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ABSTRACT

We investigated the susceptibility of 127 Streptococcus mutans strains to nukacins
produced by Staphylococcus spp. and detected diverse susceptibilities. Nineteen strains
had a disrupted LctF (type 1), which is responsible for nukacin susceptibility, whereas the
remaining 108 strains had an intact LctF (type 1) and displayed resistance to nukacins.
However, the type I strains still showed low resistance to nukacins to some extent,
indicating that other factors are involved in this resistance. Interestingly, 18/19 (94.7%)
type I strains carried a mukA-T locus, which is related to the synthesis of mutacin K8, and
mukFEG, an ABC transporter. In contrast, among type Il strains, only 6/108 strains
(5.6%) had both the mukA-T locus and mukFEG, 19/108 strains carried only mukFEG,
and 83/108 strains (76.9%) harbored neither mukA-T nor mukFFEG. We also found that
MukF had two variants: 305 amino acids (type o) and 302 amino acids (type p). All type
I strains showed a type o MukF (MukFa), whereas most type II strains with mukFEG
(22/25 strains) had a type B MukF (MukF). To determine the contribution of both types
of MukF to nukacin resistance, we constructed a mukFEG-deletion mutant complemented
with MukFoEG or MukFBEG and found that only MukFaEG was involved in nukacin
resistance. The nukacin resistance capability of type II-LctFEG (LctFIIEG) was stronger
than that of MukFoEG. In conclusion, we identified a novel nukacin resistance factor,
MukFEG, and either LctFEG or MukFEG was active in most strains via genetic

polymorphisms depending on mukA-T genes.

IMPORTANCE
Streptococcus mutans is an important pathogenic bacterium for not only dental caries but

also systemic diseases. S. mutans is known to produce a variety of bacteriocins and retain
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resistance to these bacteriocins. In this study, we found that two ABC transporters,
LctFEG and MukFEG, were associated with nukacin resistance. Each ABC transporter
has two subtypes: active and inactive. Of the two ABC transporters, only one ABC
transporter was activated, whereas the other ABC transporter was inactivated by genetic
mutation. Interestingly, this phenomenon was defined by the presence or absence of the
mutacin K8 synthesis gene region, one of the bacteriocins of S. mutans. This finding
suggests that the acquisition of resistance factors is tightly controlled in each strain. This
study provides important evidence showing that the insertion of bacteriocin synthesis
genes is involved in the induction of genetic polymorphisms and suggests that bacteriocin

synthesis genes may play an important role in bacterial evolution.

INTRODUCTION

S. mutans is a known cariogenic bacterium, and one of its pathogenic properties is the
ability to form dental plaques (1), which facilitate the occurrence of dental caries and
periodontitis (1, 2). The major virulence factors for this bacterium include three
glucosyltransferases, which synthesize sticky water-insoluble glucans for dental plaque
formation, and organic acids, mainly lactic acid, for the demineralization of teeth. In
addition, S. mutans produces various bacteriocins to compete with other bacteria in the
oral cavity (3-5).

Bacteriocins are antibacterial peptides that are ribosomally produced by bacteria, and
studies have identified various bacteriocins, especially those of the genera Lactococcus,
Lactobacillus, Streptococcus and Enterococcus (6—11). Bacteriocins are generally
effective against the same bacterial species or closely related species. Therefore,

bacteriocins are considered the weapons used by bacteria to maintain and expand their
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own survival area by excluding other bacteria within a bacterial community (12, 13).
Most bacteriocins have a length of 20-70 amino acid residues and show stability to heat
and acids (10, 11). There are two types of bacteriocins: posttranslationally modified
peptides, which contain unusual amino acids such as lantibiotics, and unmodified
peptides. Bacteriocins kill bacteria by physically disrupting the cell membrane or forming
channels. Nisin, a type-Al lantibiotic, binds to lipid II on the cell membrane and
ultimately disrupts the cell membrane, causing cell death (14, 15).

Nukacins are lantibiotics produced by Staphylococci (16—19) and are categorized as
type-All lantibiotics, which contain one dehydrobutyrin, one 3-methyl lanthionine, and
two lanthionine residues (20). Analyses of their mode of action have revealed that their
initial target are lipid II, similar to that of nisin, but unlike nisin, nukacins do not exert a
pore-forming effect on the cell membrane, resulting in bacteriostatic activity (21).
Nukacins are found within the lacticin 481 group, which includes lacticin 481 of L.
lactis(8), mutacin II(9) and mutacin K8 (22) of S. mutans, salivaricin A2 of S.
salivarius(23), and streptococcin A-F22 of S. pyogenes (24) (Fig. S1). Additionally, we
previously identified nukacin KSE650 produced by S. epidermidis isolated from the oral
cavity (19). Therefore, nukacins and closely related bacteriocins are thought to be
produced by oral bacteria. We previously demonstrated that the transporter LctFEG is
associated with nukacin ISK-1 resistance in the S. mutans UA159 strain (25). The
expression of /ctFEG is significantly induced by the addition of nukacin ISK-1. In this
study, we investigated the susceptibility of 127 S. mutans strains to nukacins produced by
staphylococcal species and found variations in susceptibility. A genomic analysis of the
127 strains identified MukFEG, a novel factor involved in nukacin resistance. We then

investigated the relationship between MukFEG and LctFEG, both of which are involved



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

in nukacin resistance.

Results

Susceptibility of 127 S. mutans strains to nukacins

The susceptibility of 126 clinical isolates of S. mutans and UA159 to nukacin ISK-1 and
nukacin KSE650 was tested (Fig. 1A). In the nukacin ISK-1 susceptibility test, 99/127
strains (78%) showed no inhibition zone, whereas 28/127 strains (22%) exhibited a range
of inhibition zones (Fig. 1A, left). In contrast, in the nukacin KSE650 susceptibility test,
121 strains (95.3%) showed no inhibition zone, whereas 6 strains (4.7%) presented a

range of inhibition zones (Fig. 1A, right).

Gene structure of the IctFEG and mukFEG regions

We previously performed whole-genome sequencing of 126 clinically isolated S. mutans
strains (5). Using these 126 S. mutans genomes and the UA159 genome (obtained from
the NCBI database), we focused on the /ctEFG genes, which are responsible for nukacin
resistance. The results showed that 19 strains carried a disrupted LctF due to introduction
of a premature termination codon in /ctF (Fig. 1B and 2A), whereas the amino acid
sequence of LctEG was intact in all 127 strains. The strains with a disrupted LctF were
designated type I (LctFI), whereas the strains with an intact LctF were designated type I
(LctF1). The susceptibility of types I and II to nukacin ISK-1 and nukacin KSE650 are
shown in Fig. 1C. Against nukacin ISK-1, the type I strains showed higher susceptibility

than the type II strains, but the susceptibility varied among the type I strains. No
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significant difference in the susceptibility to nukacin KSE650 was found between the type
I and type II strains, and no inhibition zone was detected with all type I (19 strains) and
most type II strains (102/108 strains). The varied susceptibility of most type I strains
(17/19 strains) to nukacin ISK-1 suggests that other factors may also be involved.
Therefore, we focused on another ABC transporter, namely, MukFEG (gene ID,
SMU_RS08310- RS08300 in S. mutans UA159 from the NCBI database), which is highly
homologous to the ABC transporter ScnFEG (S. pyogenes), a known immunity factor for
streptococcin A-FF22 (26, 27) (Fig.S27?7?). An analysis of the genomic data of the 126 S.
mutans strains and the UA 159 strain detected a mukFEG locus in all (19/19 strains) type
I strains and some (25/108 strains) type II strains (Fig. 2A). Furthermore, MukF was
divided into two types, which were designated type o and type B (Fig. 1B and 2A): the
sequence of type a is three amino acids longer than that of type B (Fig. 1D), whereas the
other sequences are similar.

Comparison of the type I and type II strains showed that all type I strains (19 strains)
were MukFa, whereas among the type II strains (108 strains), 3 strains were MukFa, 22
strains were MukFf, and 83 strains (77%) did not harbor mutFEG and were designated
type Ily (Fig. 1B and Fig. 2A). In addition, the genetic structure upstream of mukFEG of
each type (type la, I, and IIf) showed variation depending on the structure of mukA1-
T (Fig. 2A). Most type la strains (18/19 srains) carried the mukA1-T locus, while most
type IIp strains (19/22 strains) did not harbor this locus. Among the three type Ila strains,
two strains (KSM 125 and 153) had a complete mukA-T locus, and one isolate (KSMS55)

carried an incomplete locus with deletion of mukA 1 and mukA2.

Variation in the susceptibility of 127 S. mutans strains to nukacins
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We compared susceptibilities of the four above-mentioned types to nukacin ISK-1 and
nukacin KSE650. No type Ily strains showed an inhibition zone against nukacin ISK-1 or
KSE650 (Fig. 2B), and no type la strains presented an inhibition zone against nukacin
KSE650, whereas the type la strains exhibited diverse susceptibilities ranging from low
(no inhibition zone) to high (15-mm inhibition zone) susceptibility (Fig. 2B). Among the
three type Ila strains, one strain showed no inhibition zone against nukacin ISK-1,
whereas two strains presented no inhibition zone against nukacin KSE650. Among the 22
type IIp strains, 9 and 5 strains exhibited an inhibition zone against nukacin ISK-1 and
KSEG650, respectively, whereas the remaining strains did not (Fig. 2B). Three type 1If
strains with the mukAI-T region (Fig. 2A) showed varied susceptibility against nukacin
KSEG650 (2 strains with an inhibition zone) and nukacin ISK-1 (3 strains with an inhibition

zone).

Relationship between nukacin susceptibility and mukF and IctF gene expression
We previously reported that /ctFEG expression is induced by nukacin ISK-1 (25). Here,
we investigated the gene expression of mukF (type la, Ila and IIB) and /ctF (all types)
with or without nukacin ISK-1 in each group by quantitative PCR (Fig. 3 and 4). Based
on the results of susceptibility testing, all type Ia (19 strains), 17/22 type IIf strains, and
all type Iy (83 strains) strains did not show inhibition zones against nukacin KSE650
(Fig. 2B). The expression of mukF and [ctF was examined in three representative strains
of these three groups (Fig. 3). The type la strains (KSMS§, KSM97, KSMI182)
significantly induced mukF expression, but not /ctF’ expresson, upon addition of nukacin
ISK-1. On the other hand, the type IIf strains (KSM95, KSM110, UA159) significantly

induced /ctF expression, but not mukF expression, upon addition of nukacin ISK-1. The
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amount of /ctF expression by nukacin ISK-1 observed in the type IIf strain was
comparable to that seen in the type Ily strain(KSM16, KSM20, KSM25), which does not
have the mukFEG gene.

Among the 108 type II strains with LctFy, 11 strains (10.2%) (including two type Ila
strains and nine type I strains) showed an inhibition zone against nukacin ISK-1, and 6
strains (5.6%) (including one type Ila strain and five type IIp strains) exhibited an
inhibition zone against nukacin KSE650. To determine the relationship between
lctF/mukF expression and susceptibility to nukacin, we investigated lctF and mukF
expression in one type Ila strain and 5 type IIf strains, which showed an inhibition zone
against nukacin KSE650, and in two type Ila strains and one type IIf strain, which
exhibited no inhibitory zone (Fig. 4). The type lla strain KSM153, which presented no
inhibition zone against either nukacin (indicated as (R) in Fig. 4), showed increased
expression of lctF but not of mukF. KSM125 and KSMS55, which had an inhibition zone
against nukacin ISK-1, showed mukFo expression but not /ctF expression (Fig. 4, left).
Among five type IIf strains (KSM2, KSM60, KSM117, KSM154, and KSM183) with an
inhibition zone against nukacin KSE650, increased expression of /ctF was observed in
only two strains (KSM2 and KSM154), but their expression level was significantly lower
than that found in KSM110, which showed no inhibition zone. In contrast, three strains
(KSM60, KSM117, and KSM183) did not show increased IctF expression. In addition,
increased mukF expression was observed only in one strain (KSM2), whereas the other

strains, including KSM110, did not show increased expression of mukF.

Association of MukF and LctF types with susceptibility to nukacins

Because two types of MukF (type a and type ) were found among the MukFEG-
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harboring strains, we investigated the contribution of MukF variation to nukacin
susceptibility (Fig. 5). We constructed mukFoEG-deletion mutants (AmukFEG) of
KSM182 (type la) and two types of mukFEG (mukFo from one type o isolate
[KSM182] and mukFB from one type P isolate [UA159])-complemented strains
(AmukFEG::mukFoEG or AmukFEG: :mukFBEG). The AmukFEG strain showed
increased susceptibility to nukacin ISK-1, and AmukFEG::mukFoEG exhibited reduced
susceptibility to nukacin ISK-1, whereas AmukFEG::mukFBEG showed no change in
susceptibility. Introduction of lctFIIEG into the AmukFEG of KSM182 reduced

susceptibility.

Discussion

In this study, we observed a phenomenon in which conflicting genetic polymorphisms
contribute to the mechanism underlying the nukacin resistance phenotype of S. mutans.
Diversity in nukacin susceptibility was observed among 127 S. mutans strains. This
diversity was apparently caused by the presence of conflicting combinations of amino
acid sequence patterns in the previously reported nukacin resistance factor LctF and the
newly identified resistance factor MukF in the genome. Nukacins are lantibiotics
categorized as type-All lantibiotics. We previously identified nukacin KSE650 of S.
epidermidis isolated from the oral cavity (19). Because S. epidermidis and S. warneri are
commensal bacteria in the skin and nasal cavity, these bacteria have also been isolated
from the oral cavity (28, 29). Additionally, nukacins belong to the lacticin 481 group,
which includes lacticin 481 produced by L. lactis, mutacin II and mutacin K8 (22)
produced by S. mutans, salivaricin A2 produced by S. salivarius (23) and streptococcin

A-F22 produced by S. pyogenes (24) (Fig. S1). Therefore, S. mutans may come into
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contact with nukacins and nukacin-like bacteriocins in the oral cavity.

Among 127 S. mutans strains, 44 (35%) had a mukFEG region with two types of amino
acid patterns of MukF, type a and type B: three amino acids found in type a are absent in
the 243-245 region (EYG) of type B. Interestingly, all 22 strains with MukFf showed
LctF type II. In contrast, 19 (86%) of the 22 strains with MukFa showed LctF type 1. In
addition, 21 (87.5%) of the 24 strains with the mukA-T region were of the MukFa type,
whereas 19 (95.0%) of the 20 strains without the mukA-T region were classified into the
MukFp type. These results suggest that the mukA-T region may be a key factor defining
the diversity of MukF and LctF. The mukA-T region is a gene cluster associated with the
synthesis of mutacin K8 (22), a lantibiotic of the same type as nukacin (30), although we
found that the 23 strains with the mukA-T region did not exhibit mutacin K8 expression
under our conditions (Fig. S3). Therefore, whether mutacin K8 itself is involved in the
diversity of MukF and LctF remains unknown. The results presented in Fig. 5 show that
the MukFa type, which has three additional amino acids, is responsible for resistance to
nukacins, whereas the MukF type has no effect on resistance. Therefore, the factors
responsible for resistance to nukacins are LctFIIEG and MukFaEG. The comparison of
nukacin ISK-1 susceptibility between the type o (MukFaEG and LctFIEG) and type 11y
(LetFIIEG, no MukFEG) strains (Fig. 2B) revealed that all type Iy strains showed
resistance without forming an inhibition zone, whereas many type la strains presented an
inhibition zone. However, the results of the nukacin KSE650 susceptibility test showed
that all type Ia strains did not form an inhibition zone, although the amino acids of
nukacin ISK-1 and nukacin KSE650 were quite similar (Fig. S1). In addition, when
purified nukacins were used for the evaluation of MIC values against S. mutans UA159,

we found no difference in the MIC values between the two nukacins (Table S1). The
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direct assay results for S. warneri ISK-1 (nukacin ISK-1) and S. epidermidis KSE650
(nukacin KSE650) using M. [uteus as an indicator showed that the inhibition zone of S.
warneri was larger than that of S. epidermidis KSE650 (Table S1). These results suggest
that S. warneri ISK-1 produces greater amounts of nukacin than S. epidermidis KSE650.
Based on these findings, it can be hypothesized that MukFaEG contributes to sufficient
resistance to low concentrations of nukacin but it may not fully contribute to sufficient
resistance to high nukacin concentrations. Furthermore, LctFIIEG acts more strongly as
a resistance factor against nukacins than MukFaEG, which could be inferred from the
results of complementation experiments (Fig. 5).

Among the strains harboring /ctFTIIEG, some were less resistant to nukacins. Because
the induction of lctF and mukF expression by nukacin ISK-1 in these strains was low
(Fig. 4), we inferred an association between nukacin susceptibility and gene expression
level in these strains. For example, among the two type Ila strains harboring /ctF11 and
mukFa, one strain (KSM153) was resistant to nukacins, whereas the KSM125 and the
KSMS5S5 exhibited a reduced degree of resistance compared with strain KSM153. Gene
expression analysis showed that the susceptible strains (KSM125 and KSM55) showed
no induction of /ctF but did show induction of mukF, whereas the resistant strain
KSM153 exhibited induction of /ctF but not of mukF' (Fig. 4, left). We speculated that
the observed differences in expression could be due to differences in the promoter
activity of each gene and the involvement of transcriptional regulatory factors.
However, because no differences in the sequences of the /ctF promoter regions of
KSM125 and KSM153 were found, the differences in expression could have been
caused by other unknown factors, such as regulatory factors. A similar tendency was

observed for type IIP (Fig. 4, right).
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The results obtained in the present study speculate that the insertion of a bacteriocin
production-related gene leads to a high frequency of modification in existing immunity
factors. In a previous study, we showed that the presence of gene variants of the ABC
transporter MutFEG and its neighboring regions in S. mutans defined its individual
responsiveness to mutacin 1 (4), III (31), and IIIb (known as mutacin B-Ny226) (32),
which are S. mutans-derived bacteriocins belonging to the group of type-Al lantibiotics
(33). In this study, we found variation between two ABC transporters, LctF and MukF,
depending on the presence or absence of the mukA-T region involved in mutacin K8
synthesis. Mutacin K8 is a bacteriocin belonging to the same class (type-All lantibiotics)
as nukacins and has a similar structure, as shown in Fig. S1. However, our genetic analysis
showed that only 23 out of the 127 strains had mukA-T regions associated with mutacin
K8 synthesis and that strains with mutA-T regions tended to function via MukFEG,
suggesting the existence of an immune response against mutacin K8, and those without
mutA-T regions tended to function via LctFEG. Based on these findings, we proposed the
occurrence of a polymorphism between the two ABC transporters, LctFEG and MukFEG,
with or without the muk region. In the presence of two factors responsible for the
resistance function, ‘switching’ is thought to occur, and in this process, gene insertion
results in genetic modification of the unwanted ABC transporter, which would allow only
the more effective factor to function in resistance. The studies suggest that bacteriocin
synthesis genes play a central role in this switching function. However, the mechanism
of this gene switching is unknown, and this study suggests the existence of a novel
mechanism of gene mutation that allows bacteria to acquire bacteriocin resistance
mechanisms. The results of this study are important for understanding the evolution of

bacteria through gene acquisition.
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Materials and Methods

Bacterial strains

The bacterial strains used in this study are listed in Table 1. S. mutans UA159 ((34) and
126 clinical strains (5) of nukacin KSE650/ISK-1 producing Staphylococcus epidermidis
(19, 25) were used. S. mutans strains were grown in trypticase soy broth (TSB) (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA) at 37°C under 5% COa..
Staphylococci were grown in TSB at 37°C under aerobic conditions. When necessary,

erythromycin (10 mg/ml) or spectinomycin (500 mg/ml) was added to the medium.

Genome analysis

The whole-genome data of 126 clinically isolated S. mutans strains were obtained
previously (5). The S. mutans UA159 genome sequence was obtained from the NCBI
database (NC 004350.2). The amino acid sequences of each ORF from the S. mutans
genomes were extracted and compared using BLAST

(https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The genomic data from 127 S. mutans strains were analyzed using SnapGene v5.3.2 (GSL

Biotech LLC), and the amino acid sequence identity was verified using NCBI BLAST.

Construction of gene knockout and complement strains
The methods used for gene deletion and complementation in S. mutans are described
elsewhere (35). Briefly, the erythromycin resistance gene (Em') or the spectinomycin

gene without a terminator (Spc') was amplified by PCR from pAMp1 (36) or pDLS55 (37),

13
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respectively. Approximately 500 bp of the 5° and 3’ flanking regions of the target gene
was amplified by PCR from the chromosomal DNA of the respective strain. The PCR
amplicons were manipulated with complementary sequences for cloning at both ends of
the Em" or Spc' gene, thus creating a gene cassette consisting of antibiotic resistance genes
flanked by upstream and downstream sequences of the target gene. The PCR amplicons
were transformed into S. mutans, and the corresponding deletion mutants were
constructed and selected based on erythromycin or spectinomycin resistance.

For genetic complementation, we constructed a DNA fragment to insert Em" and the
target gene into the fif gene, which encodes fructosyltransferase. A gene cassette
containing four regions, the upstream region of the fif gene (ftf-UP), the Em" gene, the
coding region of the target gene without its putative promoter region and the upstream
region of the fif gene (ftf-DW), was constructed. The target genes ftf-UP, ftf-DW, and Em"
were amplified using specific primers containing complementary sequences. Then,
overlap extension PCR was performed, and the complementary sequences facilitated
amplicon assembly and ligation. The entire cassette [fttUP-Em'-target gene-ftftDW] was
then transformed into a deletion mutant to generate a complementary strain via
erythromycin and spectinomycin resistance selection. The primers used are shown in

Table S2.

Susceptibility tests

To assess the antimicrobial activity of bacteriocins, two methods, MIC determination and
direct assay, were used as previously reported (5). In the direct assay, overnight cultures
of each bacteriocin-producing strain were spotted on TSA plates and incubated for 24 h

at 37°C with (S. mutans) or without (Staphylococci) 5% CO;. After confirming that the

14
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diameter of the growth zone of the bacteriocin-producing strain was uniformly 5 mm, 5
ml of prewarmed TSA soft agar (1%) containing indicator bacteria (107 cells/ml) was
poured onto the TSA plate and incubated at 37°C for 16 h under appropriate conditions.
The diameter of the growth inhibition zone surrounding the bacteriocin-producing strains
was measured in two directions. Because the colony size was 5 mm, the value obtained
by subtracting 5 mm from the actual value was evaluated as the antimicrobial activity
(range of inhibition zone). Three independent experiments were performed, and the
average value (mm) was calculated.

In the MIC evaluation, the concentration of purified nukacin ISK-1/KSE650 was
adjusted to 0.5 mg/ml in TSB. The bacteriocin solution was subjected to 2-fold serial
dilutions (2-fold to 128-fold dilution), and bacterial cells (10° cells/100 pl) were then
inoculated into each well. After incubation at 37°C for 24 h, the MIC value was

determined.

Quantitative PCR analysis

Quantitative PCR was performed to assess the expression of IctF' and mukF. cDNA
generation from extracted RNA was performed according to previously published
methods (38). A small portion of the overnight culture (10% cells) was inoculated into 5
ml of fresh TSB and grown at 37°C with 5% CO». When the optical density at 660 nm
reached 0.5, nukacin ISK-1 at 1/8 MIC was added to the culture. After incubation for 15
min, bacterial cells were collected. The collected bacterial cells were subjected to RNA
extraction followed by cDNA synthesis and quantitative PCR according to the
manufacturer’s protocol as described elsewhere (38). RNA extraction was performed

using the FastRNA Pro Blue Kit (MP Biomedicals, Solon, OH, USA), and cDNA
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synthesis was performed using the First Strand cDNA Synthesis Kit (Roche, Tokyo,
Japan). Quantitative PCR was performed using FastStart Essential DNA Green Master
Mix and a LightCycler 96 instrument (Roche, Tokyo, Japan). The primer sequences are

shown in Table S1.

Purification of nukacin ISK-1 and KSE650

The purification of nukacin ISK-1 and nukacin KSE650 from supernatants of S. warneri
ISK-1 and S. epidermidis KSE650 cultures, respectively, was performed according to
previously published methods (19). Briefly, overnight cultures (500 ml) of S. warneri
ISK-1 were centrifuged at 4,000 x g for 15 min. Macro-Prep cationic resin (1.5 ml) (Bio-
Rad, USA) was added to the supernatant and stirred for 12 h at 4°C. The resin was then
collected into an open column and washed three times with 10 ml of 25 mM ammonium
acetate (pH 7.5). To elute the bacteriocin, the resin was treated with 500 ul of 5% acetic
acid. This elution was repeated 10 times. After each fraction was evaporated completely,
the samples were dissolved in 50 pl of distilled water. Each solution was tested for
antibacterial activity against Micrococcus luteus. Overnight cultures of M. luteus (100 ul)
were inoculated on TSA plates. Then, 5 ul of each solution was spotted on TSA. Samples
with antibacterial activity were subjected to HPLC using a C18 column, and a linear
gradient from 0 to 60% acetonitrile was then used for 30 min. Each peak was fractionated,
and the samples were evaporated and then dissolved in 50 pl of distilled water.
Subsequently, the antibacterial activity of each fraction was tested using the above-

described method.

Statistical analysis

16



385  Student’s t test (for comparisons of susceptibility, Fig. 1) and one-way ANOVA (for
386  comparison of the susceptibility test results (Figs. 2B and 5) and for comparisons of gene
387  expression (Figs. 3 and 4)) were performed using GraphPad Prism version 10.1.0
388  (GraphPad Software, San Diego, CA, USA).
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Figure legends.

Fig. 1. Variation in nukacin susceptibility among 126 S. mutans clinical strains and
UA159.

(A) Susceptibility against S. warneri ISK-1 (Sw ISK-1) and S. epidermidis KSE650 (Se
KSE650). The number in brackets represents the number of resistant strains (no inhibition
zone).

(B) Classification of 127 S. mutans strains by variation in LctF and MukF. Type I,
truncated LctF (LctF1); type II, intact LctF (LctFIn); type a, 301AA (MukFa); type B,
298AA (MukFp); type v, no MukF.

(C) Comparison of susceptibility against S. warneri ISK-1 and S. epidermidis KSE650
between type I (19) and type II (108) strains.

The number in brackets represents the number of resistant strains (no inhibition zone). *,
p <0.0001 (Student’s t test)

(D) Alignment of MukF between UA159 (type B) and KSM182 (type a). *, site with

amino acid deficiency in the UA159 strain.

Fig. 2. ORF map of mukFEG and IctFEG loci and susceptibility to nukacin ISK-1
(Sw ISK-1) and nukacin KSE650 (Se KSE650) in each group.

(A) ORF map of mukFEG and IctFEG in representative strains of each type (left and
middle) and number of resistant strains (no inhibition zone) of each type obtained by the
direct method (right). (B) Distribution of zones of inhibition obtained with all strains of
each type by the direct method.

Sw ISK-1, susceptibility against Staphylococcus warneri 1SK-1; Se KSE650,
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susceptibility against Staphylococcus epidermidis KSE650.

Fig. 3. lctF and mukF expression among types la, IIf, and IIy under nukacin ISK-I
induction.

Gene expression of the ABC transporters mukF (upper) and lctF (lower) with and without
nukacin ISK-1 induction in representative type la, I, and IIy strains which showed no
inhibition zone against nukacin KSE650.

* p<0.05; ** p<0.01 (Student’s ¢ test)

Fig. 4. Comparison of IctF and mukF expression among strains of the same type.
mukF and [ctF gene expression with and without nukacin ISK-1 was investigated in all
type Ila strains (3 strains) and type IIp (5 strains with the inhibiton zone, 1 strain with no
inhibition zone against nukacin KSE650) strains. S and R represent susceptible
(inhibition zone observed) and resistant (no inhibition zone), respectively.

* p<0.05; ** p<0.005; *** p <0.0005; **** p<0.0001 (one-way ANOVA followed

by Tukey’s post hoc multiple comparison test.)

Fig. 5. Susceptibility of S. mutans wild types and their mutants against S. warneri
ISK-1.

Direct assay was performed using host strain, S. warneri ISK-1.

* p<0.01; ** p<0.001 (One-way ANOVA for comparison between group by Dunnett’s

post hoc multiple comparison test.)
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Supplemental figure legends.

Fig. S1. Similarities of type-All lantibiotics.

Alignment of lacticin 481 group lantibiotics. Red arrow, consensus AA. (B) Structures of
nukacin ISK-1, nukacin KSE650, mutacin K8, salivaricinA2, mutacin II, and lacticin 481.
Red, amino acids different from those of nukacin ISK-1; gray, no amino acids from

Nukacin ISK-1; blue and green, unusual amino acid.

Fig. S2. Amino acid sequence alignment among MukF and LctF.

1, Streptococcus mutans; 2, Streptococcus pyogenes; 3, Lactococcus lactis.

Fig. S3. Gene expression of mukA1 in type la strains.

The gene expression of mukA 1, which encodes mutacin K8, was investigated in type la

strains.
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