... .o 0oL 1
1.2 Thesis Objectives . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . .. .. .. oo 4

2 Review of Multi-Agent Systems and Design Methods 7
2.1 Multi-Agent Systems and Swarm Robotics Systems . . . . . . . .. .. .. 7

2.1.1  Multi-Agent Systems . . . . . .. ..o 7
2.1.2  Swarm Robotics Systems . . . . . . .. ... 9
2.1.3 Design Methods of MASsand SRSs . . . . ... ... ... ... ... 12
2.2 Learning-Based Methods . . . . . . . . . ... ... 13
2.2.1 Deep Learning . . . . . . . . ..o 13
2.2.2  Reinforcement Learning . . . . . . . .. ... ... ... 20
2.2.3 Imitation learning . . . . . . .. ... Lo 28
2.2.4  Evolutionary Robotics . . . . . . . . ... ... L. 30

3 Generating Collective Transport of a Swarm Robotic System by Deep
Neuroevolution 35
3.1 Introduction . . . . . . . .. 35
3.2 Related Works . . . . . . ... o 36
3.3 Methods and Experiment Settings . . . . . . . . .. .. .. ... .. ... 37

3.3.1 Deep Neuroevolution . . . . . .. ... ... ... ... ....... 37
3.3.2  Environment Settings . . . . . . ... ..o 37
3.3.3 Fitness/Reward Settings . . . . . .. ... ... .. ..., 40
3.3.4 Network Structure . . . . . .. ... oo 40
3.3.5 Hyper-parameter Settings . . . . . . .. .. ... ... ... ..., 41
3.4 Results . . . . . .o 41
3.5 Discussion . . . . ... 42
3.5.1 Flexibility Experiment . . . . . . . ... ... ... .. 43
3.5.2  Scalability Experiment . . . . . ... ..o 45



3.6 Conclusions . . . . . . . ., 47

Developing Multi-Agent Adversarial Environment Using Reinforcement

Learning and Imitation Learning 49
4.1 Introduction . . . . . . . .. 49
4.2 Research Methodology . . . . . .. .. . ... ... 50
4.2.1 Proximal Policy Optimization(PPO) . . ... ... ... ... ... 51
4.2.2  Generative Adversarial Imitation Learning (GAIL) . . ... .. .. 51
4.2.3 Attention Mechanism . . . . . . ... .. Lo 52
4.2.4 Beach Volleyball Game . . . . . . .. ... ... ... ... ... 53
425 Self-Play . . . . . .. . 53
4.3 Environmental Settings . . . . . . . . ... Lo 54
4.3.1 Robot Settings . . . . . . ... 54
4.3.2 Environment . . . ... ..o 54
4.3.3 Self-play Settings . . . . . . . ... L 56
4.3.4 Elo Rating System . . . . . .. ... Lo 57
4.4 Simulation 1: Overcoming The Sparse Reward Problem with The Imitation
Reinforcement Learning Method . . . . . . . . . .. .. ... ... ... .. 58
4.4.1 Reward Settings . . . . . . . . ... 58
442 Results. . . . .. . 60
4.5 Simulation 2: Generating Competitive Behavior in An Adversarial Envi-
ronment with The Attention Mechanism . . . . . .. ... ... ... ... 66
451 Results. . . . .. . 66
4.6 Conclusions . . . . . . . .. 72

Collective Transport Behavior in a Robotic Swarm with Hierarchical

Imitation Learning 73
5.1 Imtroduction . . . . . . . . . ... 73
5.2 Related Works . . . . . . . . Lo 74
5.3 Methods . . . . . . . 75
5.3.1 Hierarchical Reinforcement Learning . . . . . ... ... .. .. .. 75
5.3.2 Hierarchical Imitation Learning . . . . . .. .. .. ... ... ... 76
5.4 Experiment . . . . . ... 7
5.4.1 The Key-to-door Transport Task . . . . . ... .. ... ... ... 7
5.4.2 Robot Specifications . . . . . . . ... L 78
5.4.3 Reward Settings . . . . . . . . ... 78
5.4.4 Implementation of the Conventional PPO, HRL, and HIL Methods 79
5.4.5 Experimental Settings . . . .. .. ... ... L. 81
5.5 Results and Discussion . . . . . . . ... ... o 82

11



5.6 Conclusions . . . . . . . 86

6 Conclusions 91
A Publications Presented in the Thesis 103
B List of Publications 105

Acknowledgements 107






Chapter 1

Introduction

1.1 Background and Motivation

Artificial intelligence (AI) [1] is a science and technology dedicated to imbuing computer
systems with human intelligence. With the surge in computing power, the exponential
growth in data volume, and the rapid advancement of algorithms, AI has become one
of the most captivating topics in today’s technology landscape [2]. The definition of Al
encompasses many aspects, including the ability to simulate intelligent human behaviors
such as learning, reasoning, problem-solving, language understanding, and perception
[3]. In AI, a robot can be described as an intelligent agent, as Al and Robotics share
fundamental concepts such as perception, cognition, action, and learning. The integration
of Artificial Intelligence (AI) and Robotics represents a crucial intersection of cutting-edge
technologies, reshaping the landscape of automation, autonomy, and intelligence [4] [5]. In
recent years, the integration of AI and Robotics has accelerated with the rise of intelligent
agents capable of perception, cognition, and decision-making.

However, limitations in the capabilities of a single agent have become apparent, espe-
cially in systems that require multi-agent cooperation. For this reason, design methods
that utilize multiple agents to cooperate with each other to complete a given task have
become a hot topic, referred to as multi-agent systems (MASs). An MAS [6] is a comput-
ing system composed of multiple agents that can independently perceive the environment,
perform reasoning and decision-making, and interact with other agents through commu-
nication and collaboration. Multi-agent systems are designed to solve complex problems
that require collaboration or competition among multiple participants, such as resource
allocation, task allocation, coordination, and conflict resolution [7]. Breakthroughs in
deep learning, reinforcement learning, and evolutionary robotics have empowered robots
with human-like capabilities, enabling them to interact with the environment and adapt

to dynamic conditions.



Moreover, in MASs, a nature-inspired robotic system called swarm robotics systems
(SRSs) [8] has attracted the attention of many researchers due to its characteristics.
The fundamental idea is to develop large-scale multi-agent systems that perform tasks
efficiently, robustly, and adaptively. Swarm robotic systems draw inspiration from social
animals, such as ant colonies, bird flocks, and fish schools, to develop robotics systems
that exhibit swarm intelligence features. These features include scalability, flexibility,
and fault tolerance [9]. Scalability is the ability to accomplish a given task using different
numbers of robots. Flexibility is the ability of an SR system to overcome changes in tasks.
Fault tolerance is the ability to complete a task even when robots are lost.

Although agents in MASs can have pre-designed behaviors, complex environments
often make it difficult or even impossible to develop appropriate agent behaviors in ad-
vance. Furthermore, hardwired behavior might become unsuitable in changing environ-
ments. Learning-based methods are an alternative approach in which agents leverage
machine learning algorithms to discover and predict environmental changes and adapt
to unforeseen circumstances. The two main learning-based methods used in MAS are
Evolutionary Robotics (ER) and Deep Reinforcement Learning (DRL) [10]. However,
developing MAS and SRS controllers using learning-based methods is still tricky in non-
stationary environments. For example, evolutionary algorithms can require significant
computational resources, especially for large populations, complex fitness evaluations, or
high-dimensional inputs. Similarly, in DRL approaches, input redundancy often results
when an agent is provided with too much information, resulting in slow learning and poor
performance. Moreover, DRL suffers from the sparse reward problem in some complex
tasks. The sparse reward problem refers to cases in which it is difficult for the agent to
obtain rewards during exploration. Given the above, several design approaches based on
ER and DRL are proposed in this thesis to improve the performance of the MASs and

SRSs in dynamic environments.

1.2 Thesis Objectives

This thesis aims to improve the performance of MASs when ER and DRL are adopted as
the design method. In this thesis, contributions are presented to the fields of learning-
based methods for MASs in the following three aspects:

The first objective of this thesis is to generate collective behaviors in a robotic swarm
with the ER approach. In multi-agent systems, perceiving the environment is essential
for effective interaction and decision-making between agents. Visual input is particu-
larly critical among various sensory inputs, providing rich visual information essential for
navigation, object recognition, and coordination between agents. However, evolutionary

algorithms have limitations when used with high-dimensional inputs. For this reason,



this thesis proposes a deep neuroevolution method that leverages convolutional neural
networks to generate collective behaviors for swarm robotic systems with raw camera in-
puts. The collective behaviors are evaluated in a collective transport task. The results
show that the proposed method outperforms Deep Q-Learning in most cases, showcasing
flexibility, scalability, and fault tolerance.

The second objective of this thesis is to generate competitive and collective behavior
for a MAS with DRL approaches. An intuitive solution to the sparse reward problem is
to provide the agent with denser rewards by designing dense reward functions for specific
states or agent’s behavior. However, in dynamic scenarios, it is infeasible to design rewards
for specific behaviors of agents due to the vast state and action spaces. Moreover, doing so
often results in the agent performing particular behaviors to obtain more dense rewards
rather than completing the given task. Imitation learning (IL) is another approach to
solving the sparse reward problem. In IL, agents can obtain the information they require
from expert demonstrations, such as determining what action to take in a given state.
In this case, agents can learn what to do by imitating expert demonstrations, even in
a sparse reward environment. However, expert demonstrations tend to be generated
by human players rather than spontaneously generated by agents, which is undesirable
in decentralized MASs. Therefore, this thesis proposes a combination of DRL and IL
methods. In the proposed method, the controller trained by DRL using dense rewards
serves as an expert and uses imitation learning to guide agents to generate behaviors under
sparse rewards. Additionally, the attention mechanism, inspired by cognitive attention,
is integrated with DRL to address input redundancy. The competitive and collective
behaviors are evaluated in a beach volleyball game. The results of computer simulations
showed that the controllers trained in the proposed method overcame the sparse reward
problem and performed better than those trained in the conventional DRL method.

The third objective of this thesis is to address the sparse reward problem in sequential
decision-making tasks for a SRS. Sequential decision-making is widely used in reinforce-
ment learning to describe problems in which agents must complete tasks in a particular
order. When the reward function is designed to provide rewards for task completion, it
is difficult for agents to obtain rewards by randomly exploring the environment. Hierar-
chical reinforcement learning (HRL) is a typical solution, in which the complex task is
decomposed into several simple subtasks. In HRL, the high-level controller is trained to
output different subcontrollers, which are pre-trained to complete the subtasks, to com-
plete the original complex task. However, there might be a limit to this flexibility; when
the environment in which the high-level controller was trained is changed, it is difficult to
guarantee that the pre-trained subcontrollers can still stably complete the corresponding
subtasks in the new environment. This thesis proposes the hierarchical imitation learning

(HIL) method, which combines hierarchical and imitation learning, to train the controller



of a robotic swarm to overcome the sparse reward problem. The collective behaviors are
evaluated in a key-to-door transport task. The results of computer simulations showed
that the proposed method successfully solved the sparse reward problem compared to
conventional DRL. Moreover, when the training environment was changed, the controller
trained by the proposed method achieved more stable performance compared to the con-

ventional HRL approach.

1.3 Structure of the Thesis

The overall structure of this thesis is depicted in Figure 1.1. All experiments in this thesis
were conducted through computer simulations. In this section, we provide a summary of

each chapter.

1. Introduction

Introduction and
Background

2. Review of Multi-Agent Systems and Design Methods

Case Study of Utilizing
Evolutionary Robotics to 3.
Generating Behavior for
Multi-Agent Systems

Generating Collective Transport of a Swarm Robotic
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Conclusions of the
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6. Conclusions

Figure 1.1: Overview of the thesis structure




This thesis is comprised of five chapters:

e Chapter 2 describes multi-agent systems and design methods. The first section
reviews multi-agent systems and swarm robotics systems and introduces two design
methods, rule-based systems and learning-based methods. The second section pro-
vides introductions to deep learning, reinforcement learning, imitation learning, and

evolutionary robotics, covering basic topics and recent trends.

e Chapter 3 describes how evolutionary robotics is utilized to generate collective

transport behaviors in a swarm robotic system with raw camera inputs.

e Chapter 4 aims to generate competitive and collective behaviors for a multi-agent
system using deep reinforcement learning approaches. The proposed method inte-
grates the deep reinforcement learning and imitation learning to overcome the sparse

reward problem.

e Chapter 5 proposes a novel training method for a robotic swarm to achieve se-
quential decision-making tasks. The proposed method combines hierarchical rein-

forcement and imitation learning to accomplish a key-to-door task.

e Chapter 6 summarizes this thesis.






Chapter 2

Review of Multi-Agent Systems and
Design Methods

In this chapter, we describe multi-agent systems and design methods. Section 2.1 pro-
vides a review of multi-agent systems and swarm robotics systems. Two design methods,
rule-based systems and learning-based methods, are introduced in this section. Section
2.2 offers introductions to deep learning, reinforcement learning, imitation learning, and

evolutionary robotics, covering basic topics and recent trends.

2.1 Multi-Agent Systems and Swarm Robotics Sys-

tems

2.1.1 Multi-Agent Systems

An agent [11] is a computational entity that is capable of perceiving its environment,
processing information, making decisions, and taking actions to achieve specific goals
or objectives. In the context of MASs, an agent is an autonomous entity that operates
within a larger system, interacting with other agents and potentially with its environment.
Agents can be software-based entities, robots, humans, or even organizations. They pos-
sess their own internal state, knowledge, and reasoning mechanisms, allowing them to
act autonomously and adaptively in dynamic and uncertain environments. Agents may
exhibit different levels of autonomy, ranging from reactive agents that respond directly to
stimuli in their environment to deliberative agents that engage in reasoning and planning
to achieve more complex goals. The concept of agents is foundational to the study and
development of MAS, enabling the modeling, analysis, and design of complex distributed
systems comprised of multiple interacting entities.

A Multi-Agent System (MAS) [6] is a computational system composed of multiple



autonomous agents, each possessing its own capabilities, knowledge, goals, and behav-
iors. These agents interact with each other and potentially with their environment to
achieve individual or collective objectives. The interactions among agents may involve
communication, cooperation, coordination, negotiation, and competition. MASs draw
inspiration from various disciplines, including artificial intelligence, distributed comput-
ing, game theory, and social sciences. The key characteristics of MASs include agent
autonomy, emergent behavior, agent heterogeneity and homogeneity, coordination and

cooperation, centralization and decentralization.

e Agent Autonomy: Agents in MASs possess a degree of autonomy, meaning they
can perceive their environment, make decisions, and take actions independently.
This autonomy allows agents to operate flexibly and adaptively in dynamic and

uncertain environments.

e Emergent Behavior: One of MAS’s key characteristics is emergent behavior,
where complex global patterns or behaviors arise from the interactions of simple
local rules followed by individual agents. Emergent behavior often leads to self-

organization, adaptation, and the emergence of collective intelligence in the system.

e Agent Heterogeneity and Homogeneity: Agents in MASs can exhibit hetero-
geneity or homogeneity in terms of their capabilities, knowledge, goals, and behav-
iors. The heterogeneity enables agents to specialize in different tasks, collaborate
effectively, and complement each other’s strengths and weaknesses. On the other
hand, agent homogeneity can simplify the design, analysis, and management of
MASSs by reducing complexity and enabling more straightforward communication

and coordination among agents.

e Coordination and Cooperation: MASs often involve coordination and coop-
eration among agents to achieve shared objectives. This may require negotiation,
consensus-building, task allocation, and conflict resolution mechanisms to ensure

that agents can work together harmoniously towards common goals.

e Centralization and Decentralization: MAS architectures can vary in terms of
centralization, ranging from fully decentralized systems where each agent operates
independently to centralized systems where a central authority orchestrates the
actions of all agents. Hybrid architectures that combine elements of decentralization

and centralization are also common.

MASs find applications across various domains, such as robotics [12], intelligent trans-
portation systems [13], distributed sensor networks [14], e-commerce [15], and social net-
works [16], due to their ability to model and solve complex problems involving multiple

interacting entities.



e Robotics: MASs are widely used in robotics for tasks such as exploration [17],
search and rescue [18], and coordination of robot teams [19]. Agents in MAS-
based robotic systems collaborate to achieve common objectives, navigate through

environments, and perform tasks efficiently.

e Intelligent Transportation Systems (ITS): MASs play a crucial role in ITS
for traffic management [20], congestion control [21], route optimization [22], and
autonomous vehicle coordination [23]. Agents representing vehicles, traffic signals,
and infrastructure interact to optimize traffic flow, reduce congestion, and enhance

safety.

e Distributed Sensor Networks: MASs are deployed in distributed sensor networks
for tasks such as environmental monitoring [24], surveillance [25], and disaster man-
agement [26]. Agents representing sensors collaborate to collect, process, and share

data, enabling real-time monitoring and response.

e E-Commerce: In e-commerce, MASs are utilized for recommendation systems [27],
dynamic pricing [28], supply chain management [29], and auction platforms [30].
Agents representing customers, sellers, and intermediaries interact to personalize

recommendations, optimize pricing strategies, and streamline logistics.

e Social Networks: MAS-based approaches are employed in social network analysis,
sentiment analysis [31], community detection [32], and influence propagation [33].
Agents model user interactions, analyze content, and identify trends to understand

social dynamics, detect anomalies, and predict user behavior.

MAS provides a framework for modeling, analyzing, and designing complex systems
comprised of multiple interacting entities, enabling the study and development of intelli-

gent, adaptive, and scalable distributed systems.

2.1.2 Swarm Robotics Systems

Swarm robotics [8] is a rapidly growing field that has gained the attention of researchers
and engineers from various areas. Swarm Robotics Systems (SRSs) [9] draw inspiration
from the collective behaviors observed in social insects. These systems involve the design
and control of many simple robots that collaborate to accomplish collective tasks beyond
the capabilities of a single robot. A robotic swarm functions in a distributed and self-
organizing manner, which means that there is no central robot directing the others, and
the robots are unaware of global information. SR systems are designed to exhibit three

properties: fault tolerance, scalability, and flexibility.



e Scalability: Scalability refers to the ability of a system to maintain its performance
and efficiency as the number of components or size of the problem it is addressing
increases. In swarm robotic systems, scalability is essential, as it enables the system
to adapt to varying problem sizes and complexities. Swarm robotic systems exhibit
excellent scalability due to their decentralized control and local interactions. The
absence of a central controller reduces the communication overhead and computa-
tional complexity, allowing the system to grow without significantly impacting its
performance. The local interactions between robots and their environment enable
them to adapt their behavior according to the task requirements and the size of the
swarm. This ability to self-organize and adapt ensures that swarm robotic systems
can efficiently tackle problems of different scales, from small-scale missions with a

few robots to large-scale operations involving hundreds or thousands of robots.

e Flexibility: Flexibility refers to the ability of a system to adapt its behavior to
handle different tasks or changing environmental conditions. In swarm robotic sys-
tems, flexibility is crucial for ensuring that the swarm can efficiently accomplish
a variety of tasks in diverse and dynamic environments. The flexibility of swarm
robotic systems arises from their self-organization and adaptability, which enable
them to adjust their behavior in response to changes in the environment or task
requirements. Individual robots in a swarm can autonomously adjust their actions
based on local information and interactions, allowing the swarm to adapt its global
behavior to the prevailing conditions. Moreover, the decentralized control in swarm
robotic systems supports the development of modular and reusable algorithms that

can be easily adapted to different tasks, further enhancing their flexibility.

e Fault tolerance: Fault tolerance refers to the ability of a system to continue func-
tioning effectively despite the failure or malfunction of one or more of its components.
In the context of swarm robotic systems, fault tolerance is a critical property, as it
ensures that the swarm can continue performing its tasks even if individual robots
encounter issues or fail completely. The decentralized nature of swarm robotic sys-
tems contributes significantly to their fault tolerance. Since there is no central
controller, the failure of a single robot does not compromise the entire system. In-
stead, the remaining robots in the swarm can adapt their behavior and reorganize
themselves to compensate for the loss, thereby maintaining the overall performance
of the swarm. Additionally, the redundancy in swarm robotic systems, where mul-
tiple robots can perform the same task, further enhances their fault tolerance by

ensuring that no single point of failure exists.

These characteristics allow SRSs to exhibit Swarm Intelligence (SI) [34]. SI refers

to the collective behaviors of decentralized self-organizing systems that result from lo-
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Figure 2.1: Collective behaviors in swarm robotics systems

cal interactions between individual agents and their environment. This behavior can be
observed in various biological systems such as ant colonies, bird flocks, and fish schools,
and has inspired the development of swarm robotic systems. Studying and understand-
ing collective behaviors is essential for designing and implementing efficient and reliable
algorithms for swarm robotic systems.

There are several types of collective behaviors observed in swarm robotic systems,
many of which are inspired by biological systems such as ant colonies, bird flocks, and
fish schools, as shown in Fig. 2.1. Here we give a brief review of some expected behaviors

as follows:

e The coordination of robots in physical space to achieve specific tasks or objec-
tives, known as spatially-organizing behaviors, holds significant potential in various
applications, including environmental monitoring, construction, and logistics. For
instance, robots can facilitate efficient transportation of goods in a warehouse by

coordinating their movements to avoid collisions and optimize their paths [35].

e Navigation behaviors, which involve coordinated and efficient movement of robots in

their environment, play a vital role in numerous swarm robotic systems applications.
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For example, robots can aid in searching for survivors in unfamiliar zones [36],

surveillance of dynamic areas [37], and collective transport of heavy objects [38].

e Collective decision-making is a fundamental feature of swarm robotic systems that
enables groups of robots to make decisions collaboratively and achieve common

objectives, such as consensus achievement and task allocation [39].

2.1.3 Design Methods of MASs and SRSs

Designing controllers for MASs and SRSs involves developing algorithms and protocols
that govern the behavior of individual agents and their interactions with each other and

the environment [10].

Rule-Based Systems

Rule-based systems use predefined rules to dictate agents’ behavior. These rules are typ-
ically derived from domain-specific knowledge and encoded into structures such as finite
state machines (FSM) [40], behavior trees [41], or production systems [42]. These rules
determine how agents respond to various stimuli or changes in their environment, facili-
tating straightforward decision-making processes. In FSM, an agent transitions between
states based on predefined conditions or events. Each state represents a specific behavior
or action. For instance, a robot navigating a maze might use FSM where states include
"Move Forward’, "Turn Left’, "Turn Right’, and "Stop’. Transitions between these states
are triggered by sensory inputs, such as detecting a wall or an open path.

Rule-based systems are relatively easy to design and implement. Their clear and
explicit nature allows for straightforward debugging and maintenance. Given their sim-
plicity, rule-based systems can be quickly implemented without the need for complex al-
gorithms or extensive computational resources. They are suitable for applications where
the environment and requirements are well-understood and relatively static.

However, rule-based systems struggle to adapt to dynamic or unforeseen environmental
changes. Since the rules are predefined, any situation not accounted for by the existing
rules can lead to suboptimal or erroneous behaviors. Moreover, as the complexity of
the environment or task increases, the number of rules and their interactions can grow
exponentially, making the system cumbersome and difficult to manage. This complexity
can also lead to difficulties in maintaining and updating the system as new rules are
added.

12



Learning-Based Methods

Learning-based methods involve applying machine learning techniques to enable agents
to learn and adapt their behaviors through interactions with the environment and other
agents [6]. These methods allow agents to improve performance over time without be-
ing explicitly programmed for every possible scenario and to identify optimal or near-
optimal solutions for complex problems that are difficult to address using manual design

approaches. Some popular learning-based methods are:

e Evolutionary Algorithms (EAs): EAs are a class of optimization algorithms
inspired by the principles of natural evolution, such as selection, mutation, and
crossover. In the context of MASs and SRSs, EAs evolve and optimize the be-
haviors, strategies, and parameters of individual agents or the entire system. These
algorithms iteratively improve a population of candidate solutions to find optimal or
near-optimal solutions for complex problems. However, EAs can be computationally

expensive and may require many generations to converge to optimal solutions.

e Reinforcement Learning (RL): RL is a type of machine learning in which agents
learn to make decisions by performing actions in an environment to maximize cu-
mulative rewards. In multi-agent and swarm robotics systems, RL involves multiple
agents learning and adapting their strategies through interactions with the environ-
ment and other agents. Moreover, deep reinforcement learning (DRL) combines RL

with deep learning to handle high-dimensional states and action spaces.

2.2 Learning-Based Methods

2.2.1 Deep Learning

Deep learning, a subfield of machine learning, has become an essential aspect of artificial
intelligence in recent years. It is primarily concerned with algorithms that enable com-
puters to learn from and make predictions or decisions based on data through the use
of artificial neural networks (ANNs). ANNs are computational models inspired by the
human brain’s structure and functionality, comprising interconnected nodes or neurons
that process and transmit information.

The early history of deep learning can be traced back to the 1940s, with the intro-
duction of the McCulloch-Pitts neuron model, a simplified representation of a biological
neuron. This model laid the groundwork for the development of the perceptron in the
late 1950s by Frank Rosenblatt. The perceptron, a single-layer neural network, was the

first algorithm designed to classify linearly separable patterns. However, the perceptron’s
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limitations in solving problems that were not linearly separable led to a decline in interest
in neural networks during the 1960s and 1970s.

The resurgence of interest in neural networks began in the 1980s, with the introduc-
tion of the backpropagation algorithm by Rumelhart, Hinton, and Williams. The back-
propagation algorithm allowed for the efficient training of multi-layer neural networks
by minimizing the error between predicted and actual outputs through gradient descent.
This discovery led to the development of more complex neural network architectures and
various learning techniques.

Deep learning gained significant momentum in the 2000s, driven by the availability
of larger datasets, advances in computational power, and improvements in training al-
gorithms. In 2006, Geoffrey Hinton [43] and his colleagues introduced the concept of
deep belief networks (DBNs), which demonstrated the potential for training deep archi-
tectures by utilizing unsupervised pre-training followed by supervised fine-tuning. This
breakthrough marked the beginning of the deep learning revolution.

In the following years, several specialized neural network architectures were developed
to address specific tasks. Convolutional Neural Networks (CNNs), first introduced by
Yann LeCun in the 1990s [44], became the standard for image recognition tasks due to
their ability to exploit the spatial structure of images through the use of convolution and
pooling operations. Recurrent Neural Networks (RNNs), designed to handle sequence
data, were enhanced with Long Short-Term Memory (LSTM) cells to alleviate the van-
ishing gradient problem, which limited the ability to learn long-range dependencies in
sequences.

More recently, the Transformer architecture, introduced by Vaswani et al. in 2017
[45], has revolutionized natural language processing (NLP) by employing a self-attention
mechanism to capture complex dependencies in textual data. Transformers have become
the foundation for state-of-the-art NLP models such as BERT[46], GPT[47], and T5[48],
which have achieved unprecedented performance in a wide range of NLP tasks.

Deep learning has made significant strides in a variety of application domains, includ-
ing computer vision, natural language processing, speech recognition, and reinforcement
learning. The ability of deep learning models to automatically learn hierarchical represen-
tations of data has led to breakthroughs in numerous fields, such as autonomous vehicles,
medical diagnosis, finance, and many more.

Despite its remarkable achievements, deep learning still faces several challenges, in-
cluding interpretability, robustness against adversarial attacks, data privacy, and resource
efficiency. Addressing these challenges is crucial for the continued growth and adoption

of deep learning in real-world applications.
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Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computing systems inspired by the biological neu-
ral networks that constitute the human brain. They are designed to recognize patterns
and perform complex tasks, such as image and speech recognition, natural language pro-
cessing, and more. An ANN is composed of interconnected nodes or neurons organized
into layers: input, hidden, and output layers. Each connection between neurons has an
associated weight, which determines the strength of the connection.

A neuron receives input from other neurons or external data, processes it, and produces
an output. Mathematically, the output of a neuron is the result of applying an activation

function to a weighted sum of its inputs, as shown in the following equation:

j=1

where y; is the output of the i-th neuron, z; is the input from the j-th neuron, w;; is
the weight of the connection between the i-th and the j-th neurons, b; is the bias term
for the i-th neuron, and f is the activation function.

Common activation functions include the sigmoid function, the hyperbolic tangent
(tanh) function, and the Rectified Linear Unit (ReLU) function. The sigmoid function is
given by:

1
= — 2.2
o) = T, (22)
the hyperbolic tangent function by:
et —e™®

tanh(z) = —— 2.3
anh(z) = S, (23)

and the Rectified Linear Unit function by:
ReLU(z) = max(0, z). (2.4)

The process of computing the output of an ANN given its input is known as feed-
forward. During feedforward, the input data is passed through the input layer, then
successively through the hidden layers, and finally through the output layer, producing
the final output. The activation function is applied at each neuron in the hidden and
output layers.

Training an ANN involves adjusting the weights and biases to minimize a loss function
that measures the difference between the predicted output and the actual output. This
is done using the backpropagation algorithm, which calculates the gradient of the loss

function with respect to each weight and bias by applying the chain rule of calculus. The
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weights and biases are then updated using an optimization algorithm, such as gradient
descent, to minimize the loss function.

The gradient of the loss function with respect to the output of the ¢-th neuron in the
output layer, g—i, can be computed directly from the loss function, which depends on the
problem at hand. For example, for a regression problem with mean squared error as the

loss function, the gradient is:

oL B
Dy B

where t; is the target output of the i-th neuron.

2(y; — t;), (2.5)

The gradient of the loss function with respect to the output of a neuron in a hidden

oL

; o> can be computed using the chain rule:

layer

OL = OL Ohy,

Oh; — ~= Oy Oh;

(2.6)

where hy, is the output of the k-th neuron in the next layer, and m is the total number
of neurons in the next layer.
The gradient of the loss function with respect to the weights and biases can be com-

puted similarly:

oL OL Oh;
= 2.
8wij 8hz 8wij ’ ( 7)
OL  OL Oh;
db;  Oh; Ob; (28)

Once the gradients have been computed, the weights and biases can be updated using
an optimization algorithm, such as gradient descent. The basic gradient descent update

rule is:

oL

Wi = Wiy — a@w--’ (2-9)
ij
oL
“on, (2.10)

where « is the learning rate, a hyperparameter that controls the step size of the weight
and bias updates.

In summary, artificial neural networks are powerful models that can learn to represent
complex functions by adjusting their weights and biases during training. The backpropa-
gation algorithm is a key technique for computing the gradients of the loss function with
respect to the weights and biases, enabling the optimization of the network using gradient

descent or other optimization algorithms.
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Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically
designed for processing grid-like data, such as images, where local spatial dependencies
are crucial. CNNs have been proven to be highly effective in various computer vision
tasks, including image classification, object detection, and semantic segmentation. The
main building blocks of CNNs are convolutional layers and pooling layers, which help to
learn and encode local features while reducing the dimensionality of the input.
Convolutional Layer: The primary function of a convolutional layer is to learn and
capture local patterns in the input data by sliding a set of learnable filters (or kernels)
across the input. Each filter is responsible for detecting a specific pattern, such as an
edge or a texture, in the input data. The output of the convolutional layer is a feature
map, which is generated by computing the dot product between the filter and the local
input region (patch) at each spatial location. Mathematically, the convolution operation

can be represented as:

Foi(z,y) = Y Y Fulz+m,y+n)K(m,n) (2.11)

m=—k n=—k
where F,,; is the output feature map, Fj, is the input feature map, K is the filter,
and k is the size of the filter.

In practice, convolutional layers often use multiple filters, which are applied to the
input simultaneously, generating multiple feature maps. Furthermore, to introduce non-
linearity in the model, an activation function, such as the Rectified Linear Unit (ReLU),
is applied element-wise to the output feature maps.

Pooling Layer: The primary goal of a pooling layer is to reduce the spatial dimensions
of the feature maps while retaining important information. Pooling layers help to make the
learned features more robust to small translations and distortions in the input data. Two
commonly used pooling operations are max pooling and average pooling. Max pooling
selects the maximum value within a local input region, while average pooling computes

the average value. The pooling operation can be defined as:

Poui(x,y) = pool ({Fin (m,n) |m=x-54,...,0-Sg+ps—1l,n=y-Sy,...,y-S,+p, —1})
(2.12)
where P,,; is the output after pooling, Fj, is the input feature map, pool is the pooling
function (e.g., max or average), s, and s, are the strides in the x and y directions, and

p. and p, are the pooling sizes in the x and y directions.
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Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed to
handle sequential data. In contrast to feedforward neural networks, RNNs maintain an
internal hidden state that allows them to capture temporal dependencies in the input
data. RNNs have shown great success in a variety of tasks, such as natural language
processing, time series prediction, and speech recognition.

One of the main challenges in training RNNs is the vanishing and exploding gradient
problem. This issue arises when gradients become too small or too large, making it
difficult for the network to learn long-range dependencies. To address this problem, two
types of gating mechanisms were introduced: Long Short-Term Memory (LSTM) cells
[49] and Gated Recurrent Unit (GRU) cells [50].

LSTM cells were proposed by Hochreiter and Schmidhuber in 1997 [49] to overcome
the vanishing gradient problem. An LSTM cell is composed of four main components: an
input gate, a forget gate, an output gate, and a cell state. The cell state is responsible
for maintaining long-range dependencies, while the gates control the flow of information

in and out of the cell. The equations governing an LSTM cell are:

fi=0Wyxy + Ushy_y + by) (2.13)
iv = o(Wizy + Uihy—1 + ;) (2.14)
or = o(Wexy + Uphy—1 + b,) (2.15)
C, = tanh(W,x, + Ushy_q + be) (2.16)
Co=f,0C1+i6C, (2.17)
hy = oy ® tanh(C}) (2.18)

where f;, i;, and o, are the forget, input, and output gates, respectively, x; is the input
at time step t, h; is the hidden state at time step ¢, C} is the cell state at time step ¢, and
W, U, and b are the weight matrices and bias vectors for each gate. The following figure
shows the architecture of LSTM:
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Figure 2.2: A schematic representation of an LSTM cell.

GRU cells were introduced by Cho [50] as a simplified alternative to LSTM cells. GRUs
have two gates, a reset gate and an update gate, which control the flow of information in

and out of the cell. The equations governing a GRU cell are:

re = o(Wexy + Uphy—1 + b,) (2.19)
2z = o(W.ay + U.hy 1 +b2) (2.20)
ht = tanh(Wy,a; + Uy (ry © ht — 1) + by,) (2.21)
he=(1—2)0h1+20h (2.22)
where r, and z are the reset and update gates, respectively, and ht is the candidate
activation. The final hidden state h; is a combination of the previous hidden state ht — 1

and the candidate activation &, controlled by the update gate z;. Fig. 2.3 shows the
architecture of GRU.
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Figure 2.3: A schematic representation of a GRU cell.

LSTM and GRU cells have shown to be effective in capturing long-term dependencies
in sequential data and have become a popular choice in various applications, such as
machine translation and speech recognition.

RNNSs have shown remarkable performance in various tasks involving sequential data,
such as natural language processing, time series prediction, and speech recognition.

In natural language processing, RNNs have been used for various tasks such as lan-
guage modeling, sentiment analysis, and machine translation. For example, in machine
translation, an RNN can be trained to take a sentence in one language and output a
corresponding sentence in another language.

In time series prediction, RNNs can be used to predict future values of a time series
based on its past values. This is useful in applications such as stock price prediction and
weather forecasting.

In speech recognition, RNNs have been used to recognize speech and convert it into
text. RNNs have also been used in speech synthesis, where they can be used to generate

realistic-sounding speech from text.

2.2.2 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that deals with learning

optimal decision-making strategies through interaction with an environment [51]. It is
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based on the concept of learning from trial and error, wherein an agent takes actions in
an environment to achieve a specific goal. The agent learns from the feedback received
in the form of rewards or penalties, which helps it develop a policy for selecting the best
action in a given state. The primary objective of RL is to maximize the cumulative
reward received over time. Few recent studies have attempted to use deep reinforcement
learning or novel reinforcement learning algorithms to design a controller for a swarm
robotic systems [52][53][54].

The traditional reinforcement learning algorithms, such as Q-learning and SARSA,
have proven to be effective in solving relatively small-scale problems. However, when faced
with high-dimensional state and action spaces, these methods often face difficulties due
to the curse of dimensionality. This limitation led researchers to explore the potential of
combining RL with deep learning techniques, giving birth to the field of deep reinforcement
learning.

Deep learning, a subfield of machine learning, has been incredibly successful in recent
years due to its capability to learn abstract and hierarchical representations from large
amounts of data. Deep learning techniques mainly involve the use of artificial neural
networks with multiple layers, allowing them to learn complex patterns and representa-
tions. Some popular deep learning architectures include Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM)
networks.

The integration of deep learning techniques into reinforcement learning allows the
learning agent to extract high-level features from raw input data, such as images or text,
and use these features to make better decisions. This ability to learn from raw data
is particularly advantageous when dealing with complex, high-dimensional environments.
The pioneering work of DeepMind on Deep Q-Networks (DQN) demonstrated the immense
potential of DRL, as their DQN agent managed to achieve human-level performance on
a variety of Atari games using only raw pixel data as input.

Since the advent of DQN, researchers have developed various DRL algorithms, address-
ing different aspects of RL, such as value-based, policy-based, and model-based methods.
These algorithms have been further enhanced by incorporating advanced exploration-
exploitation strategies, transfer learning, and multi-task learning approaches, leading to
improved performance and generalization across diverse tasks and domains.

Despite the remarkable success of deep reinforcement learning, several challenges re-
main to be addressed. These challenges include interpretability and explainability, safety
and robustness, scalability and generalization, and ethical considerations associated with

the deployment of DRL systems in real-world applications.
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Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) is a mathematical model used to describe decision-
making problems in reinforcement learning. It provides a framework for modeling the

agent-environment interaction. An MDP can be defined as a tuple (S, A, P, R, ), where:

e S is a finite set of states in the environment.
e A is a finite set of actions that the agent can perform.

e P is the state transition probability function, P(s'|s, a), representing the probability

of transitioning from state s to state s’ when taking action a.

e R is the reward function, R(s,a,s’), denoting the immediate reward received after

transitioning from state s to state s’ by taking action a.

e v € [0, 1] is the discount factor, which determines the importance of future rewards.

MDPs assume that the environment is fully observable and satisfies the Markov prop-
erty, meaning the current state encapsulates all relevant information, and the future state

is conditionally independent of the past states given the present state. The overview of

MDP is shown in Fig. 2.4.
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Figure 2.4: Overview of MDP.

Bellman Equations

Bellman equations are recursive relationships that describe the structure of optimal poli-
cies and value functions in MDPs. They provide a foundation for reinforcement learning

algorithms. There are two primary types of Bellman equations:

1. Bellman Expectation Equation: This equation is used for evaluating a given
policy 7. The state-value function V™ (s) and action-value function Q7 (s, a) under

policy 7 are defined as:
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= w(als) > P(s']s,a)[R(s,a,5') +yV7(s)] (2.23)

a€A s'eS

a) = ZP(S/|S,CL)[ s,a,s +VZ (d'|sHQ (s, a")] (2.24)
s’'eS a’'€eA
2. Bellman Optimality Equation: This equation is used for finding the optimal
policy 7*. The optimal state-value function V(s) and optimal action-value function
(Q)*(s,a) are defined as:

Vi(s) = max P(s's,a)[R(s,a,s") +~yV*(s')] (2.25)
s'eS
= ;SP(S’I& a)[R(s,a,s’) + 7 max Q's',a')] (2.26)

These Bellman equations establish the relationships between the value functions of the
current state and its successor states, enabling the development of RL algorithms that

leverage these properties to learn optimal policies.

Policy and Value Functions

A policy, denoted as 7, is a mapping from states to actions that defines the agent’s
behavior. In other words, a policy describes the probability of taking a specific action a
in a given state s, represented as m(a|s). The goal of reinforcement learning is to find the
optimal policy 7*, which maximizes the expected cumulative reward.

Value functions are essential components in reinforcement learning, as they estimate
the expected cumulative rewards under a given policy. There are two types of value

functions:

1. State-Value Function: Denoted as V7 (s), the state-value function represents the
expected cumulative reward when starting from state s and following policy 7. The
optimal state-value function V*(s) is the maximum value achievable by any policy

in state s.

2. Action-Value Function: Denoted as Q" (s, a), the action-value function represents
the expected cumulative reward when starting from state s, taking action a, and
then following policy m. The optimal action-value function Q*(s, a) is the maximum

value achievable by any policy after taking action a in state s.
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Temporal-Difference (TD) Learning

Temporal-Difference (TD) learning is a central concept in reinforcement learning that
combines the ideas of dynamic programming and Monte Carlo methods. It allows agents
to learn directly from raw experiences without requiring a model of the environment. TD
learning methods update value function estimates based on the difference between the
current estimate and a new estimate obtained from the latest experience, known as the
TD error.

The generic TD update rule for state-value functions can be expressed as:

Vi(st) <= V(st) + afria + 7V (s01) = V(si)] (2.27)

where « is the learning rate, r;1 is the reward received at time ¢ 4+ 1, and ~ is the

discount factor.

Q-Learning and SARSA

Q-learning and SARSA are popular model-free RL algorithms that learn the action-value
function Q(s,a).
Q-learning is an off-policy algorithm that learns the optimal action-value function by

iteratively updating its estimates based on the following update rule:

Q81 ar) 4= Q51; ar) + alresr +ymax Q(sepr, ') — Qlsy, ar)] (2.28)

Q-learning learns the optimal policy, even when following an exploratory or suboptimal
behavior policy.

SARSA (State-Action-Reward-State-Action) is an on-policy algorithm that learns the

action-value function for the current behavior policy. SARSA updates its action-value

estimates based on the following update rule:

Q(st, ar) < Q(st,ar) + afreyr +YQ(St41, ary1) — Q(5¢, ar)] (2.29)

Unlike Q-learning, SARSA takes into account the agent’s current policy when updating
the action-value function, which makes it sensitive to the agent’s exploration strategy. The
agent learns to act optimally with respect to its current policy, rather than learning the
optimal policy directly.

In summary, this section has provided an overview of the fundamental concepts and
algorithms in reinforcement learning, including Markov Decision Processes, Bellman equa-
tions, policy and value functions, Temporal-Difference learning, and popular model-free
RL algorithms like Q-learning and SARSA. These foundational elements serve as a basis
for understanding deep reinforcement learning, which combines reinforcement learning

with deep learning techniques to tackle complex decision-making problems.
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Value-Based Deep Reinforcement Learning

In value-based deep reinforcement learning (Deep RL) algorithms, the core idea is to
approximate the optimal action-value function using deep neural networks. By combining
deep learning techniques with reinforcement learning, it becomes possible to learn complex
representations and solve challenging problems with high-dimensional state spaces. In this
section, we discuss two primary algorithms in value-based deep RL: Deep Q-Networks
(DQN) and its extensions, Double DQN and Dueling DQN.

The Deep Q-Network (DQN) algorithm, introduced by Mnih et al. [55], revolutionized
the field of reinforcement learning by successfully training deep neural networks to learn
the optimal action-value function in high-dimensional environments, such as Atari games.
DQN builds upon the traditional Q-learning algorithm and uses a deep neural network as
a function approximator to estimate the action-value function @(s,a). The objective is

to minimize the following loss function:

2
L(0) = E(s,ars)~U(D) {(T +ymax @ (s a’507) = Q(s, a; 8)) } (2.30)

Here, D denotes the experience replay buffer, which stores tuples of the form (s, a, r, '),
representing state, action, reward, and next state. U(D) is a uniform random sampling
from the buffer. The target network, parameterized by 67, is used to compute the target
values, while the online network, parameterized by 6, is updated through backpropaga-
tion. The target network’s parameters are periodically updated with the online network’s
parameters, ensuring stable learning.

DQN introduces two key techniques to stabilize training and improve learning effi-

ciency:

e Experience Replay: DQN uses a replay buffer to store the agent’s experiences,
which are sampled uniformly at random during training. This process helps break

the correlations between consecutive samples and smooths the learning process.

e Target Network: DQN employs a separate target network with a fixed set of
parameters to compute the target Q-values for the loss function. The target net-
work’s parameters are updated periodically, reducing the oscillations in the learning

process and stabilizing training.

The Double DQN (DDQN) algorithm, proposed by van Hasselt et al. [56], is an
extension of the DQN algorithm that addresses the overestimation bias in the Q-value
estimation. The bias is introduced because the max operator in the target computation
uses the same values for both the selection and evaluation of actions. DDQN mitigates
this issue by using the online network to select the best action while using the target

network to evaluate the action’s value:
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L(0) = Esa,r,5)~U(D) [<r e (s’, argmax Q (s', a’; 0) ;6’) — Q(s,q; 9))1 (2.31)

By decoupling action selection from action evaluation, Double DQN significantly re-
duces the overestimation bias, leading to more accurate value estimation and better per-
formance.

The Dueling DQN architecture, introduced by Wang et al. [57], is another extension
of the DQN algorithm that improves the efficiency of the value estimation process. The
key insight of the Dueling DQN is to separate the estimation of the state value function
V(s) and the advantage function A(s,a), allowing the network to learn which states are
valuable without having to learn the effect of each action in each state. This separa-
tion is particularly beneficial in cases where the actions do not significantly affect the
environment.

The Dueling DQN architecture consists of two streams of fully connected layers,
which share a common convolutional feature extraction backbone. One stream computes
the state value function, V(s; 6, «), while the other computes the advantage function,

A(s,a;0, ). The two streams are then combined to obtain the action-value function:

Q(s,a;0,a,8) =V(s;0,a) + (A(s,a;@,ﬁ) - |7{| ZA (5,a’;9,ﬁ)) (2.32)

The subtraction term inside the parentheses is a baseline that ensures the advantage
function has a zero value when averaged over all actions, which allows the network to
better distinguish the relative importance of each action. The Dueling DQN architecture
can be combined with other DQN extensions, such as Double DQN, to further improve
performance.

In summary, value-based deep RL algorithms, such as DQN and its extensions, have
been instrumental in advancing the field of reinforcement learning. These algorithms
have demonstrated impressive performance in various challenging tasks, including high-
dimensional environments like Atari games. By leveraging deep neural networks to ap-
proximate the action-value function, DQN and its variants have successfully tackled prob-

lems previously thought to be intractable for traditional reinforcement learning methods.

Policy-Based Deep Reinforcement Learning

Policy-based methods directly learn a parameterized policy that can select actions without
the need for an intermediate value function. In this section, we will discuss two popular
policy-based deep reinforcement learning algorithms: the REINFORCE algorithm and
Proximal Policy Optimization (PPO).
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The REINFORCE algorithm, also known as the Monte Carlo Policy Gradient method,
is a foundational algorithm in policy-based reinforcement learning. It was introduced by
Williams in 1992 [58], and it is based on the idea of using the gradient of the expected
reward to directly optimize the policy. The objective function in the REINFORCE algo-

rithm is given by:

J(@) = ETNPQ(T) [R(T)]7 (233)

where 6 represents the parameters of the policy, 7 denotes a trajectory, and R(7) is the
total reward of the trajectory. The expectation is taken over the trajectories generated
by the policy py(7).

The gradient of the objective function with respect to the policy parameters can be

written as:

T-1

Vo (0) = Erpyr) | Y Vologme(as|s)) R(7)]| . (2.34)
t=0

The REINFORCE algorithm uses this gradient to update the policy parameters:

T—-1
0 0+ Vilogmy(als)R(7), (2.35)

t=0

where « is the learning rate.

However, the vanilla REINFORCE algorithm suffers from high variance in the gradient
estimates, which can lead to unstable learning. A common approach to reduce variance

is to subtract a baseline b(s;) from the total reward:

T-1

Vo (0) = Brpy(r) | > Vologm(asls) (R(r) — b(s)) | - (2.36)

t=0

The baseline can be chosen as the state-value function V'(s;), which can be learned
separately by a value function approximator.

Proximal Policy Optimization (PPO) is an advanced policy optimization algorithm
that was introduced by Schulman et al. in 2017 [59]. PPO addresses the challenges of
sample inefficiency and sensitivity to hyperparameters in earlier policy gradient methods,
such as the Trust Region Policy Optimization (TRPO) [60].

The central idea of PPO is to restrict the policy updates to a trust region around the
current policy to ensure stability and avoid large, harmful updates. PPO achieves this
by introducing a surrogate objective function, which is a clipped version of the objective
function used in policy gradient methods. The surrogate objective function for PPO is
defined as:
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L(6) = E; {min (MA“%M (s¢,a),,clip (M‘St))’ l—e 14 €> AT (s, at))} :

Thgq (@t]S1) 7o, (@] 5t o

(at ‘ St) is the

probability of action a; under the previous policy, A™%ld (s, a;) is the advantage function,

where 7y (a|s:) is the probability of action a; under the current policy, my,,
and € is a hyperparameter that determines the trust region size.

The PPO algorithm proceeds in the following steps:

1. Collect trajectories using the current policy g (as|s;).

2. Estimate the advantage function A™a (s, a;) for each state-action pair in the tra-
jectories.

3. Update the policy parameters f by maximizing the surrogate objective function L(#)

using gradient ascent.

4. Repeat steps 1-3 for a predefined number of iterations or until a stopping criterion

is met.

PPO can be combined with different neural network architectures, such as feed-
forward, convolutional, or recurrent networks, depending on the problem domain. It
has demonstrated impressive results in a wide range of applications, including robotics,
continuous control tasks, and game playing.

In summary, policy-based deep reinforcement learning methods, such as REINFORCE
and PPO, offer an alternative approach to directly optimizing the policy without the need
for an intermediate value function. They have been successful in various applications and

provide a foundation for further developments in deep reinforcement learning.

2.2.3 Imitation learning

Unlike supervised learning, which relies on labeled data, RL relies on the design of a reward
function. However, designing an appropriate reward function is challenging, especially in
real-world scenarios where rewards are sparse or not readily available. This can lead to
difficulties in training policies that meet actual needs. Imitation Learning (IL) [61] offers
an alternative approach by allowing agents to learn directly from expert demonstrations
without relying on the reward signal from the environment. IL uses expert state-action
data to train policies that mimic expert behavior. At the moment, IL approaches used
in academia can be broadly categorized into two main categories: behavior cloning and

inverse reinforcement learning.
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Behavior Cloning (BC)

Behavior cloning (BC) [62] is a machine learning method that involves training a model
to mimic the behavior of an expert or a set of experts. The primary objective is to gather
expert demonstrations into a dataset and then train a model to predict the expert’s be-
havior based on the environment as it is at that moment. The training involves collecting
a dataset of expert demonstrations of pairs of states and corresponding actions. A super-
vised learning model is then trained on the dataset to anticipate the expert’s behaviors
based on the present state. After training, the model can be used in the environment
to emulate the expert’s actions. BC can learn a decent strategy rapidly when there is
substantial training data. In many real-world situations, BC can be used as a technique
for policy pre-training because it is easy to implement. When the environment is too
complex, BC enables the strategy to quickly reach higher levels by imitating the behav-
ioral data of expert agents, rather than inefficiently interacting with the environment to
explore actions.

However, if the training data is not comprehensive enough or if there are inaccuracies
in the expert demonstrations, the learned policy may not generalize well to unseen states
or situations. As a result, even small errors in the learned policy can accumulate over
time, leading to compounding errors. These compounding errors can be particularly
problematic in dynamic or complex environments where the agent needs to adapt and
make decisions in novel situations. They can result in the agent deviating significantly

from the expert’s behavior and making suboptimal or unsafe decisions.

Inverse Reinforcement Learning (IRL)

Inverse Reinforcement Learning (IRL) [63] stands out as a unique approach in machine
learning. Its primary aim is to deduce the underlying reward function that an agent opti-
mizes through its behavior. Unlike traditional reinforcement learning, where the reward
function is explicitly defined, IRL takes a different route. It seeks to infer this function
from observed actions, thereby unveiling the agent’s implicit goals or preferences. This
process paves the way for the development of agents that can learn complex behaviors
without the need for manual specification of a reward function, which is often a challenging
task in real-world scenarios.

The core idea behind IRL is that an agent’s behavior is guided by its goals or prefer-
ences, which can be inferred from its actions. In a typical IRL setup, the agent’s actions
are assumed to be driven by a policy that maximizes a specific reward function. By
observing these actions, we can work backward to infer the reward function, providing
insights into the agent’s underlying motivations and objectives.

The training process of IRL can be described in the following three steps:
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e Data Collection:Collecting state-action pairs from expert demonstrations involves
recording the sequence (trajectory) of states and corresponding actions performed
by experts while completing a task in the environment. For instance, in autonomous
driving applications, this entails capturing data such as vehicle speed, steering wheel

angle, braking, acceleration, and more, from the human driver’s operation.

e Reward Function Inference: Use IRL algorithms to estimate reward functions
that explain expert behavior. This step involves identifying a reward structure
that, when maximized, results in expert-like actions. According to its method of
solving the reward function, the IRL algorithm can be divided into methods based
on maximum margin, such as apprentice learning [64], maximum margin planning
methods [65], structured classification [66], neural inverse reinforcement learning
[67], and methods based on probabilistic models, such as maximum entropy IRL

[68], relative entropy IRL [69], deep inverse reinforcement learning [70].

e Policy Learning: Apply reinforcement learning techniques to learn a policy that
maximizes the inferred reward function. The goal is to train the agent to perform

the task consistently with the expert’s strategy.

While IRL provides a powerful framework for understanding and replicating complex
behaviors, it still has some limitations. IRL relies heavily on high-quality, representative
expert demonstration data. Poor or limited data can lead to inaccurate reward inference
and suboptimal policies. Additionally, reward function inference can be computationally

intensive in complex environments with high-dimensional state and action spaces.

2.2.4 Evolutionary Robotics

Evolutionary robotics is an interdisciplinary field that integrates principles from robotics,
artificial intelligence, and evolutionary biology to create and optimize control systems
for autonomous robots. Since its inception in the early 1990s, evolutionary robotics
has gained significant attention due to its potential for producing robust, adaptive, and
scalable robotic systems [71][72][73].

In evolutionary robotics, an evolutionary algorithm is used to create and optimize
controllers. Evolutionary algorithms are a family of optimization methods that mimic
the process of natural evolution, such as genetic algorithms, genetic programming, and
evolutionary strategies. The main components of an evolutionary algorithm are a popula-
tion of candidate solutions (controllers), a fitness function to evaluate the quality of these
solutions, and a set of evolutionary operators (e.g., mutation and crossover) to generate
new solutions. The evolutionary process starts with an initial population of randomly

generated controllers. The fitness of each controller is evaluated based on its performance
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in the given task or environment. The best-performing controllers are then selected, and
new controllers are generated using evolutionary operators. This process is repeated over
multiple generations, leading to the evolution of controllers that can perform better in
the given task or environment.

A controller is often represented as an artificial neural network (ANN) in evolutionary
robotics. The weights of the ANN are optimized by an evolutionary algorithm. Several
collective behaviors are developed using this approach, for example, aggregation [74][75],
flocking [76], path formation [77][78], and cooperative transport [39][79][80].

Evolutionary Computation

Evolutionary computation (EC) is a branch of artificial intelligence that encompasses a
family of optimization algorithms inspired by the process of natural evolution [81][82]. The
fundamental principle behind EC is to apply Darwinian concepts of selection, variation,
and inheritance to solve complex problems in various domains. Since their inception
in the 1960s, evolutionary algorithms (EAs) have shown remarkable capability in solving
complex optimization problems, particularly those with non-linear, multimodal, and high-
dimensional characteristics.

The primary motivation for developing EAs stems from the limitations of traditional
optimization techniques, such as gradient-based methods. These traditional methods are
sensitive to the choice of initial solutions, prone to getting trapped in local optima, and
often unable to handle discrete or combinatorial search spaces. In contrast, EAs are
population-based methods that explore the search space by maintaining and evolving a
set of candidate solutions. This global search approach allows EAs to escape local optima,
adapt to changing environments, and provide robust optimization solutions.

The field of evolutionary computation has grown significantly over the past few decades,
with numerous algorithms and variants being proposed, each with its own strengths and

weaknesses.

Genetic Algorithms

Genetic algorithms (GAs) are one of the most widely studied and applied evolutionary
algorithms [83][84]. They are inspired by the process of natural selection and aim to
evolve a population of candidate solutions to optimize a given objective function. The
main components of a GA are representation, fitness function, selection, crossover, and

mutation. The process of GA is shown in Fig. 2.5.

e Representation: In GAs, candidate solutions, also known as individuals or chro-
mosomes, are typically represented as fixed-length binary strings or real-valued vec-

tors. Each element in the string or vector is referred to as a gene. The choice of
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Figure 2.5: Overview of GA.

representation depends on the nature of the problem and can significantly impact
the algorithm’s performance.

e Fitness Function: The fitness function evaluates the quality of each candidate
solution and assigns a fitness value, which reflects how well the solution satisfies
the optimization objective. In most cases, the fitness function is derived from the
problem-specific objective function.

e Selection: Selection is the process of choosing individuals from the current popu-
lation to participate in the creation of the next generation. The selection process
is biased towards individuals with higher fitness values, mimicking the concept of
survival of the fittest. Common selection methods include roulette wheel selection,
tournament selection, and rank-based selection.

e Crossover: Crossover, also known as recombination, is the process of combining
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the genetic material of two parent individuals to produce one or more offspring. The
goal of crossover is to promote the exploration of new regions in the search space by
creating new candidate solutions. Common crossover operators include one-point

crossover, multi-point crossover, and uniform crossover.

e Mutation: Mutation introduces small random perturbations into the offspring’s
genetic material, providing the necessary diversity and preventing premature con-
vergence to local optima. Mutation operators depend on the representation of the
candidate solutions. Examples of mutation operators include bit-flip mutation for

binary strings and Gaussian mutation for real-valued vectors.

Genetic Programming

Genetic programming (GP) is an extension of genetic algorithms that evolves computer
programs or symbolic expressions to solve a given problem [76][85]. In GP, candidate
solutions are typically represented as tree structures, where the nodes represent functions
or operations, and the leaves represent terminal symbols or input variables. The main
components of a GP are similar to those of a GA but are adapted to handle the tree-based

representation.

Evolutionary Strategies

Evolutionary strategies (ES) are a class of evolutionary algorithms primarily designed
for continuous optimization problems [86][87]. They are characterized by the use of self-
adaptive mutation parameters, which evolve alongside the candidate solutions. ES al-
gorithms use a combination of mutation and recombination operators, and their main

difference from GAs lies in the selection and adaptation mechanisms.
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Chapter 3

Generating Collective Transport of a
Swarm Robotic System by Deep

Neuroevolution

3.1 Introduction

A Swarm Robotic System (SRS) is composed of relatively simple robots, which could
exhibit behaviors based on the interactions among robots and between robots and the
environment [88]. A swarm robotic system exhibits three properties; fault-tolerance for
operating despite the loss of robots or disturbances in the environment, flexibility for
generating modular solutions for different tasks, and scalability for operating with a wide
range of group sizes.

The design methods of the swarm robotic systems are classified into behavior-based de-
sign methods and automatic design methods. Behavior-based design methods are guided
only by the designer’s intuition and experience in designing controllers to obtain the de-
sired collective behavior. The automatic design methods transform the design problem
into an optimization problem. Automatic design methods are divided into Reinforcement
Learning (RL) and Evolutionary Robotics (ER). Typically, the controller of the swarm is
represented by a neural network, and the parameters of the neural network are optimized
using an evolutionary algorithm or a reinforcement learning algorithm.

The Deep Neural Network (DNN) has attracted attention in recent years. Especially,
DNNs with convolutional layers have made remarkable progress in image recognition.
Convolutional neural networks can extract features of images automatically.

With raw images, the developers of the controllers can reduce the efforts in designing
the inputs of the neural networks. To use raw images, one of the methods is the Deep Re-

inforcement Learning (DRL) algorithm, which combines deep learning and reinforcement
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learning. However, DRLs are very sensitive to the reward settings. Developers need to
carefully design the reward and conduct experiments until the agent acts as expected.

Deep Neuroevolution(DNE) is a method to update the parameters of the deep neural
networks with evolutionary algorithms[89]. Gradient-based algorithms, like DRL, might
trap in local optima due to the multi-modal characteristic of the loss function. DNE
can solve this problem by evaluating several individuals at the same time and choosing
individuals with higher fitness scores. This chapter applies Deep Neuroevolution (DNE)
and Deep Q-Learning (DQN) algorithms on collective transport tasks by a swarm robotic
system with computer simulations.

The chapter is organized in the following way. Related works will be introduced in
section 2. In section 3, we will explain the methods used in this chapter. In section 4, the
details of the experiments will be introduced. We will show the results of the experiments

in section 5. Section 6 will conclude this chapter.

3.2 Related Works

Most of the current literature on swarm robotic systems uses behavior-based design meth-
ods. Some minority research uses evolutionary robotics (ER) to design the SRS controller
automatically. Over the past decade, most research in ER for swarm robotic systems
has emphasized the use of neural networks. In the evolutionary robotics approach, the
controller is conventionally represented by artificial neural networks, in which synaptic
weights are optimized with an evolutionary algorithm. An evolutionary algorithm eval-
uates and optimizes controllers based on a predefined fitness function that indicates the
performance of the robots. Evolutionary robotics approaches have succeeded in generat-
ing a wide range of robotic swarm behaviors, such as aggregation [75] [74], flocking [90],
path formation [78], collective construction [91], and cooperative transport [79]. However,
for most of them, raw camera images are not used due to the high dimensionality of the
state space.

Several attempts have been made to combine deep neural networks with evolutionary
algorithms. Existing literature [89] and [92] suggest that evolutionary algorithms are
competitive approaches for training deep convolutional neural networks. However, none
of them considered the multi-agent task, which is more challenging than the single-agent
task due to the dynamics of the environment.

Another methodology for designing the robotic swarm controller is deep reinforcement
learning algorithms. Deep reinforcement learning (DRL) combines deep convolutional
neural networks with reinforcement learning algorithms. DRL algorithms have achieved
many milestones on Go [93], Atari 2600 video games [55], StarCraft II [94], etc. However,

DRL is sensitive to the design of the reward system. Especially for a swarm robotic
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system, developers need to carefully design the reward settings to generate collective

behavior, which requires lots of time.

3.3 Methods and Experiment Settings

This section introduces the details of the method and the experiments, including the
specifications of the agents and the experiment environments. In this chapter, we use two
different reward/fitness settings and compare the performance of DNE and DQN to test

the robustness of the algorithms.

3.3.1 Deep Neuroevolution

Deep Neuroevolution (DNE) is a learning method that combines evolutionary algorithm
and Deep Convolutional Neural Network [89]. Felipe et al. [89] tested DNE on Atari
2600 games with raw images and found that DNE could perform similarly or better on
some games than DQN. In DNE, each generation has N individuals represented as a
convolutional neural network whose parameters are . Each individual is evaluated with
the fitness function F'(6;) at every generation. Individuals will be ranked based on their
fitness scores. Top T individuals will be chosen to become the next generation’s parents.
The child is reproduced by mutating a randomly chosen parent. A mutation operation is
applied by adding Gaussian noise to the parameters of the neural network, as shown in
Eq. 3.1.

0’ = 0 + oe where e ~ N(0,1) (3.1)

Where ¢ is a hyper-parameter determined by fine-tuning, the best individual from the
last generation will be reserved for the next generation during training, called elitism.
The crossover is not used in this study due to its instability. This process will be repeated
until some termination conditions are satisfied. In this study, the experiment will be
terminated when it reaches the maximum number of generations, or the fitness score can

no longer improve.

3.3.2 Environment Settings

This study compares DNE and DQN in a collective transport task for a swarm robotic
system. The robots need to collectively transport food scattered in the field back to the
nest in the collective transport task. It is worth noting that the food is too heavy to be
moved by one robot alone. So, the robots need to learn to move the food towards the

nest cooperatively.
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The experiments are conducted in computer simulations using the 3D physics engine
called Unity3D. The DNE and DQN algorithms are implemented using Chainer, a deep
learning framework for Python.

The experiment environment is a square arena, as shown in Fig. 3.1, which is sur-
rounded by four walls of 50m in length. A 10m diameter nest area is located in the middle

of the arena. There are four foods and 36 robots in the environment.

Figure 3.1: Top view of the environment 1

The design of the agent is shown in Fig. 3.2. Both the height and diameter of the
agent are 1.0m. Each agent has two wheels. Each agent is equipped with eight infrared

sensors, which can detect objects within 1 meter. We put an RGB camera mounted on
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top of the agent. The resolution of the RGB camera is 128 x 128 pixels with 90° field
of view. The agent has an electric compass that shows the direction of the agent. The

agents can move forward and rotate left and right.

RGB Camera

IR Seonsors x 8

khﬂotor and Wheels

Figure 3.2: Settings of the agent

The food’s diameter is set to 5.0m. To ensure that foods will not block the view of
robots, we set the height of the food to 0.7m, which is slightly lower than the agent’s
height.

At the beginning of each episode, robots will be generated in the nest area, as shown
in Fig. 3.1. Four foods will be placed around the nest.

Reward and fitness play a similar role in DQN and DNE. We use two kinds of reward
and fitness settings to compare the performances of DNE and DQN. Agents will get
rewards at each time step in DQN. In DNE, fitness is the sum of cumulative rewards from

all robots during an episode.
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3.3.3 Fitness/Reward Settings

To test the robustness of both algorithms, we design two different reward /fitness settings.
The first reward settings are based on the distance between the foods and the nest. The
details are shown in Table 3.1. The second reward setting is based on the image, as shown
in Table 3.2.

Table 3.1: Distance-based rewards

Reward Conditioin
0.2 if agent touches food
2 if agent pushes food to nest direction
-0.1 at each time step

Table 3.2: Image-based rewards

Reward Conditioin
15 if foods pixels take more than 45%
in the images
55 if foods pixels take more than 45%

in the images and nest pixels in view

3.3.4 Network Structure

Camera images
128x128x3x4 ~ 03X63x64 30x30x64 14x14x64

T F 6x6x§.'

256

actions

%
» 4xd \Eﬁ
[ — 4x4 44
IR Sensors,
Compass

Figure 3.3: Structure of the neural network
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The architecture of DNN is shown in Fig. 3.3. The network inputs are 128 x 128
sizes RGB images of four timesteps and sensor readings. The total number of nodes
from the image input is 196608 nodes (128 x 128 x 3 RGB colors x 4 timesteps). The
neural network contains four convolutional and two linear layers. The kernel size of the
convolutional layers is 4 x 4, the stride is set to 2, and the number of channels is 64 for each
layer. We use hyperbolic tangent as the activation function of the convolutional layers.
After four convolutional layers, the outputs of the last convolution layer are concatenated
with the other sensor values and fed into two fully connected layers. The sensor values
are normalized into [0, 1]. The ReLU activation function is used in the fully-connected

layers. The outputs of the neural network correspond to the Q) values for each action.

3.3.5 Hyper-parameter Settings

In DRL, the mini-batch size during learning is 32, and RMSpropGraves is used as the
optimizer. The robot selects its action based on the e-greedy method. In the first episode,
€ is set to 1, which means the robot selects the action randomly to collect the experience.
After the first episode, the action is selected with € = 0.1, which means agents have a 0.1
probability of selecting the action randomly. Otherwise, the action is selected based on
the Q values.

In DNE, we set the population size of individuals as N = 24, T is set to 2, and o is
set to 0.02, the time steps in an episode is 2000, which is the same with DRL.

3.4 Results

Fig. 3.4 shows the distance between foods and the nest during the DNE and DRL training
process under the distance-based reward setting (Table 3.1) of 4 trials. Here, the distance
is the mean value of four foods. In Fig. 3.4, the shaded area indicates the standard
deviation. When the distance is around 4, the food is successfully pushed into the nest
area.

According to Fig. 3.4, for the DNE, the average distance converges to 4 at the end of
the training process, indicating that all foods are successfully pushed into the nest. On
the other hand, for the DRL, the average distance drops sharply and converges to 12 at
the early stage, suggesting that only a few foods are pushed into the nest area.

Fig. 3.5 shows the results of the second reward setting, which is based on the image’s
pixels. From the figure, we can observe that the average distance of DNE decreases
gradually during the training process and converges to 4 at the end of training. As for
DRL, the average distance drops quickly in the first 100 generations, reaching a stable

state at around 200 generations. However, in the remaining training process, the average
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Figure 3.4: Average distance between four foods and nest area at the end of an episode

during training under distance-based rewards.

distance of DRL increases compared to the first 200 generations. Consequently, both
algorithms achieve similar performance by the end of training, indicating that both are
capable of pushing all the foods into the nest area.

By comparing Fig. 3.4 and Fig. 3.5, DNE exhibits a similar tendency in the training
process. The distance decreases gradually and converges to a stable state under two
different reward settings. As for DRL, the curve shows a difference under different reward
settings, suggesting that DRL is highly sensitive to the design of the reward system.
Therefore, developers need to carefully design the reward when using DRL for swarm

robotic systems.

3.5 Discussion

In this section, flexibility and scalability experiments are conducted to assess the per-
formance of DNE and DQN. The flexibility experiment involves the addition of various
obstacles to the environment. To test the scalability of the trained controllers, we vary

the number of robots in the scalability experiment.
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Figure 3.5: Average distance between four foods and nest area at the end of an episode

during training under image-based rewards.

3.5.1 Flexibility Experiment

In the flexibility experiment, several obstacles are introduced into the environment, as
depicted in Fig. 3.6. Specifically, three obstacles are placed between the foods and the
nest. In this setup, the robots must navigate around these obstacles while transporting the
food items. The image-based reward is utilized, consistent with the previous experiment,
as DRL struggles to accomplish the task with a distance-based reward. It’s important to
highlight that there are no obstacles near Food 3, allowing for a comparison of performance
under conditions with and without obstacles.

Fig. 3.7 illustrates the outcomes in the environment with obstacles. As depicted, DRL
fails to collect all four foods within a single episode. Specifically, the figure indicates that
DRL manages to push the foods over a limited range in the initial 110 generations, with no
significant progress observed thereafter. Conversely, akin to the previous experiment, the
average distance covered by DNE gradually decreases throughout the training period with
obstacles. Ultimately, in the final stage, DNE demonstrates the capability to transport
the foods while navigating around various obstacles.

The average distance traveled by each food is depicted in Fig. 3.8. In this task,
DRL failed to learn how to transport Food 1 and Food 4. It took approximately 900
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Figure 3.6: Environment with obstacles

generations for DNE to evolve and successfully collect foods amidst various obstacles.
This experiment highlights DNE’s capability to avoid local optima, where DRL tends to
get easily trapped.

By comparing Fig. 3.7 and Fig. 3.8, where image-based reward is used, we observe
that DNE exhibits a stable curve, similar to the experiment without obstacles. However,
for DRL, performance deteriorates in the presence of obstacles, suggesting that DNE
demonstrates better flexibility than DQN.
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Figure 3.7: Average distance between four foods and nest area at the end of an episode

during training with obstacles.

3.5.2 Scalability Experiment

To test the scalability of the controllers trained by DNE and DQN, we test the performance
with 6, 12, 24, 36, and 48 robots in the environment with obstacles using image-based

reward settings.
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In this experiment, we compare the performance of a robotic swarm with varying
quantities of robots to examine its scalability. The environment and the trained controllers
remain consistent with the experiment involving obstacles. Fig. 3.9 illustrates the average
distance between foods and the nest for different numbers of robots. Initially, when the
number of robots is relatively small, both DNE and DRL struggle to accomplish the task
of transporting all the foods, with DRL showing slightly better performance than DNE.
However, as the number of robots increases, except for 48 robots, the distance covered
by DNE decreases significantly, indicating successful collection of all the foods, while
DRL fails to exhibit a similar decrease in distance. Nevertheless, when the number of
robots reaches 48, the performance of both DNE and DRL declines. This decline can be
attributed to the reduced space available for each robot to operate effectively. With more
robots in the environment, collisions between robots become more frequent, hindering the

transportation of the food.

3.6 Conclusions

This chapter focused on training a swarm robotic system to complete the collective trans-
port task using image inputs, where robots are tasked with transporting food to the nest
area. Deep Neuroevolution (DNE) and Deep Q-Learning (DQN) were employed to train
the controllers for the robotic swarm. The robustness of the algorithms was tested us-
ing two types of reward/fitness settings, and experiments were conducted to assess the
flexibility and scalability of the trained controllers.

The results of computer simulations indicate that DNE outperforms DQN under dif-
ferent settings in most cases. These findings suggest that DNE is less sensitive to changes
in reward/fitness settings, thereby reducing costs and labor required to achieve the de-
sired behavior. However, it’s worth noting that training controllers for a robotic swarm
using DNE demands significantly more computational resources compared to DQN. As
a result, future research efforts may focus on developing new algorithms that combine
evolutionary algorithms and deep reinforcement learning algorithms to reduce training
time. This avenue could lead to more efficient and scalable training approaches for swarm

robotic systems.
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Chapter 4

Developing Multi-Agent Adversarial
Environment Using Reinforcement

Learning and Imitation Learning

4.1 Introduction

A multi-agent system (MAS) [6] is composed of multiple autonomous agents that interact
with each other and the environment to achieve a common goal. Multi-agent systems have
been widely adopted in many application domains because of the advantages offered,
including robotics, intelligent transportation systems, and distributed control systems
[95]. Although the agents in a MAS are capable of having pre-designed behaviors, they
often have to learn new behaviors online in order to steadily improve the performance of
the whole MAS. The complexity of the environment typically makes it difficult or even
impossible to develop appropriate agent behaviors in advance. Additionally, behavior
that is hardwired might become unsuitable in a dynamic or changing environment.

Deep Reinforcement Learning (DRL) is a promising approach in designing a controller
for a MAS by interacting with its environment [51]. Recently, DRL has made remarkable
achievements in various domains, such as robotic controls [96] and game playing [97].
In contrast to traditional control strategies, DRL does not rely on prior knowledge of
environmental model parameters and offers strong adaptability and autonomous control
capabilities [?]. In the DRL approach, the agent takes actions based on inputs following
the policy in each state of the environment, which results in a reward and a state change.
The goal of DRL is to learn an optimal policy that maximizes long-term cumulative
rewards. However, a problem in DRL is that the rewards are sparse in some complex
environments, which makes it difficult to obtain positive rewards during the exploration

[98]. Notably, representing a task goal with a sparse reward function is often natural [99].
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It is extremely difficult for DRL algorithms to connect a long series of actions to a distant
future reward. Therefore, DRL algorithms struggle with the sparse reward problem.
Furthermore, in order to generate competitive and cooperative behavior in an adversarial
environment, it is necessary to provide the agent with a sufficient variety of information,
such as information about teammates and opponents in the field of view, and to equip
the agent with more sensors. However, input redundancy often results when an agent
is provided with too much information. The existence of a large number of redundant
features in the state space will increase the training time and resource consumption of
the learning algorithm.

An intuitive solution to the sparse reward problem is to provide the agent with denser
rewards by designing dense reward functions for specific states or agent behaviors. How-
ever, in some complex scenarios, it is practically infeasible to design rewards for specific
behaviors of agents due to the vast state and action spaces. Moreover, this approach often
leads to the agent prioritizing specific behaviors to obtain denser rewards over complet-
ing the given task. An alternative approach to overcome the sparse reward problem is
imitation learning (IL) [61]. In IL, agents can obtain the information they need directly
from the demonstration trajectory samples, like what action they should take in a certain
state. In this case, agents can learn what to do by imitating expert demonstrations even
if they are in a sparse reward environment.

On the other hand, one approach to address input redundancy is the attention mecha-
nism, which is inspired by cognitive attention. In the realm of RL, we can also leverage this
mechanism, which assigns a weight to each input for an agent. These weights represent
the agent’s focus on different pieces of environmental information.

In this chapter, we propose a combination of DRL and IL training methods to over-
come the sparse reward problem. Additionally, we implement an attention mechanism to
tackle the challenge of information redundancy. In our proposed approach, the controller
trained using PPO, a DRL algorithm, and dense reward settings serves as the expert.
Subsequently, PPO-GAIL, a combination of DRL and IL, trains the controller of a MAS
with expert demonstrations and sparse reward settings. This study designs a beach volley-
ball adversarial environment where two groups of agents compete, requiring cooperation
among teammates for defense or attack. The results demonstrate that controllers trained
using our proposed method overcome the sparse reward problem and outperform those

trained using conventional RL methods.

4.2 Research Methodology

In this section, we describe how imitation learning and the attention mechanism can be

applied with deep reinforcement learning.
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4.2.1 Proximal Policy Optimization(PPO)

Recently, DRL methods have been successfully applied in many scenarios, such as the Go
[93], Atari-2600 games [97] , and Deepmind’s StarCraft II [100]. There are many types
of RL algorithms, such as Deep Q-Learning (DQN) [55], which combines a deep neural
network with Q-learning to solve the problem of high-dimensional state and action spaces;
Soft actor-critic (SAC) [101], which encourages the agent to explore as much as possible
while completing the task by introducing entropy; and Proximal Policy Optimization
(PPO) [59].

This study uses PPO as the RL method. PPO increases the utilization of the training
data with the implementation of the clip function in the objective function. It also has
the advantages of stable training process, high performance and scalability [102]. PPO
is an actor-critic method. The actor interacts with the environment and learns a better
policy with the policy gradient under the guidance of the critic. The critic outputs an
advantage function through the data collected by the interaction between the actor and
the environment. This advantage function will judge if an action is good or bad in the
current stage according to the received reward. A typical form of the advantage function

is shown in Eq. 4.1,

Ay = Ry + 7V (5141) — V (51) (4.1)

where R, stands for the reward the agent received at the timestep t, v is the discount
rate, and V (s;) is the state value function that evaluates how much future rewards the
agent could receive after visiting the state s;. The advantage function helps the actor
optimize the agent’s policy. The loss function used for updating the actor network is
shown in Eq. 4.2,

LOMP () = i, [min (rt(e)At, clip (r(6),1 — €,1 + €) At)] (4.2)

mo((at]st))
Too1q (atlst)’

function and € is the hyperparameter. PPO makes multiple batches of epoch updates to

where r4(0) is the ratio of new and old strategies: r,(6) = A, is the advantage

increase the efficiency, and the function clip (r4(0),1 — €, 1 4 €) limits r,(6), the ratio of
new and old strategies, within (1 — €) and (1 + €) to prevent performance degradation

caused by parameter updates.

4.2.2 Generative Adversarial Imitation Learning (GAIL)

Imitation learning involves agents learning manipulation by observing the expert’s demon-
stration [103]. As agents trained by IL can directly learn from the good samples instead

of learning from scratch, so the learning efficiency can be improved. IL algorithms have
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been applied in many fields, including human-computer interaction and machine vision
[104].

This study applies GAIL as the imitation learning method. GAIL imitates the oc-
cupancy measure of the expert’s policy and tries to make the occupancy measure of all
state-action pairs consistent with the experts. To achieve this goal, the strategy needs
to interact with the environment to collect information. This is different from behavior
cloning, which does not need to interact with the environment. GAIL contains a generator
(G) and a discriminator (D), The generator will output actions corresponding to the given
state. The input for the discriminator is the state-action pair, and the discriminator will
output a number between 0 and 1 to represent the probability that this state-action pair
is from the agent’s policy rather than the expert’s. The loss function used for updating

the discriminator is shown in Eq. 4.3
L(0) = —E,, [log Dy(s, a)] — E,, [log (1 — Dy(s, a))] (4.3)

where Dy(s,a) is the output of the discriminator network, ¢ is the weight for the D
network, p, is the occupancy measure of the agent and pg is the occupancy measure of

the expert.

4.2.3 Attention Mechanism

The attention mechanism operates on the principle of assigning distinct weights to various
positions or segments of the input data, enabling the model to selectively concentrate on
crucial information within the input [45].

In the context of a multi-agent cooperative adversarial environment, the attention
mechanism serves to bolster collaboration and adaptability among agents [105]. Within
a multi-agent system, each agent receives input information from the environment, en-
compassing details such as the agent’s surrounding state, actions taken by other agents,
and information relevant to the ongoing task. Each agent partitions its input into three
components: Query, Key, and Value. These components, learned from the model, signify
the content to be emphasized, the content used for weight computation, and the actual
values, respectively.

This study leverages the correlation between Query and Key to calculate the weight
associated with each Key. The process involves determining the similarity between Query
and Key, followed by normalization of the computed similarities. The resultant weights
indicate which aspects of the input demand the model’s attention during processing.
Ultimately, these calculated weights are applied to the corresponding Value, resulting in

a weighted summation that serves as the model’s final output.
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4.2.4 Beach Volleyball Game

MASSs can be described as cooperative or competitive, depending on their objectives. In
MASSs, cooperation is a crucial behavioral pattern that can be achieved through coor-
dination and collaborative efforts to accomplish shared objectives. On the other hand,
competitive scenarios in MAS involve situations where multiple autonomous agents com-
petitively interact with each other, often aiming to outperform each other to achieve
individual objectives. In this study, a 3D beach volleyball environment is designed as
the subject of the experiment. Similar to real-world beach volleyball, the environment
consists of two teams, each composed of two agents. The two teams of agents need to
compete with each other, and agents on the same team need to cooperate to defend or
attack. In this 3D environment, according to the landing point and speed of the ball, the
agent needs to move to a proper position and jump at the right time to hit the ball at
different angles. Therefore, sparse reward settings (for example, gaining a reward when
defeating the opponent) can hardly help agents learn effective behaviors with conventional
reinforcement learning training methods. Furthermore, it is extremely difficult to design
dense reward functions based on the specific behaviors of the agent due to the complex

state and action spaces.

4.2.5 Self-Play

Self-play is a technique used to enhance the performance of multi-agent systems (MAS).
This technique allows agents to learn and improve by competing or cooperating with
copies of themselves. Over recent decades, self-play has proven effective in various do-
mains, particularly in developing artificial intelligence for games. In self-play, agents take
charge of their own learning and advancement. They engage in iterative self-interactions,
identifying weaknesses and optimizing their decision-making processes. The key idea is
that by consistently confronting a mirror image of their abilities and tactics, agents can
empower themselves to become more efficient and effective. This approach is particularly
valuable in situations where designing explicit training protocols or reward structures is
challenging, as it enables agents to generate their training data through self-interaction,
eliminating the need for external feedback.

Competitive self-play is a specific application of self-play in which agents compete
against each other to improve their strategies and performance. This approach is effi-
cient when adversarial interactions are vital to mastering the task. By competing with
themselves, agents can simulate a wide range of competitive scenarios, which helps them
develop robust strategies that can generalize to real-world adversaries. The hyperparam-

eters settings of competitive self-play are introduced below:

e Save Steps: The number of training steps between snapshots of the current policy.

33



e Team Change: The number of training steps between switching the learning team.

e Swap Steps: The number of training steps between swapping the opponents policy

with a different snapshot.

e Play Against Latest Model Ratio: The probability an agent will play against
the latest opponent policy.

e Window: The size of the sliding window of past snapshots from which the agent’s

opponents are sampled.

4.3 Environmental Settings

In this study, we conducted a beach volleyball game in computer simulations using the
Unity 3D game engine. The simulation is executed in a computer platform with Ubuntu
18.04 operating system equipped with Nvidia GeForce RTX 3070 GPU, AMD Ryzen 9
3950x CPU and 128 GB memory.

4.3.1 Robot Settings

The design of the agents is depicted in Fig. 4.1. There are two types of agents, the blue
agent, and the purple agent. They share the same settings, except that the blue agent
belongs to team blue and the purple agent belongs to team purple. Robots have four
kinds of movements corresponding to forward movement, side movement, rotating, and
jumping. Each agent is 1 meter high and weighs 20 kilograms. The maximum jump height
for an agent is 2 meters, and the maximum running speed is 1.5 meters per second. The
Robot’s maximum jump height is intentionally set below the height of the net to prevent
it from jumping into the opponent’s court.

The agent’s observations are captured using a vector sensor, which includes 11 vec-
tor observations. These observations encompass the agent’s rotation, velocity, the ball’s
velocity, the direction from the agent to the ball, and a state value termed as 'touched.’
Initially, "touched’ is set to 0. When the agent makes contact with the ball, "touched’

changes to 1. Additionally, every time the ball crosses the net, 'touched’ is reset to 0.

4.3.2 Environment

The top view of the environment is shown in Fig. 4.2. There are two teams in the envi-
ronment, the blue and purple teams. Each team contains two players. The environment
is a rectangular area surrounded by borders. The playground is 20 meters long and 10

meters wide. A 3-meter high net is in the middle of the ground. Two teams of agents
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Figure 4.1: Design of the blue and purple agent

engage in a beach volleyball game within the environment. A volleyball will drop in a
random position at the beginning of each episode. Robots need to move and hit the ball
and let it hit their opponent’s ground to win while preventing it from hitting their own

ground, or they will lose.

Figure 4.2: Top view of the environment

Moreover, this study introduces the double-hit rule to the environment. The double-
hit rule is an essential regulation in volleyball, which occurs when a player touches the
ball twice in succession without it crossing the net. A diagram illustrating this rule is

provided in Fig. 4.3. If an agent violates the double-hit rule, its team will lose the game.
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Figure 4.3: The diagram of the double hit rule

4.3.3 Self-play Settings

In this chapter, all experiments share a same self-play setting, which is shown in Table
4.1.

Table 4.1: Self-play settings

Hyperparameter Value
Save steps 20000
Team change 100000
Swap steps 10000
Play against the latest model 0.5
Window 10

Every 10,000 training steps, a snapshot of the current network is saved. The maximum
number of saved snapshots is 10. Once ten snapshots are reached, the oldest ones are
discarded when new snapshots are taken. The teams swap every 100,000 steps. Addi-
tionally, every 10,000 steps, the adversary network selects one from the saved snapshots.
Among them, the probability of selecting the latest snapshot is 50%.



4.3.4 Elo Rating System

In order to verify the performance of imitation reinforcement learning, the Elo rating
system has been implemented to evaluate controllers. The Elo rating system was originally
developed for rating chess players. Nowadays, it is widely used for ranking players of many
other games[?]. In the Elo system, assuming that players A and B have current ratings of
R4 and Rp, the expected win rate of A against B, according to the logistic distribution,

is represented as F 4, as shown in Eq. 4.4.

1
- 1+ 10(R37RA)/400

E, (4.4)

If player A’s actual score S, in a match (win=1, draw=0.5, loss=0) is different from the

expected win rate F 4, the rating of player A will be adjusted according to Eq. 4.5.
%:RA—F(SA—EA) (45)

Typically, in this study, the initial Elo score of each agent is set as 1200.
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4.4 Simulation 1: Overcoming The Sparse Reward

Problem with The Imitation Reinforcement Learn-
ing Method

In this study, the imitation reinforcement learning training method is employed to train
the controllers of a multi-agent system to address the sparse reward problem. Initially, ex-
perts are trained using reinforcement learning with dense reward settings. Subsequently,
the expert’s demonstrations are utilized to train the controller using imitation reinforce-
ment learning with sparse reward settings. Specifically, the Proximal Policy Optimization
with Generative Adversarial Imitation Learning (PPO-GAIL), a combination of PPO and
GAIL, serves as the imitation reinforcement learning algorithm.

In PPO-GAIL, the discriminator network in GAIL is trained to distinguish whether
the state-action pair originates from the training controller or the expert’s demonstration.
The output of the discriminator network serves as an additional reward signal, which,
combined with the sparse reward signals in the environment, forms the advantage function
in PPO. The neural network settings of the actor, critic, and discriminator networks are
illustrated in Fig. 4.4, Fig. 4.5, and Fig. 4.6.
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Figure 4.4: The network structure of the actor network

4.4.1 Reward Settings

In this study, two types of reward settings are designed: sparse reward settings and dense

reward settings. In the sparse reward settings, as shown in Eq. 4.6, the agent receives a
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Figure 4.6: The network structure of the discriminator network

reward only when its team wins or loses the game. Consequently, agents encounter the

sparse reward problem and may struggle to receive positive rewards during the initial
exploration.
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1, if its team wins the game,
RSparse = o (46)
—1, if its team loses the game
On the other hand, as mentioned previously, designing rewards based on the states of
agents is infeasible. In this study, dense rewards are designed based on the state of the
environment, as shown in Eq. 4.7. The agent receives a positive reward when its team

successfully hits the ball over the net and into the opponent’ s half.

Rpense = 1, if its team hits the ball across the net (4.7)

4.4.2 Results

In this study, three experiments are conducted to evaluate the performance of the con-
ventional PPO and the PPO-GAIL training methods, as shown in Table 4.2. In the
PPO-GAIL training method, the expert refers to the controller generated in Experiment
2, where the agents are trained with dense reward settings. The hyperparameter settings

for these experiments are provided in Table 4.3.

Table 4.2: Experiment settings

Experiment Training Method Reward Settings
Experiment 1 Conventional PPO Sparse
Experiment 2 Conventional PPO Dense
Experiment 3 PPO-GAIL Sparse

Table 4.3: Hyperparameter settings

Hyperparameter Value
Hidden units 256
Number of layers 2
Batch size 2048
Buffer size 20480
Learning rate 0.0002
Gamma 0.96
Epsilon 0.15

Fig. 4.7 depicts the episode length of the three experiments during the learning process.

In Experiment 1, the episode length converges to 20 steps, indicating that the agents are

60



I Experiment 1
160 - m—— EXperiment 2
Experiment 3

120
80

Episode Length

40

-40
0 20M  40M  60M  80M

Figure 4.7: The results of the episode length

unable to hit the ball throughout the learning process. Experiment 2 achieves an episode
length of 180 steps at the end of training, while Experiment 3 reaches 60 steps during the
final stage of training. A comparison of the results between Experiment 1 and Experiment
2 reveals that agents trained with conventional PPO fail to learn how to play volleyball
due to the sparse reward problem. Despite the longer gameplay duration of agents trained
in Experiment 2 compared to those in Experiment 3, this does not imply that PPO with
dense reward settings performs better than the combination of GAIL and PPO in this
competitive environment.

Fig. 4.8 illustrates the Elo scores during the training process. Agents begin with an
Elo score of 1200, and those trained with PPO and sparse reward settings consistently
remain in the low segment, indicating a lack of learned strategies for playing volleyball.
Conversely, agents trained with PPO and dense reward settings progressively achieve
scores around 1450. Agents trained with the PPO-GAIL method reach the highest score
of 1600 during the final stage of the training process.

Furthermore, to evaluate the performance of trained controllers, 500 competitions are
conducted between the controllers generated in Experiment 2 and Experiment 3. The
competition results are presented in Table 4.4, indicating that our strategy outperforms
the control group with a winning rate of 94.4% compared to the control group’s 5.6%.

The agents trained with PPO and dense rewards settings generate behaviors to max-
imize the cumulative reward. They stand near the middle of the field and hit the ball
to get it over the net as much as possible. In order to get more rewards, they are more
willing to hit the ball that is easier for the opponent to catch than to defeat the opponent.

To some extent, the dense reward setting helps the agents learn to hit the ball, but it also
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Figure 4.8: Elo training results

Table 4.4: Wins and winning rate between two trained controllers

Controller Wins Wining Rate
GAIL-PPO+Sparse Reward 473 94.4 %
PPO+Dense Reward 27 5.6 %

prevents them from effectively beating their opponents.

On the other hand, agents trained using the PPO-GAIL method exhibit more effective
behaviors aimed at winning the game. This study incorporated the double hit rule into
the experiment, where an agent cannot hit the ball again if it fails to clear the net with
its initial hit. Consequently, cooperation between teammates becomes crucial to execute
successful attacks. Fig. 4.9 illustrates the cooperative behavior, wherein two agents on
the same team hit the ball over the net with two touches. This behavior is defined as
passing behavior, with the first agent to hit the ball considered the passer and the second
agent as the catcher.

The occurrences of cooperative behavior are recorded during the learning period, with
each instance of the ball crossing the net marking a round of the game. One hundred
rounds of the experiment were conducted, and Table 4.5 shows the times of cooperative
behaviors in the initial stage, middle stage, and final stage.presents the frequency of
cooperative behaviors observed at different stages: initial, middle, and final.

To visualize the distribution of cooperative behaviors, heat maps were utilized in this
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Figure 4.9: Cooperative behaviors

Table 4.5: Times of cooperative behaviors during the learning process

Training Period Times of Cooperative Behaviors (100 Rounds)

Initial Stage 0
Middle Stage 12
Final Stage 37

study. The hitting positions of the passer are recorded and depicted in Fig. 4.10 for each
passing behavior, while Fig. 4.11 shows the locations where the catcher receives the ball
and hits it over the net. These figures reveal that during passing behaviors, the ball is
often hit from the back to the front of one’s half. This is attributed to the challenge faced
by the back-hitting agent (passer) in returning the ball over the net with a single touch,
necessitating the involvement of another agent (catcher) positioned in the front to receive
and return the ball. The agents demonstrate cooperative passing behavior particularly

when the opponent hits the ball into their half.
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Figure 4.10: The heat map of the passer
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Figure 4.11: Heat map of the catcher
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4.5 Simulation 2: Generating Competitive Behavior
in An Adversarial Environment with The Atten-

tion Mechanism

In this section, we incorporated IR sensors as additional inputs with the expectation
that agents would exhibit improved cooperative and adversarial behaviors. These IR
sensors enable the agents to identify various elements in the environment, including the
net, walls, teammates, and opponents. Several experiments were conducted based on the
number of front IR sensors equipped on the agents and whether an attention mechanism
was employed. The experiment settings are detailed in Table 4.6. The neural network
settings for the PPO-GAIL method remained consistent with those used in Simulation 1.
However, for the PPO-GAIL with attention mechanism method, an attention layer was
inserted between the input layer and the hidden layer for all networks, as illustrated in
Fig. 4.12

Table 4.6: Experiment Settings

Experiment Training Method IR Sensor Amount
Experiment 1 PPO-GAIL 6
Experiment 2 PPO-GAIL 20
Experiment 3 PPO-GAIL 100
E i t 4 6

xperen PPO-GAIL with
Experiment 5 . . 20

, Attention Mechanism
Experiment 6 100

4.5.1 Results

In the first three experiments, PPO-GAIL was employed for training, and the correspond-
ing Elo scores are illustrated in Fig. 4.13. A decrease in Elo scores was observed when
simply increasing the number of infrared sensors, suggesting that the additional inputs
provided to the agents were not effectively processed.

In the last 3 experiments, an attention mechanism was incorporated during the training
of agents equipped with 6, 20, and 100 IR sensors. The Elo training results of Experiments
4,5, and 6 are shown in Fig. 4.14. The results indicate that, with the introduction of the
attention mechanism, improvements were observed in the Elo scores of agents equipped
with 20 and 100 IR sensors. However, the performance of the agent equipped with 6

IR sensors, despite showing increased learning speed compared to before the attention
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Figure 4.12: The implementation of the attention mechanism

ELO Score

1.8e+3 ————Experiment 1 (6 IR Sensors)
' —— Experiment 2 (20 IR Sensors)
1.7e+3 ———— Experiment 3 (100 IR Sensors)

1.6e+3

1.5e+3
1.4e+3
1.3e+3

1.2e+3

0 20M 40M 60M 80M 100M

Figure 4.13: Elo training results of Experiments 1, 2, and 3 (without attention mechanism)

mechanism was added, did not exhibit an increase in Elo scores.

Moreover, adversarial matches and analysis were conducted using 100 IR sensors
(ATT) (Blue Team) and 100 IR sensors (Purple Team), as illustrated in Fig. 4.15. This
study conducted two hundred competitions between 100 IR sensors(ATT) and 100 IR
sensors. The results of the competition are shown in Table. 4.7.

From the Elo scores and winning rates, it is evident that the addition of an attention
mechanism to the 100 IR sensors has indeed resulted in improved adversarial performance

when competing against agents with the same number of sensors.
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Figure 4.14: Elo training results of Experiments 4, 5, and 6 (with attention mechanism)

Figure 4.15: Adversarial matches

Table 4.7: Results of the competitions

100 IR sensor(ATT) | 100 IR sensor
Wins (in 200) 167 33
Winning rate 83.5% 16.5%
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In this study, the offensive behaviors of the four agents in the 200 matches were
documented by defining an agent hitting the ball over the net as one attack behavior.On
the Blue Team (100 IR sensors ATT), Bluel is positioned on the left, and Blue2 on the
right. Similarly, on the Purple Team (100 IR sensors), Purplel is on the left, and Purple2
is on the right. The results of attacks are presented in Table. 4.8.

Table 4.8: Results of the attacks

Team Agent | Number of attacks
Blue (100 IR Blue 1 102
sensor ATT) Blue 2 225
Purple (100 IR | Purple 1 51
sensor) Purple 2 52

From Table. 4.8, it is evident that the agents with an attention mechanism, both
individually and as a team, exhibit more attack behavior. This provides them with
increased opportunities to secure winning rewards.

The average distance (D) between the ball and two agents in 500 instances of loss was
recorded.The instances and calculation method are illustrated in the fig. 4.16.

Based on the data from these 500 instances, a box plot can be generated, as depicted
in Fig. 4.17. It is evident that when the team with 100 IR sensors experiences losses,
they tend to maintain a considerable distance from the ball. This suggests that agents
from the team with the attention mechanism (100 IR sensors ATT) often prefer hitting
the ball to a location far from their opponents.

The distance between each agent and its teammate in 500 instances of agent hits was
recorded. In a two-player collaborative adversarial game, whether it s volleyball, tennis,
badminton, or similar, having players positioned too closely is not an optimal choice. A
close proximity between two players implies a reduced ability to cover a wider range of
balls coming from the opponents. The box plot results are shown in Fig. 4.18.

From Fig. 4.18, it can be observed that the team utilizing the attention mechanism
(100 IR sensors ATT) maintains a consistent distance with its teammate when receiving
the ball. This indicates that the two agents have learned to ensure a greater range of
catching the ball by keeping their distance.

On the other hand, the team without the attention mechanism (100 IR sensors) does
not maintain a distance with their teammate; due to the lack of an attention mechanism,
they are unable to process additional inputs such as the position of their teammates and
opponents. This makes them tend to move together and unable to spread out their stance

to get a greater range of hits.
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Figure 4.16: The instance of loss

Moreover, the lack of improvement in the performance of the agent with 6 IR sensors
suggests that the information provided by only 6 IR sensors is not sufficient, and the
attention mechanism did not gain enough valuable information to enhance the scores. On
the other hand, the improvement in Elo scores for agents with 20 and 100 IR sensors
after the addition of the attention mechanism indicates that the additional information
input is not meaningless. It suggests that a simple PPO neural network might struggle

to effectively process this information, leading to suboptimal Elo scores.
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Figure 4.18: The distance between two agents when receiving the ball
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4.6 Conclusions

In this study, we employed a combination of imitation learning and reinforcement learning
to address the sparse reward problem encountered by a multi-agent system during beach
volleyball gameplay. Following training, the PPO-GAIL, integrating both RL and IL,
successfully mitigated the sparse reward problem by counteracting the adverse effects of
dense reward settings. Controllers trained using our approach achieved higher scores in
the Elo rating system compared to the control group, which solely relied on reinforce-
ment learning. Furthermore, agents controlled by our strategy demonstrated superior
performance, winning 473 out of 500 competitions against the control group.
Additionally, an attention mechanism was incorporated to alleviate the impact of ad-
ditional IR sensors on the agents’ learning strategies. The results indicated that agents
trained with the combination of attention mechanisms attained higher Elo scores than
those trained without attention mechanisms. Moreover, they exhibited improved perfor-

mance in both adversarial and cooperative behaviors.
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Chapter 5

Collective Transport Behavior in a
Robotic Swarm with Hierarchical

Imitation Learning

5.1 Introduction

Swarm robotics (SR) [8] is a field of inspired by the collective behaviors observed in
social insects, involving the design and control of multiple simple robots collaborating
to achieve tasks beyond the capabilities of individual units. A robotic swarm functions
in a distributed and self-organizing manner, which means that there is no central robot
directing the others, and the robots are unaware of global information [9]. SR systems are
designed to exhibit three properties: fault tolerance, scalability, and flexibility [88]. Fault
tolerance is the ability to complete a task even when robots are lost. Scalability is the
ability to accomplish a given task by using different numbers of robots. Flexibility is the
ability of an SR system to overcome changes in tasks. These characteristics provide robotic
swarms with a wide range of possible applications, including searching and transportation.

A major research direction in SR involves designing suitable controllers for swarm
robots. Automatic design [106] has been recognized as a promising approach for develop-
ing robotic swarm control strategies. In the automatic design method, the design problem
is transformed into an optimization problem, and then an optimization algorithm is uti-
lized to automatically generate the required control strategy. One of the main subdomains
of automatic design methods is reinforcement learning (RL) [51]. This approach involves
an agent taking actions in an environment to achieve a goal and receiving feedback in the
form of rewards or penalties. The goal of RL is to learn an optimal policy that maximizes
long-term cumulative rewards. Therefore, the performance of RL depends heavily on the

design of the reward functions. However, RL suffers from the sparse reward problem in
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some complex tasks [107]. The sparse reward problem refers to cases in which it is difficult
for the agent to obtain rewards during exploration, resulting in slow learning speed and
poor performance.

Intuitive solutions include reward shaping [108], in which denser rewards are designed
for various agent behaviors, and hierarchical reinforcement learning (HRL) [109] per-
formed by decomposing complex tasks into several simple subtasks. However, reward
shaping requires the designer to have prior knowledge, and it is difficult to ensure that
different rewards do not affect each other. Moreover, it is easy for agents to exhibit spe-
cific behaviors to obtain denser rewards instead of completing tasks. In contrast, in the
conventional HRL approach, subcontrollers are first trained to complete the subtasks.
The high-level controller is then trained to output different subcontrollers to complete
the original complex task. However, when the training environment changes, the sub-
controller often needs to be retrained to ensure that it can complete the corresponding
subtask in the new environment, which significantly limits the versatility of this method.

Imitation learning (IL) [61] is another approach for solving the sparse reward problem.
In IL, agents can obtain the information they require from expert demonstrations, such
as determining what action to take in a given state. In this case, agents can learn what
to do by imitating expert demonstrations, even in a sparse reward environment. How-
ever, expert demonstrations tend to be generated by human players rather than being
spontaneously generated by agents, which is undesirable in swarm robotics.

In this chapter, we propose the hierarchical imitation learning (HIL) method, which
combines hierarchical and imitation learning. This method is designed to train the con-
troller of a robotic swarm to overcome the sparse reward problem. We present a key-
to-door transport task where agents must locate a button to open the door and push
food to the goal area outside the door. Computer simulations were conducted to evaluate
the effectiveness of the proposed method. The results demonstrate that the HIL method
successfully addresses the sparse reward problem compared to conventional reinforcement
learning approaches. Additionally, when subjected to changes in the training environ-
ment, controllers trained using the proposed method exhibit more stable performance

than those trained using conventional hierarchical learning approaches.

5.2 Related Works

Most available studies on automatic design in swarm robotics originate from evolutionary
robotics, in which control policies are optimized using artificial evolution. A wide range
of tasks, such as aggregation [109], flocking [110], collective transport [79], and work allo-
cation [39], have been effectively addressed by evolutionary robotics. However, artificial

evolution suffers from a prohibitively high computational cost when the dimensionality of
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the parameters to be optimized is large.

Another approach in automatic design is deep reinforcement learning (DRL) [52],
where the policy is described as deep neural networks optimized using gradient descent
methods, which require much fewer computational resources than evolutionary robotics
approaches [92]. In recent years, based on the development and application of deep neural
networks, deep reinforcement learning (DRL) [111], a combination of deep learning and
reinforcement learning, has seen considerable success in many applications, such as Go,
Deepmind’s StarCraft II, and Atari-2600 games.

Sequential decision making is a term widely used in reinforcement learning to describe
problems in which agents must complete a series of tasks in a specific order. Such scenarios
occur in a range of real-world tasks [112]. When the reward function is designed to provide
rewards for task completion, it is difficult for agents to obtain rewards by randomly
exploring the environment. Moreover, agents struggle to connect their current actions
with future rewards. For example, in [55], although DRL achieved better results than
human players in many games, like Breakout and Pong, it performed poorly in some
games with complex environments, such as Montezuma’s Revenge. In this game, players
must avoid various traps and enemies, decrypt puzzles and find the keys for each layer to

explore a huge pyramid composed of multiple layers.

5.3 Methods

In this section, the conventional HRL and proposed HIL approaches are first described.
Then, the DRL and IL algorithms utilized in this study are introduced.

5.3.1 Hierarchical Reinforcement Learning

Hierarchical learning refers to a paradigm in machine learning and artificial intelligence in
which complex tasks are broken down into a hierarchy of simpler subtasks. This approach
was inspired by the idea that many real-world problems involve a natural decomposition
into multiple levels of abstraction, allowing for more efficient learning and decision-making.
Hierarchical learning can be applied in various fields, such as reinforcement learning [109].

In the hierarchical reinforcement learning method, subcontrollers are trained to per-
form different subtasks with distinct reward functions. A high-level controller is then
trained to activate different subcontrollers to accomplish the complex task. The output
of the high-level controller is the switching signal for each subcontroller. In other words,
the high-level controller completes the original task by outputting the behaviors of the dif-
ferent trained subcontrollers. However, there may be limitations to this flexibility; when

the environment in which the high-level controller was trained changes, it is challenging
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to guarantee that the trained subcontrollers can still reliably complete the corresponding
subtasks in the new environment.

Furthermore, because the output is an activation signal, it is challenging for the high-
level controller to generate new collective behaviors by activating different trained sub-

controllers, significantly limiting the adaptability of this method.
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Figure 5.1: Paradigms of the HRL and HIL methods. The same settings in the two
methods are marked in black. The differences are marked in red and blue, where red
represents the HIL method and blue represents the HRL method.

5.3.2 Hierarchical Imitation Learning

In this study, we utilized the hierarchical imitation learning (HIL) approach, which com-
bines hierarchical and imitation learning, to overcome the sparse reward problem. The
paradigms of the HRL and HIL methods are illustrated in Fig. 5.1. Similar to hierarchical
learning, the original task is first decomposed into multiple subtasks using the proposed
method. Different reward functions are then used to train the subcontrollers to complete
the corresponding subtasks. The difference is that the proposed method uses the imi-
tation learning algorithm to train the high-level controller. The trained subcontrollers
act as experts recording demonstrations. Finally, the demonstrations of all subcontrollers
are gathered together to use the imitation learning algorithm to train the high-level con-
troller. The high-level controller directly outputs actions instead of the activation signals
of the subcontrollers. Even if the training environment changes, under the guidance of
the subcontroller demonstrations and the reward function, the proposed method can still

train the high-level controller to complete the task in the new environment.
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5.4 Experiment

The experiments were executed on a computer using the Ubuntu 20.04.6 LTS operating
system equipped with an Nvidia GeForce RTX 3070 Ti GPU, an AMD Ryzen 9 3950x
CPU, and 128 GB of memory.

5.4.1 The Key-to-door Transport Task

In this study, a key-to-door transport task was designed as the experimental subject.
The robots must carry food to the target area; however, a door controlled by a button
separates them from the target room. Therefore, the robots must find the button in
the room and press it to open the door before carrying food to the goal area. Computer
simulations were conducted using Unity3D. An overview of the experimental environment
is presented in Fig. 5.2. The button and door are located at the fixed positions. Notably,
the button requires more than four robots to press, and the food is heavy and requires
more than three robots to move it. This means that the robotic swarm must generate

collective behavior to accomplish the task.

Goal Area(5 mx4 m)

Nest Area(5 mx4 m)
Door(15 mx0.4 m)

15m

Button(2 mXx2 m) : \

v . Food(¢1.5 m)

30m

Figure 5.2: Top view of the environment

Fig. 5.3 illustrates the procedure of the designed task. At the start of each episode, nine
robots were initialized in the nest area, and three food items were randomly generated.
Subsequently, the robots explored the environment to locate the button. The door opened
when more than four robots stood on the button. Finally, the robots clustered together

to push all food items to the goal area.
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(a) Initial state (b) Search button

(¢) Open Door (d) Transport

Figure 5.3: Procedure of key-to-door task

5.4.2 Robot Specifications

The design of the robots is depicted in Fig. 5.4. Each robot has a diameter and height
of 0.3 m. The robot’s observation is represented by vector inputs, which include three
components: the velocity of the robot, direction information from the electronic compass,
and input from distance sensors. The electronic compass provides the rotation angle of
the robot, while 12 distance sensors, with a range of 4 m and an interval of 30° (shown in
Fig. 5.4b), detect the distance between the robot and surrounding objects. The robot is
capable of executing seven types of discrete actions: moving forward, moving backward,
moving left, moving right, turning clockwise, turning counterclockwise, and remaining
still.

5.4.3 Reward Settings

In this study, three types of reward functions were designed. The sparse reward setting

was conducted according to Rsperse, shown in Eq. 5.1:

2.5, if the door is open or any food
Rsparse = is carried to the goal area, (5.1)

0, otherwise.
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Figure 5.4: Design of the robot

The robot receives a rewards of 2.5 if it achieves any subtask. Dense reward settings were

also implemented. Rpendoor, Shown in Eq. 5.2, was designed for the door-opening subtask:

1, if the robot touches the button, (5.2)

Ropendoor = .
0, otherwise.

Because the button requires more than four robots to press it together, the robots are
encouraged to cluster on the button by receiving a reward of 1 whenever they touch it.
Furthermore, the reward designed for the transport subtask was applied in Ryansport, as

expressed in Eq. 5.3:

vr - driog, if the touching food is moving,
Rtransport = ) (53)
0, otherwise.

where vp is a vector representing the velocity of the food, and dgeg is a unit vector
representing the direction from the food to the goal area. The robots were rewarded if

they pushed the food in the direction of the goal area.

5.4.4 Implementation of the Conventional PPO, HRL, and HIL
Methods

In the hierarchical approach, the original task is decomposed into two subtasks: the door-

opening task and transport task, shown in Fig. 5.5. The sub-controllers were trained
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Figure 5.5: Implementation of the HRL and HIL methods

using PPO and dense rewards.
In the door-opening task, shown in Fig. 5.6, the robotic swarm was trained to cluster

on the button to open the door, and the episode will be terminated if the door is open.

Figure 5.6: Door-opening task

In the transport task, shown in Fig. 5.7, the robotic swarm was trained to push all
food to the goal area when the door was open.
In this study, the conventional PPO, HRL, and HIL methods were implemented to
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Figure 5.7: Transport task

train the controllers of a robotic swarm to perform a key-to-door transport task. Because
the robots in the SR system were homogenous, all robots shared the same training modules

for each training method.

e The Conventional PPO Method: In the conventional PPO approach, the con-
troller is trained using PPO to directly accomplish the key-to-door task.

e The HRL Method: In the HRL method, the subcontrollers trained for the previ-
ous two subtasks were deployed on the robots. The high-level controller was trained
using PPO and sparse rewards to output switching signals to activate different sub-

controllers.

e The HIL Method: In the proposed HIL method, subcontrollers completing the
subtasks were recorded as expert demonstrations composed of state-action pairs.
The high-level controller was trained using GAIL and sparse rewards to output

actions to accomplish the original task.

5.4.5 Experimental Settings

Several experiments were conducted in this study, and their settings are listed in Table 5.1.
In Experiments 1 and 2, the conventional PPO was applied with sparse and dense reward
settings, respectively, to train a robotic swarm for accomplishing the key-to-door trans-
port task. Experiments 3 and 4 implemented the HRL and HIL methods. Initially, two

subcontrollers were trained with PPO and the corresponding dense rewards to achieve

81



the two subtasks. In Experiment 3, PPO and sparse rewards were used to train the high-
level controller to activate the trained subcontrollers. In contrast, in Experiment 4, the
process of the trained subcontrollers completing the subtasks was recorded as demos, and
together with the sparse reward, the result was applied to GAIL to train the high-level
controller to output actions. It’s important to note that in the first four experiments, the
position of the button remained fixed, irrespective of the original task or the subtasks.
Experiments 5 and 6 were conducted to address changes in the training environment.
In these experiments, the HRL and HIL methods were employed, and variations in the
button position settings led to changes in the environment during training. While the
button position remained fixed during the training of the subcontrollers, it appeared in

random positions when training the high-level controller.

Table 5.1: Experimental Settings

Experiment Training Method  Reward Settings Button Position
Experiment 1 Conventional PPO Rsparse Fixed
Experiment 2 Conventional PPO R pendoor +Riransport Fixed
Experiment 3 HRL method Rsparse Fixed
Experiment 4 HIL method Rsparse Fixed
Experiment 5 HRL method Rsparse Fixed for subcontrollers and
Experiment 6 HIL method Rsparse random for high-level controller

The hyperparameters used in this study are listed in Table 5.2. Each episode was
terminated when the robotic swarm either completed the task or when the time reached
the maximum episode length of 4000 time steps. Training ceased once the maximum

number of time steps (90 million) was reached.

5.5 Results and Discussion

Each experiment consisted of 90,000,000 steps. The average training durations for the
conventional PPO, conventional HRL, and proposed HIL methods were 12, 15, and 20
hours, respectively. Episode length was recorded to evaluate the training process of the
controllers, as shown in Fig. 5.9. In Figs. 5.9a and Fig. 5.9b, the episode length remains at
4000 steps, indicating that the controller applying the conventional PPO method cannot
complete the given task under sparse or dense reward settings. Moreover, simulations
were conducted in which the robots deployed the controllers trained in Experiments 1
and 2. Fig. 5.8 shows the trajectories of the robots in one episode. The green line shows

that robots trained with conventional PPO and sparse rewards tended to move along walls
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Table 5.2: Hyperparameter Settings

Hyperparameter

Maximum episode length 4000
Maximum step count 90000000
Hidden units 256
Number of layers 2

Batch size 128
Buffer size 2048
Learning rate 0.0003
Epsilon 0.2
Gamma 0.95

500
x —— PPO with sparse reward
4501 PPO with dense reward
c’
4001
3501
23001
2501
2001
1501 2
&
200 300 400 500 600 700 800

x-axis

Figure 5.8: Trajectories of a trained robot in Experiments 1 and 2 (contains the data of

one episode)

and cluster in corners because the rewards were too sparse to obtain. However, the yellow
line shows that robots trained with conventional PPO and dense rewards clustered on
the button near the coordinates (550, 150) and did not push the food because the dense
reward of touching the button was most easily obtained.

As shown in Fig. 5.9¢, the episode length decreased during the training process, con-
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Figure 5.9: Results of episode length during the training process

verging to approximately 500 steps at the end of the training, indicating that the HRL
and HIL methods successfully trained the robotic swarm to achieve the given task with
the sparse reward setting. Additionally, the trajectories of the robots trained in Exper-
iments 3 and 4 were collected for each episode, as shown in Fig. 5.10. The yellow and
blue lines show that the robot trained using the HRL and HIL methods first reached the
button position near the coordinates (550, 150). The robot then searched for food in the
field and delivered it to the target area near the coordinates (850, 300).

Fig. 5.9d shows the training process of Experiments 5 and 6, in which the environment
changed when training the high-level controllers. The yellow line indicates that training
using the conventional HRL method was extremely slow when the training environment
changed. The episode length decreased by approximately 60 million steps in the middle
stages of training and finally converged at approximately 3500 steps. Moreover, the blue
line shows that the controller trained with the proposed HIL method learned to accom-
plish the task at approximately 15 million steps, and the episode length converged at
approximately 1500 steps.
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Figure 5.10: Trajectories of a trained robot in Experiments 3 and 4 (contains the data of

one episode)

Furthermore, the trajectories of the trained robots in Experiments 5 and 6 were col-
lected for one episode in which the button appeared in a random position, as shown in
Fig. 5.11. In Fig. 5.11, the yellow line shows that the robot trained with the HRL method
still searched for the button at the coordinates (550, 150) by activating the door-opening
subcontroller. However, if the button did not appear nearby, the robot began to move
around, became stuck in a corner of the scene, and was ultimately unable to complete the
task. The blue line shows that when the training environment changed, the robot trained
with the proposed HIL method learned new behaviors to complete the task. Initially,
the robot did not move directly to the button’s location in the subtask. Instead, it went
straight to the scene to find the button and finally pushed the food to the target area to
complete the task. The results show that the controller trained using the proposed HIL
method performed better than the HRL method in overcoming changes in the training
environment.

Additionally, the scalability and flexibility of the controller trained using the proposed
HIL method were tested. The test controller was trained in Experiment 4, in which nine
robots pressed the fixed button and pushed the cylindrical food items to the goal area.
The scalability was tested by conducting simulations with different numbers of trained

robots. The simulations were run for 100 trials for each group size. The results for the
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Figure 5.11: Trajectories of a trained robot in Experiments 5 and 6 (contains the data of
one episode)

episode lengths are shown in Fig. 5.12. The trained controller could complete the task
with similar performance when using 4, 6, 9, and 18 robots. When the group size reached
36 robots, the performance became unstable.

The flexibility was tested by executing simulations with different food shapes, as shown
in Fig. 5.13, and different numbers of food items, that is, 2, 3, 4, 6, and 8.

The results of 100 trials for each shape and amount of food are shown in Fig. 5.14.
The results in Fig. 5.14a show that the trained controller performed similarly for different
food shapes. In Fig. 5.14b, the episode length increased proportionally with an increase
in the amount of food. When the number of food items exceeded six, the performance of

the trained controller became unstable because of the overcrowded scene.

5.6 Conclusions

This study proposes the hierarchical imitation learning method to achieve the key-to-
door transport task with sparse rewards. In the proposed method, the original task is
partitioned into subtasks and subcontrollers are trained to solve each subtask. The high-
level controller is then trained using sparse rewards and GAIL, in which the subcontrollers

collect the demos used by GAIL. The proposed method was compared with PPO, the
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Figure 5.12: Results of the scalability test

conventional RL algorithm. The results showed that the proposed approach can effectively
train a controller for a robotic swarm in a key-to-door task with sparse rewards.

Moreover, the ability of the proposed method to overcome changes during training was
tested by changing the button position in the training environment. The results showed
that compared with the HRL method, in which the high-level controller can only activate
subcontrollers, this method, in which the high-level controller directly outputs actions, can
better adapt to changes in the environment during the training process. Additionally, the
scalability and flexibility of the controller trained in the proposed method were tested using
different numbers of robots, food shapes, and numbers of food items. The results showed
that the controller trained using the proposed HIL method exhibited good scalability and
flexibility.
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Chapter 6
Conclusions

This thesis explores the development of controllers for multi-agent systems, with a focus
on learning-based methods such as evolutionary robotics and deep reinforcement learning.
The contribution of this thesis to the field of multi-agent systems can be viewed from three
perspectives.

Firstly, this thesis investigates the applicability of evolutionary robotics and deep
reinforcement learning for developing controllers for a swarm robotic system with im-
age inputs. Evolutionary algorithms are typically challenged by high-dimensional search
spaces, whereas convolutional neural networks are capable of handling image inputs with
fewer parameters. To this end, Chapter 3 proposes the use of the deep neuroevolution
method that leverages convolutional neural networks to generate collective behaviors with
raw camera inputs. The results demonstrate that this method performs better than Deep
Q-Learning in most cases, while also exhibiting flexibility, scalability, and fault tolerance.

Secondly, this thesis investigates how the DRL approach can be applied to generating
competitive and collective behaviors for MASs. Although DRL has achieved many suc-
cesses in static environment tasks, it suffers from the sparse reward problem, in which it
is difficult for the agent to obtain rewards during exploration, resulting in slow learning
speed and poor performance. An intuitive solution is reward shaping, in which denser
rewards are designed for various agent behaviors. However, in some complex scenarios,
it is practically infeasible to design rewards for specific behaviors of agents due to the
vast state and action space. In Chapter 4, the proposed method uses imitation learning
to employ the controller trained by reward shaping as an expert to help the agent gener-
ate behaviors under sparse rewards. Additionally, the attention mechanism, inspired by
cognitive attention, is integrated with DRL to address input redundancy. The results of
computer simulations show that the controllers trained in the proposed method overcome
the sparse reward problem and performed better than those trained in the conventional
DRL method.

Thirdly, this thesis investigates how to improve the flexibility of hierarchical rein-
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forcement learning. An alternative solution to the sparse reward problem is Hierarchical
reinforcement learning (HRL), in which the original task is decomposed into multiple sub-
tasks. Subcontrollers are first trained to complete corresponding subtasks. The high-level
controller is then trained to activate different trained subcontrollers to accomplish the
original task. However, when the training environment is changed, it is hard to guarantee
that pre-trained subcontrollers can still stably complete the corresponding subtasks. In
Chapter 5, a novel method integrating DRL with Imitation Learning (IL) and HRL is
proposed to overcome the sparse reward problem. In the proposed method, the original
task is partitioned into subtasks and subcontrollers are trained to solve each subtask.
The high-level controller is then trained using sparse rewards and GAIL, in which the
subcontrollers collect the demos used by GAIL. The collective behaviors are evaluated
in a beach volleyball game and a key-to-door transport task. The proposed method is
compared with PPO, the conventional RL algorithm. The results show that the proposed
approach can effectively train a controller for a robotic swarm in a key-to-door task with
sparse rewards. Moreover, the ability of the proposed method to overcome changes during
training is tested by changing the button position in the training environment. The results
show that compared with the HRL method, in which the high-level controller can only
activate subcontrollers, this method, in which the high-level controller directly outputs
actions, can better adapt to changes in the environment during the training process. Ad-
ditionally, the scalability and flexibility of the controller trained in the proposed method
are tested using different numbers of robots, food shapes, and numbers of food items. The
results show that the controller trained using the proposed HIL method exhibited good
scalability and flexibility.

Overall, the proposed methods successfully generate collective behaviors for multi-
agent systems and provide promising solutions to input redundancy and sparse reward

problems that conventional learning-based methods suffer from.
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