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Abstract
This thesis studies sequence modeling for text data augmentation and

molecular generation. Sequence modeling is a widely studied research
area, including stock price and weather data prediction, gene sequencing,
Natural Language Processing (NLP), and molecular generation. These
research topics cover economics, environment, biology, linguistics, and
chemistry, which are tightly linked to the development of society.

Among these foundations, natural language is the cornerstone of civ-
ilization, facilitating communication and storing knowledge. To solve
language-related problems with the help of computational techniques,
NLP, which consists of various tasks such as text classification, entity
extraction, text summarization, and text generation, is being developed.
Text classification is one of the fundamental NLP tasks, that aims to
categorize a text into one or more classes. However, the robustness of
such a task remains a concern, as the predictions can be manipulated by
adding perturbations. To address this concern, we propose three data
augmentation methods based on word substitution, combining synonyms,
antonyms, and sentimentally related words for the robustness enhance-
ment of the text classification task. We attempted to generate samples
that differed in semantics from the training data to improve the robust-
ness. We evaluated our methods on four publicly available datasets using
text adversarial attack techniques, and the experimental results validated
the robustness enhancement.

On the other hand, we also studied molecular generation for drug dis-
covery using Generative Adversarial Networks (GANs). Modeling molec-
ular generation using the Simplified Molecular Input Line Entry System
(SMILES) as a token-level sequence generation is straightforward. How-
ever, naively adopting the cumulative reward for the token-level sequence
generation is time-consuming and incompatible with the SMILES nature.
To address these limitations, we introduced an efficient reward function
that combines moment and global rewards, along with the information
entropy maximization, as an alternative to the cumulative reward. The
combination of moment and global rewards reduces the training time and
ensures molecular consistency, and the information entropy maximization
allows for diverse explorations and avoids the mode collapse problem com-
mon in GANs. Our Enhanced Actor-critic Reinforcement Learning (RL)
agent-driven GAN, EarlGAN, can generate molecules with a highly bal-
anced performance. Our extensive evaluation experiments validated the
effectiveness of our model.

2



Contents
1 Introduction 4

2 Preliminary 6
2.1 Natural Language Processing (NLP) and Text Classification . . . 6
2.2 Language Models (LMs) . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . 6
2.6 Monte Carlo Tree Search (MCTS)-based Reinforcement Learning

(RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Long-Short Term Memory (LSTM) . . . . . . . . . . . . . . . . . 7

3 Data Augmentation for Enhancing the Robustness of the Text
Classification Task 8
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Data Augmentation Methods . . . . . . . . . . . . . . . . . . . . 9
3.3 Evaluation Experiments . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 Evaluation Implementation . . . . . . . . . . . . . . . . . 12

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 Accuracy and F1 Score Results . . . . . . . . . . . . . . . 12
3.4.2 Robustness Results . . . . . . . . . . . . . . . . . . . . . . 12

4 Molecular Generation with An Efficient Reward Function 15
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 EarlGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Original GAN . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Autoregressive GAN . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Reward Calculation . . . . . . . . . . . . . . . . . . . . . 22

4.3 Evaluation Experiments . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Chemical Properties . . . . . . . . . . . . . . . . . . . . . 23
4.3.4 Experiment Settings . . . . . . . . . . . . . . . . . . . . . 24
4.3.5 Comparison Results on ZINC Dataset . . . . . . . . . . . 25
4.3.6 Chemical Properties Analysis . . . . . . . . . . . . . . . . 25
4.3.7 Representation Visualization on ZINC Dataset . . . . . . 26
4.3.8 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion 35

A Appendix 41

3



1 Introduction
We studied two topics related to sequence modeling: data augmentation for
enhancing the robustness of the text classification task and molecular generation
with an efficient reward function.

NLP is being developed to solve language-related problems, among which
text classification is one of the fundamental tasks, including spam detection
[1], topic classification [2], and sentiment classification [3]. It helps reduce labor
costs by using computers to categorize text automatically, and Language models
(LMs) are particularly helpful in solving such a task. However, the robustness
of the LMs for the text classification task remains a concern [4, 5, 6]. These
studies demonstrated that LMs are vulnerable to adversarial attacks, casting
shadows on the applications. The adversarial attacks add perturbations, such
as character or word substitutions, to the predicted text, altering the prediction
and compromising the reliability of the prediction results. To enhance the ro-
bustness of LMs for the text classification task, previous studies [4, 6, 7] focused
on adversarial training. Adversarial training adds adversarial samples generated
by adversarial attacks to the training data, providing features of the adversarial
samples. However, adversarial samples require gradient computation or addi-
tional computations such as importance score [4], until the prediction of the
sample changes. Such computations are based on additional backpropagation
or multi-trial, which are expensive.

In such a context, we paid attention to data augmentation techniques [8, 9,
10, 11, 12, 13, 14, 15] to provide samples with similar functions of adversarial
samples at lower cost. We assumed that large changes in semantics can also
improve the robustness. To induce relatively large semantic changes, we used
sentimentally related words for data augmentation. Specifically, we proposed
three data augmentation methods for robustness enhancement [16]. Cognate-
based methods combine synonyms and sentimentally similar words; Antonym-
based methods use antonyms; and Antipode-based methods combine antonyms
and sentimentally opposite words.

To evaluate our methods, we measured the performance and robustness re-
sults; the former is based on accuracy and F1 score, and the latter is based
on the accuracy under attack and the attack success rate. The accuracy un-
der attack is the ratio of the number of samples that resist attacks (maintain
correct predictions) to the total number of samples. The attack success rate
is the ratio of the number of samples predicted correctly to incorrectly to the
number of samples originally predicted correctly. We evaluated our methods on
four datasets: AG News [17], TREC [18, 19], SUBJ [20], and SMS Spam [21].
We selected DistilBERT [22] as the target victim model, which is attacked by
the adversarial attacks [4, 7]. Our evaluation experiments validated the effec-
tiveness of our methods and improved the performance and robustness of the
target victim model.

Drug discovery ensures the sustainability and development of modern health-
care and human well-being. It is aimed at discovering new chemical compounds
with healing effects. However, to develop a new drug costs 10-15 years and 2
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billion U.S. dollars on average [23]. Artificial Intelligence (AI) has attracted
the attention of the pharmaceutical industry [24] for time and cost reduction.
Among AI applications, deep generative models have made remarkable progress,
such as ChatGPT [25] and DALLE-3 [26] in NLP and Computer Vision (CV)
areas.

Recently, deep generative models for drug discovery have been increasingly
studied, including Variational AutoEncoders (VAEs) [27, 28, 29], GANs [30,
31], and diffusion models [32]. In this study, GANs were chosen as the basic
architecture for rapid training. On the one hand, although GANs have the
mode collapse problem, the samples they generate are more realistic than those
generated by VAEs. This is because the latent space of VAEs is generally too
small, resulting in a lack of express capability. On the other hand, despite the
powerful performance diffusion models, the multi-step denoising process takes
more time to train than GANs.

SMILES [33] is a string form of molecular structure with simpler information,
which reduces the computational cost. However, direct modeling of SMILES-
based molecular generation using GANs is impractical due to the discrete nature
of SMILES. A GAN consists of two components: a generator and a discrimi-
nator. The generator samples from the training data distribution and tries to
generate samples to fool the discriminator, while the discriminator tries to dis-
tinguish the generated samples from the real samples and updates the generator
using true/false discrimination. Such a competitive cycle guides the learning of
GANs. The subtle changes in the discrimination probability cannot be reflected
as a binary classification, leading to the gradient vanishing problem. Therefore,
we directly used the discrimination probability as the reward for the generator
update instead of using the discrimination true/false result.

Furthermore, we followed [34, 35] to model SMILES generation at the token-
level for dense rewards, which provide more efficient learning signals early in
training. However, the cumulative reward for generating SMILES at the token-
level is time-consuming and incompatible with the inherent nature of SMILES.
The cumulative reward assumes that the influence between tokens is inversely
proportional to the distance [34], which is not absolutely correct in SMILES.

To address these two problems, we introduced an efficient reward function
instead of the cumulative reward for token-level SMILES generation [36, 37].
We combined the moment reward for time efficiency and the global reward
[38] to ensure molecular consistency and information entropy maximization for
diverse exploration. Our reward function specializes in SMILES generation
and is an alternative to the cumulative reward, which is time-consuming and
incompatible with the nature of SMILES. We performed extensive evaluation
experiments validating the effectiveness of EarlGAN for SMILES generation,
and the chemical properties of the generated SMILES align with the training
data distribution.

The organization of this thesis is as follows: Chapter 2 presents the pre-
liminary for this thesis; Chapters 3 and 4 introduce text data augmentation
techniques for enhancing the robustness of the text classification task and an
efficient reward function for molecular generation and Chapter 5 concludes this
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thesis.

2 Preliminary
2.1 Natural Language Processing (NLP) and Text Classi-

fication
NLP deals with language-related tasks, such as text classification, entity ex-
traction, text generation, and so on. Among these tasks, text classification is
to categorize a text into one or more classes.

2.2 Language Models (LMs)
Researchers have recently been studying the application of neural networks to
address such NLP tasks. Among these applications, LMs have made progress,
such as BERT [39] and DistilBERT [22]. Most LMs are based on Transformer
architecture [40] and are typically trained using word prediction tasks.

2.3 Adversarial Training
Adversarial training aims to improve the robustness of machine learning models
so that they perform well not only on data similar to the training data but
also on unknown samples. Typically, for the text classification task, this in-
volves perturbing the training data to induce the model to make an incorrect
prediction. This can be done at the character-level, word-level, sentence-level,
or a combination of these operations. The samples that effectively induced the
incorrect prediction are then input as new training samples.

2.4 Data Augmentation
Data augmentation is typically used to improve the performance of machine
learning models when data is scarce, such as when data is difficult to obtain or
labeling is costly. In such cases, data augmentation techniques are used to learn
more samples and reduce unknown data.

2.5 Generative Adversarial Networks (GANs)
GANs are one of the dominant deep generative models, a GAN consists of
two components: the generator and the discriminator. They play a max-min
game: the generator tries to generate samples aligned with the training data
distribution and fool the discriminator into predicting the generated samples
as real samples; the discriminator tries to distinguish the realness of the input
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samples. The value function of GAN [41] is described as follows:

min
θ

max
ϕ

V (Gθ, Dϕ) =

Ex∼pdata(x)[logDϕ(x)]+
Ez∼pz(z)[log(1−Dϕ(Gθ(z)))], (2.1)

where Gθ and Dϕ are the generator and discriminator, θ and ϕ are their pa-
rameters, respectively. pdata(x) and pz(z) are the real data and input noise
distribution, respectively.

2.6 Monte Carlo Tree Search (MCTS)-based Reinforce-
ment Learning (RL)

RL is used to guide a computational agent to perform a task. RL does not
require a static dataset for the training, the agent can communicate with the
environment to obtain the experiment as a dataset. The key factors are the
agent, environment, actions, observations, and rewards. The agent performs
various actions with the environment and observes the rewards returned from
the environment, this process is performed iteratively until the training is com-
pleted. Recently, reinforcement learning has been increasingly combined with
deep learning, called deep reinforcement learning, to perform complicated tasks,
such as self-driving, robotics, and game-playing.

Among these applications, GANs with MCTS-based RL algorithms are com-
monly used for sequence generation, including molecular generation. MCTS-
based RL algorithms mimic the tree traversal architecture to obtain the reward
of each node, which is calculated based on the results at the end of the se-
quence. To stabilize the training process, MCTS-based RL algorithms require a
large sampling number for each node’s reward calculation due to the inefficient
sampling manner.

2.7 Long-Short Term Memory (LSTM)
LSTM [42] is a neural network architecture proposed to solve the long-distance
dependency problem in sequence modeling. When a long sentence is fed into a
neural network, the network cannot process word relationships that are too far
apart. LSTM [42] mainly uses the forget gate and the input gate to maintain
the long-distance dependencies. The forget gate determines which information
should be removed, and the input gate determines which information should
be updated. Finally, these two components are combined to obtain the cell
state and output autoregressively. Generally, LSTM [42] can be mathematically
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described as follows:

ht = ot × tanh(Ct), (2.2)
ot = σ(Wo[ht−1, xt] + bo), (2.3)
Ct = ft × Ct−1 + it × C̃t, (2.4)
C̃t = tanh(WC [ht−1, xt] + bC), (2.5)
it = σ(Wi[ht−1, xt] + bi), (2.6)
ft = σ(Wf [ht−1, xt] + bf ), (2.7)

where ht is the output result, xt is the input, ht−1 is the previous output result,
σ is the sigmoid layer, bo, bC , bi and bf are the learnable bias terms, ft and
it are the forget and input gate, respectively. Wo, WC , Wi and Wf are the
learnable weights. Ct is the current cell state, Ct−1 is the previous cell state,
C̃t is the candidate current cell state.

3 Data Augmentation for Enhancing the Ro-
bustness of the Text Classification Task

3.1 Related Work
Various adversarial training methods have been proposed to improve robustness.
TEXTFOOLER [4] replaces the important words based on the importance score
in the text with semantically similar and grammatically correct ones for such
training. CLARE [6] employs a pre-trained LM to perform replace, insert, and
merge actions to achieve the adversarial training. PWWS [7] is a synonym-
based word replacement method that considers both the word saliency and the
classification probability. Despite successful robustness improvements, these
methods require additional computations such as gradient or importance scores.

On the other hand, data augmentation methods are designed to improve
accuracy, especially for small datasets. EDA [8] performs one of the four-word
manipulations: random synonym replacement, random word deletion, random
word position swap, and random synonym insertion. AEDA [9] is a successor
to EDA [8] that randomly inserts punctuation marks into the text to improve
performance. Data Boost [10] and LAMBADA [11] both use pre-trained LMs for
this end; the former combines the LM with RL for guidance, while the latter adds
a data filtering process for high-quality data generation. UDA [12] transfers data
augmentation methods from supervised to semi-supervised settings, expanding
the applications of data augmentation. Contextual Augmentation [13] replaces
random words in sentences based on a bidirectional language model prediction.
[14] employs dependency trees to perform "crop" and "rotate". [15] optimizes
multiple data augmentation policies to find an effective "path" for text data
augmentation. Although these data augmentation methods have proven to be
effective for performance gains, especially for small datasets, none of them pay
attention to robustness.
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3.2 Data Augmentation Methods
We proposed three types of data augmentation methods to improve the robust-
ness of LMs: Cognate-based, Antonym-based, and Antipode-based stochastic
word replacement methods.

• Cognate-based Methods: We stochastically replaced words with synonyms
and sentimentally similar words. Sentimentally similar words were defined
as words that have the same sensitivity, attitude, temper, and introspec-
tion scores as the target word. These scores represent twenty-four ba-
sic emotions: ecstasy, joy, contentment, melancholy, sadness, grief, bliss,
calmness, serenity, annoyance, anger, rage, delight, pleasantness, accep-
tance, dislike, disgust, loathing, enthusiasm, eagerness, responsiveness,
anxiety, fear, and terror. For example, a high introspection score repre-
sents joy, while a low introspection score represents sadness.

• Antonym-based Methods: We stochastically replaced words with antonyms.

• Antipode-based Methods: We stochastically replaced words with antonyms
and sentimentally opposite words. Sentimentally opposite words were de-
fined as words that have the opposite sensitivity, attitude, temper, and
introspection scores as the target word.

We applied three grammatical constraints to our methods to validate the
effect of grammar rules for data augmentation, resulting in nine variants.

• Cognate1 (resp. Antonym1, Antipode1): We did not place any restrictions
on these methods.

• Cognate2 (resp. Antonym2, Antipode2): We applied the constraint that
the candidate replacement words must have the same Part-Of-Speech
(POS) tag as the target word, with the exception that nouns and verbs
can be replaced with each other.

• Cognate3 (resp. Antonym3, Antipode3): We applied the constraint that
the candidate replacement words must have the same POS tag as the
target word.

We implement these methods using WordNet [43] and SenticNet [44]. We
listed some augmented data samples from AG News [17] as follows:

• Original: “Bangladesh paralysed by strikes Opposition activists have brought
many towns and cities in Bangladesh to a halt, the day after 18 people
died in explosions at a political rally.”

• Cognate-based Methods: “Bangladesh paralysed by strikes Opposition
activists have brought many townsfolk and cities in Bangladesh to a
halt, the day after 18 people edema in explosions at a political rally.”
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Table 3.1: Datasets Description.
Dataset Task Number of Classes Training Size Evaluation Size Test Size

AG News [17] News Topic Classification 4 5k 0.5k 0.5k
TREC [18, 19] Question Classification 6 4.5k 0.5k 0.5k

SUBJ [20] Movie Review Subjectivity Classification 2 5k 0.5k 0.5k
SMS Spam [21] Spam SMS Detection 2 4.5k 0.5k 0.5k

• Antonym-based Methods: “Bangladesh paralysed by strikes Opposition
activists have brought few towns and cities in Bangladesh to a halt, the
day after 18 people died in explosions at a nonpolitical rally.”

• Antipode-based Methods: “Bangladesh paralysed by strikes Opposition
activists have brought many towns and cities in Bangladesh to a halt, the
night after 18 people died in explosions at a political demobilize.”

3.3 Evaluation Experiments
3.3.1 Datasets

We evaluated our data augmentation methods on AG News [17], TREC [18,
19], SUBJ [20], and SMS Spam [21]. We sampled these datasets, and detailed
descriptions are given in Table 3.1.

3.3.2 Evaluation Metrics

We conducted evaluation experiments based on four metrics: accuracy, F1 score,
accuracy under attack, and attack success rate. The first two metrics are used
for performance evaluation, while the last two metrics are used for robustness
evaluation. The larger the values of these evaluation metrics, the more favorable,
except for the attack success rate.

The accuracy and F1 score are calculated based on the evaluation confusion
matrix given in Table 3.2. True Positive (TP) is the number of samples that are
correctly predicted as "positive". False Positive (FP) is the number of samples
that are incorrectly predicted as "positive". True Negative (TN) is the number
of samples that are correctly predicted as "negative". False Negative (FN) is
the number of samples that are incorrectly predicted as "negative". "Positive"
and "negative" mean that a sample belongs to or does not belong to a particular
class, respectively. For binary classification problems, the accuracy and the F1
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Table 3.2: Evaluation Confusion Matrix.
Positive (Predicted) Negative (Predicted)

Positive (Actual) TP FN
Negative (Actual) FP TN

score are calculated as follows:

Accuracy = TP + TN

TP + TN + FP + FN
, (3.1)

F1 = 2Precision×Recall

Precision + Recall
, (3.2)

Precision = TP

TP + FP
, (3.3)

Recall = TP

TP + FN
, (3.4)

where precision is the percentage of "positive" predictions that are correct, and
recall is the percentage of the actual "positive" samples that are predicted as
"positive". Although precision and recall are both useful evaluation metrics,
they have a trade-off. The F1 score is used for a balanced evaluation.

For multi-class classification problems, we used a macro F1 score that gives
equal weight to each class. The accuracy and the macro F1 score F1Macro are
defined as follows:

Accuracy = NC

NA
, (3.5)

F1Macro =
∑N

n=1 F1n

N
, (3.6)

F1n = 2Precisionn ×Recalln
Precisionn + Recalln

, (3.7)

Precisionn = TPn

TPn + FPn
, (3.8)

Recalln = TPn

TPn + FNn
, (3.9)

where NC is the number of correct predictions, NA is the number of all predic-
tions, nis the n-th class, and N is the total number of classes.

The attack success rate RAS is defined as follows:

RAS = NI

NC
, (3.10)

where NI is the number of samples predicted correctly to incorrectly under
attack, and NC is the number of samples that are originally predicted correctly
without attack.
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3.3.3 Evaluation Implementation

To validate our methods, we used our data augmentation methods to gener-
ate additional training datasets that were merged with the original training
datasets. We fine-tuned DistilBERT [22] with these merged training datasets
and evaluated the performance.

Then, we used TEXTFOOLER [4] and PWWS (excluding the named entity
adversarial swap) [7] to attack these trained models for robustness evaluation.
We also compared with EDA [8] and CheckList [5]. All evaluations were re-
peated three times, and the results were averaged out.

3.4 Results
We presented the evaluation results as the difference between the fine-tuned
model with and without data augmentation methods.

3.4.1 Accuracy and F1 Score Results

Figures 3.1-3.4 show the comparison results in terms of accuracy and F1 score
on the AG News [17], TREC [18, 19], SUBJ [20], and SMS Spam [21] datasets.

The red bars represent the accuracy, and the blue bars represent the F1
score. For the AG News [17] dataset, all data augmentation methods improved
the accuracy and F1 score. Antipode3 is the most impressive, with increases of
1.87% and 1.91% in accuracy and F1 score, respectively. However, Antipode1
cannot effectively improve these metrics. This difference is due to the POS
constraint, which indicates the importance of data filtering based on grammar
rules. For the TREC [18, 19] dataset, all data augmentation methods decreased
the performance. The TREC [18, 19] is a relatively simple question classifica-
tion dataset, and these data augmentation methods may introduce more noise,
which decreases the performance. For the SUBJ [20] dataset, EDA [8] and
Antonym1 are effective in improving performance. For the SMS Spam [21]
dataset, all data augmentation methods can improve the performance, which
is similar to the results for the AG News [17] dataset. CheckList [5] and
Antipode2 are comparable in performance improvement, the former increased
accuracy and F1 score by 0.53% and 1.22%, respectively, while the latter in-
creased them by 0.47% and 1.05%. Based on the observation of the performance
results on the AG News [17] and SMS Spam [21] datasets, the Antipode-based
methods with appropriate restrictions are relatively effective in improving the
performance.

3.4.2 Robustness Results

Figures 3.5-3.12 show the results of the robustness improvement. The red bars
represent attacks by TEXTFOOLER [4], and the blue bars represent attacks
by PWWS [7]. For the AG News [17] dataset, Antonym2 and Antipode2
demonstrated high robustness, especially Antipode2 with accuracy improve-
ment under attack (2.8% and 8.6%) and attack success rate decrease (-3.0% and
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Figure 3.1: AG News Accuracy and F1 Score Improvement.

Figure 3.2: TREC Accuracy and F1 Score Improvement.
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Figure 3.3: SUBJ Accuracy and F1 Score Improvement.

Figure 3.4: SMS Spam Accuracy and F1 Score Improvement.
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Figure 3.5: AG News Accuracy Improvement under Attack.

-9.34%) by TEXTFOOLER [4] and PWWS [7]. For the TREC [18, 19] dataset,
Antonym1 and Antonym2 improved the robustness in terms of accuracy un-
der attack (1.07% and 3.8%; 1.67% and 1.27%), and attack success rate (-1.19%
and -4.08%; -1.7% and -1.27%). For the SUBJ [20] dataset, Antonym2 and
Antipode1 worked to increase accuracy under attack (1.13% and 2.33%; 1.0%
and 2.53%) and decrease attack success rate (-1.2% and -2.48%; -1.02% and
-2.61%). For the SMS Spam [21] dataset, all methods are effective in improving
robustness, especially Antipode2 significantly increased accuracy under attack
(16.93% and 11.47%) and decreased attack success rate (-16.68% and -11.15%).

Although the robustness improvement varied depending on the dataset,
Antonym-based and Antipode-based methods validated their effectiveness. We
hypothesized that learning with antonyms and sentimentally opposite words
would allow the model to learn more out-of-distribution samples, thereby im-
proving the robustness.

4 Molecular Generation with An Efficient Re-
ward Function

4.1 Related Work
Deep generative models have emerged in real-world applications in NLP and
Computer Vision (CV) areas. Researchers have made efforts to apply these
models to drug discovery. GrammarVAE [29] attempts to generate syntactically
correct SMILES strings using parse trees, but without regard to semantic mean-
ing. SyntaxVAE [27] improves on GrammarVAE [29] by taking both grammar
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Figure 3.6: AG News Attack Success Rate Decrease.

Figure 3.7: TREC Accuracy Improvement under Attack.
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Figure 3.8: TREC Attack Success Rate Decrease.

Figure 3.9: SUBJ Accuracy Improvement under Attack.
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Figure 3.10: SUBJ Attack Success Rate Decrease.

Figure 3.11: SMS Spam Accuracy Improvement under Attack.
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Figure 3.12: SMS Spam Attack Success Rate Decrease.

and semantics into account. JTVAE [28] incorporates a graph message-passing
network for molecular graph generation. Despite efforts to develop VAEs for
molecular generation, the latent space of VAEs is too small to generate realistic
molecules, thereby the molecules generated by VAEs are oversmoothed.

GraphAF [45] employs a flow-based autoregressive model to generate molec-
ular graphs. EDM [32] generates molecules in a 3D combing diffusion process
and an equivariant network with both continuous and discrete features. How-
ever, the flow-based models require the computationally expensive Jacobian
matrix and a reversible network with limited representability, and the diffusion
process requires multi-sampling with expensive training costs.

SeqGAN [46] incorporates MCTS-based RL into the GAN architecture for
discrete sequence generation. ORGAN [47] specializes SeqGAN [46] by inte-
grating domain-specific knowledge into the reward function. TransORGAN [31]
improves the semantic and syntax parsing capabilities with Transformer [40]
architecture and variant SMILES. MolGAN [30] uses an implicit, likelihood-free
GAN to specialize in the generation of small molecular graphs. Most MCTS-
based RL GANs require extensive sampling processes, resulting in high compu-
tational costs, and training such GANs on large datasets is challenging. There-
fore, in this chapter, we introduced an efficient reward function combined with
an LSTM-based GAN for token-level SMILES generation. Our model showed
the effectiveness on large datasets with low computational cost.

4.2 EarlGAN
Figure 4.1 shows the overview of EarlGAN. EarlGAN consists of two compo-
nents: a generator and a discriminator. The LSTM-based generator generates
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SMILES autoregressively, and the bi-LSTM-based discriminator predicts the
realness of input SMILES at the token-level. The generator update is based on
the moment and global rewards, and the maximized entropy. The moment and
global rewards are computed from the prediction probabilities of the discrimi-
nator, and the maximized entropy is computed from the output probabilities of
the tokens of the generator.

4.2.1 Original GAN

The original GAN [41] models the training data distribution using the generator-
discriminator competition circle. The value function of the original GAN [41] is
described as follows:

min
θ

max
ϕ

V (Gθ, Dϕ) =

Ex∼pdata(x)[logDϕ(x)]+
Ez∼pz(z)[log(1−Dϕ(Gθ(z)))], (4.1)

where Gθ and Dϕ are the generator and discriminator, θ and ϕ are their param-
eters, respectively. pdata(x) and pz(z) are the real data and noise distributions,
respectively.

4.2.2 Autoregressive GAN

Naively computing the reward based only on the end of the whole sequence
can lead to the sparse reward problem [34, 35]. Especially in the early training
stage, the discriminator can easily predict the realness of the generated samples,
leading to the gradient vanishing. This requires a large number of samplings
and is therefore time-consuming. Therefore, we used the assigned prediction
probability as a reward for each token. The value function of EarlGAN is as
follows:

min
θ

max
ϕ

V (Gθ, Dϕ) =

T∑
t=1

Ext∼pdata(xt|−→x 1:t−1)[logDϕ(yt|−→x 1:t,
←−x t:T )]+

T∑
t=1

Ext∼pθ(xt|−→x 1:t−1)[log(1−Dϕ(yt|−→x 1:t,
←−x t:T ))], (4.2)

where yt is the prediction by the discriminator based on the forward pass −→x 1:t
and the backward pass ←−x t:T of the sequence. pθ(xt|−→x 1:t−1) is the data distri-
bution generated by the generator and T is the maximum sequence length of
the SMILES string.
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Figure 4.1: Overview of EarlGAN.
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4.2.3 Reward Calculation

We used moment and global [38] rewards with information entropy maximiza-
tion to update the generator instead of the cumulative reward. The combina-
tion of moment and global rewards reduces the computational cost and ensures
molecular consistency, acting as an alternative to the cumulative reward. Fur-
thermore, the information entropy maximization provides a diverse exploration.
The combination of moment and global rewards Rt is described as follows:

Rt = 2rt − 1 + wGR

T∑
t=1

rt

T
, (4.3)

rt = Dϕ(yt|−→x 1:t,
←−x t:T ), (4.4)

where 2rt − 1 is the moment reward and
∑T

t=1
rt

T is the global reward. wGR is
the weight assigned to the global reward.

We combined the above reward combination with information entropy maxi-
mization. In addition, we used the reward baseline, as in general RL algorithms,
to emphasize the relative reward and reduce the sampling variance. We com-
puted the baseline as a global moving average of the mean reward over the entire
batch [48]. The final loss function LG is described as follows:

LG = LR + wELE , (4.5)

LR = −
∑N

n=1
∑Tn

t=1(Rn
t − bi)logpθ(xn

t |
−→
xn

1:t−1)∑N
n=1 Tn

, (4.6)

LE = −
∑N

n=1
∑Tn

t=1 H(xn
t )∑N

n=1 Tn

, (4.7)

bi = αbi−1 + (1− α)Ri, (4.8)

H(xn
t ) = −

V∑
v=1

pθ(xv
t )logpθ(xv

t ), (4.9)

where LR and LE are the loss functions for the reward combination and entropy,
respectively. N is the batch size, bi is the baseline of the current i-th batch, Tn

is the length of the n-th SMILES string in the batch. α is set to 0.9. H(xn
t )

is the Shannon entropy of the t-th atom in the n-th SMILES string, V is the
vocabulary size of the dataset, and wE is the weight assigned to the information
entropy.

4.3 Evaluation Experiments
4.3.1 Datasets

We conducted the evaluation experiment, the ablation study, and the visual-
ization analysis on two public datasets: QM9[49] and ZINC [50, 51]. These
datasets contain about 130k and 250k molecules, respectively.
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4.3.2 Evaluation Metrics

We followed SpotGAN [52] to evaluate EarlGAN using validity, uniqueness,
novelty, and diversity. Validity is the ratio of chemically valid SMILES strings
to all generated SMILES strings. Uniqueness is the ratio of valid & unique
SMILES strings to all valid SMILES strings. Novelty is the ratio of valid &
unique SMILES strings that are not present in the training dataset to all valid
& unique SMILES strings. Validity, uniqueness, and novelty are defined as
follows:

V alidity = NV

NG
, (4.10)

Uniqueness = NU

NV
, (4.11)

Novelty = NN

NU
, (4.12)

where NG is the number of all generated SMILES strings, NV is the number
of generated chemically valid SMILES strings, NU is the number of generated
chemically valid & unique SMILES strings, and NN is the number of generated
chemically valid & unique SMILES strings that are not present in the training
dataset.

Diversity represents the distance of chemical structure between molecules
based on the Tanimoto coefficient [53] and the Morgan fingerprint [54]. The
calculation of the diversity Div(DN ) between two novel SMILES strings Si, Sj

is as follows:

Div(DN ) = 1− 1
|DN |

∑
Mi,Mj∈DN

Sim(Mi, Mj), (4.13)

Sim(Mi, Mj) = |Mi&Mj |
|Mi|+ |Mj | − |Mi&Mj |

, (4.14)

where Sim(Mi, Mj) is the Tanimoto similarity of the Morgan fingerprint Mi, Mj

between two arbitrary novel SMILES Si, Sj . DN is the novel SMILES string
set, | · | is the number of bits set in the Morgan fingerprint, and & is to count
the bits in common between two Morgan fingerprints.

All scores range from 0 to 1. The higher the score, the better the model.

4.3.3 Chemical Properties

We also evaluated the generated valid SMILES using three desirable chemi-
cal properties: druglike-ness (QED) [55], solubility (logP), and Synthesizability
(SA). Druglike-ness (QED) [55] defines how similar a molecule is to existing
drugs. Solubility (logP) defines the hydrophobicity of a molecule and is quanti-
fied using the logarithm of the octanol-water partition coefficient. Synthesizabil-
ity (SA) defines how easy it is to synthesize a molecule using existing chemical
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reactions based on the synthetic accessibility score [56]. The definition of QED
is described as follows:

QED = exp(
∑8

i=1 Wilndi∑8
i=1 Wi

), (4.15)

where di and Wi are the desirability function for the i-th descriptor and the
weight assigned to the i-th descriptor, respectively. The eight molecular de-
scriptors are the molecular weight (MW), octanol-water partition coefficient
(ALOGP), number of hydrogen bond donors (HBDs), number of hydrogen bond
acceptors (HBAs), molecular polar surface area (PSA), number of rotatable
bonds (ROTBs), number of aromatic rings (AROMs), and number of structural
alerts (ALERTS).

LogP is described as follows:

logP = log
co

cw
, (4.16)

where co and cw are the substance activities of the octanol and water phases,
respectively.

SA is described as follows:

SA = rs −
5∑

i=1
pi, (4.17)

where rs is the experimental knowledge obtained from the molecular synthesis
analysis [52]. pi is five factors: ring complexity, stereo complexity, macrocycle
penalty, size penalty, and bridge penalty.

The higher these property scores, the more desirable the generated valid
molecules. Druglike-ness (QED) [55] ranges from 0 to 1. Solubility (logP) and
Synthesizability (SA) range from 0.1 to 1. The implementation is based on the
RDKit tool.

4.3.4 Experiment Settings

We used LSTM as the basic architecture for both the generator and the dis-
criminator, and the latter is based on bi-LSTM. We also employed dropout [57]
with a probability of 0.1. For the discriminator, we used the L2 regularization
with a coefficient of 1e−6, and we used the Adam optimizer [58] with a learning
rate of 2e− 4. We set the batch size to 1024.

For the QM9[49] dataset, we presented the ablation study and visualization
analysis, and for the ZINC [50, 51] dataset, we presented the comparison results,
ablation study, and visualization analysis. For the QM9[49] dataset, the maxi-
mum training step is set to 20k, and the model was evaluated per 100 steps on
10k samples. For the ZINC [50, 51] dataset, the maximum training step is set to
60k, and the model was evaluated per 100 steps on 5k samples. The maximum
string lengths are set to 19 and 49, respectively. The entropy weights wE were
set to 5e − 2 and 1e − 3, respectively. The global reward weights were set to
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Table 4.1: Comparison Results with Baselines on ZINC [50, 51] dataset.
Model Validity(%) ↑ Uniqueness(%) ↑ Novelty(%) ↑ Diversity ↑

Random Sampler [59] 100.00 61.54 0.00 0.64
CharacterVAE [29] 73.34 99.18 100.00 0.39
GrammarVAE [29] 76.36 99.55 100.00 0.45

JTVAE [28] 100.00 13.94 99.43 0.61
GraphAF1∗ [45] 72.26 84.80 100.00 0.79
GraphAF10∗ [45] 67.27 99.44 100.00 0.69

TransORGAN [31] 75.52 94.64 100.00 0.68
EarlGAN [37] 96.14 99.06 99.74 0.90

* 1 and 10 represent the minimum length of the SMILES strings.

5e− 3 and 7.1e− 5, respectively. We repeated the evaluation experiments and
the ablation study five times and averaged the results out.

4.3.5 Comparison Results on ZINC Dataset

Table 4.1 shows the comparison results, and the average training time of Earl-
GAN [37] is 1427.69 minutes. We trained EarlGAN [37] on the entire ZINC
[50, 51] dataset. We compared EarlGAN [37] with Random Sampler [59], Char-
acterVAE [29], GrammarVAE [29], JTVAE [28], GraphAF [45], and TransOR-
GAN [31]. These baseline results were also used in the literature [31]. These
baselines were trained on a subset of the ZINC [50, 51] dataset with 5k sam-
ples. While EarlGAN did not outperform other baselines in terms of validity,
uniqueness, and novelty, its results are comparable to the best of the baselines:
validity (96.14%), uniqueness (99.06%), and novelty (99.74%). The diversity of
EarlGAN outperformed the other baselines with a value of 0.90. These compar-
ative results indicate that EarlGAN can generate unique & new molecules with
diverse structures. We assumed that the balanced performance of EarlGAN is
due to the training on a large dataset with an efficient reward function.

4.3.6 Chemical Properties Analysis

We compared valid SMILES and training SMILES in terms of chemical prop-
erties on the QM9[49] and ZINC [50, 51] datasets. Table 4.2 shows these com-
parison results, showing that the mean property values of the generated valid
SMILES are quite similar to those of the training SMILES, except for the mean
SA on the ZINC [50, 51] dataset. Although the generated valid SMILES have a
higher mean SA value than those of the training SMILES, the generated valid
SMILES generally align with the training data distribution well.

For a more detailed analysis, we provided some visualization comparisons.
Figures 4.2, 4.3 and 4.4 show the violin plots of these property comparisons on
the QM9[49] dataset, and Figures 4.5, 4.6 and 4.7 show the violin plots of these
property comparisons on the ZINC [50, 51] dataset. Although the distributions
of the generated valid SMILES are not identical to those of the training SMILES,
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Table 4.2: Chemical Properties Comparison on QM9[49] and ZINC [50, 51].
Data Max Len Min Len Mean Len Mean QED ↑ Mean LogP ↑ Mean SA ↑

QM9 Real 29 1 15 0.47 0.30 0.27
QM9 Valid 19 8 15 0.49 0.34 0.23
ZINC Real 109 9 44 0.73 0.56 0.56
ZINC Valid 49 9 35 0.76 0.54 0.67

they are similar, supporting the numerical results. The similarity proved that
EarlGAN can learn the property distribution of the training data well.

Figures A.1-A.12 show the generated valid and training SMILES with the
top 12 property values in terms of drug-likeness (QED), solubility (logP), and
SA. These figures proved that EarlGAN generates novel SMILES that are not
present in the training datasets.

4.3.7 Representation Visualization on ZINC Dataset

We also visualized the representation of the generated valid and training SMILES
on the ZINC [50, 51] dataset using the trained discriminator. Specifically, we
first sampled the same number of valid and training SMILES and fed them into
the trained discriminator to extract the hidden state of the discriminator. Then,
we used the Principal Component Analysis (PCA) to reduce the dimensions of
the representations to 2D and 3D for visualization, respectively. Figures 4.8 and
4.9 show the 2D and 3D scatterplots, respectively. The distributions of both
datasets are quite similar in both 2D and 3D scatter plots, supporting the idea
that EarlGAN learns the training distribution at the representation level. Fur-
thermore, there are some out-of-distribution generated samples, proving that
EarlGAN does not merely memorize the training data.

4.3.8 Ablation Study

Table 5.1 shows the ablation study results on the QM9[49] and ZINC [50, 51]
datasets. We removed both information entropy maximization and global re-
ward as a comparison, and only global reward as a further comparison. The
training processes were also repeated five times. For the QM9[49] dataset, in-
formation entropy maximization increased the validity, uniqueness, and novelty,
especially novelty, with increased computational cost. The global reward mainly
increased the uniqueness. For the ZINC [50, 51] dataset, the information en-
tropy maximization increased the validity with increased computational cost,
and the global reward increased all metrics.

Although the effectiveness of information entropy maximization may vary
depending on the dataset, it provided a more diverse exploration, resulting in a
better model parameter to improve validity. The global reward mainly improved
the uniqueness. The improved validity on the ZINC [50, 51] dataset due to the
global reward on the ZINC dataset is straightforward: the improved molecu-
lar consistency increased the stability of molecular generation. However, the
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Figure 4.2: QED Violin Plot Comparison of Generated Valid (upper) and Train-
ing (lower) SMILES on QM9.
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Figure 4.3: Solubility Violin Plot Comparison of Generated Valid (upper) and
Training (lower) SMILES on QM9.
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Figure 4.4: SA Violin Plot Comparison of Generated Valid (upper) and Training
(lower) SMILES on QM9.
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Figure 4.5: QED Violin Plot Comparison of Generated Valid (upper) and Train-
ing (lower) SMILES on ZINC.
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Figure 4.6: Solubility Violin Plot Comparison of Generated Valid (upper) and
Training (lower) SMILES on ZINC.
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Figure 4.7: SA Violin Plot Comparison of Generated Valid (upper) and Training
(lower) SMILES on ZINC.
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Figure 4.8: Representation Visualization in 2D Scatter Plot on ZINC.
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Figure 4.9: Representation Visualization in 3D Scatter Plot on ZINC.
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Table 5.1: Ablation Study Results on QM9[49] and ZINC [50, 51] Datasets.
Dataset Validity(%) ↑ Uniqueness(%) ↑ Novelty(%) ↑ Diversity ↑ Time(min) ↓

QM9
w/o E and GR 94.41 83.27 65.55 0.92 178.20

w/o GR 94.45 84.35 70.39 0.92 192.53
EarlGAN 94.07 86.24 70.04 0.92 196.25

ZINC
w/o E and GR 95.26 98.88 99.79 0.90 1368.38

w/o GR 95.87 98.54 99.67 0.90 1468.35
EarlGAN 96.14 99.06 99.74 0.90 1427.69

w/o means without the specific components, E and GR mean the entropy maximization and global reward component, respectively.

improved uniqueness is surprising. The combination of these two components
contributed comprehensively to the model.

5 Conclusion
In this thesis, we studied sequence modeling for text data augmentation and
molecular generation.

In Chapter 3, we introduced three text data augmentation methods to im-
prove the robustness of LMs. We conducted extensive evaluation experiments
that validated the effectiveness of our methods. In particular, the Antonym-
based and Antipode-based methods generally improved the robustness because
more out-of-distribution samples can be learned.

In Chapter 4, we introduced EarlGAN with an efficient reward function
instead of the cumulative reward. The efficiency of the reward function makes
EarlGAN suitable for large molecular datasets. EarlGAN showed a balanced
trade-off between validity, uniqueness, and novelty. The visualization analysis
and ablation study provided insight into the generated valid SMILES. EarlGAN
provides an alternative for training on large molecular datasets.
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Figure A.1: Top 12 Drug-likeness (QED) Valid Molecules on QM9.
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Figure A.2: Top 12 Drug-likeness (QED) Real Molecules on QM9.
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Figure A.3: Top 12 Solubility (logP) Valid Molecules on QM9.
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Figure A.4: Top 12 Solubility (logP) Real Molecules on QM9.

45



Figure A.5: Top 12 SA Valid Molecules on QM9.
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Figure A.6: Top 12 SA Real Molecules on QM9.
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Figure A.7: Top 12 Drug-likeness (QED) Valid Molecules on ZINC.
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Figure A.8: Top 12 Drug-likeness (QED) Real Molecules on ZINC.
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Figure A.9: Top 12 Solubility (logP) Valid Molecules on ZINC.
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Figure A.10: Top 12 Solubility (logP) Real Molecules on ZINC.
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Figure A.11: Top 12 SA Valid Molecules on ZINC.

52



Figure A.12: Top 12 SA Real Molecules on ZINC.
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