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Abstract Ameshfree approach for plate buckling/post-
buckling problems in the case of uniaxial thrust is pre-
sented. A geometrical nonlinear formulation is employed

using reproducing kernel approximation and stabilized
conforming nodal integration. The bending components
are represented by Mindlin-Reissner plate theory. The

formulation has a locking-free property in imposing the
Kirchhoff mode reproducing condition. In addition, in-
plane deformation components are approximated by re-

producing kernels. The deformation components are cou-
pled to solve the general plate bending problem with ge-
ometrical non-linearity. In buckling/post-buckling anal-

ysis of plates, the in-plane displacement of the edges
in their perpendicular directions is assumed to be uni-
form by considering the continuity of plating, and pe-

riodic boundary conditions are considered in assuming
the periodicity of structures. In such boundary condi-
tion enforcements, some node displacements/rotations

should be synchronized with others. However, the en-
forcements introduce difficulties in the meshfree ap-
proach because the reproducing kernel function does

not have the so-called Kronecker delta property. In this
paper, the multiple point constraint technique is in-
troduced to treat such boundary conditions as well as
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the essential boundary conditions. Numerical studies
are performed to examine the accuracy of the multiple
point constraint enforcements. As numerical examples,

buckling/post-buckling analyses of a rectangular plate
and stiffened plate structure are presented to validate
the proposed approach.

Keywords Meshfree method · Reproducing kernel
approximation · Large deflection analysis · Multiple

Point Constraint

1 Introduction

In solid/structural analysis using meshfree methods,
bodies are discretized according to distributed nodes,
and deformations are represented by interpolation func-

tions located at the nodes. The methodologies do not
require finite element meshes in the discretization and
therefore avoid difficulties of mesh distortion in large

deformation analyses. So far, various meshfree methods
have been proposed. The pioneering works of the mesh-
free method are the diffuse element method (DEM) [1],

element free Galerkin method (EFGM) [2], reproduc-
ing kernel particle method (RKPM) [3], H-P Clouds [4]
and meshless local Petrov-Galerkin (MLPG) method

[5]. The moving least square (MLS) approximation or
reproducing kernel (RK) approximation is sometimes
used to generate the interpolation functions. In the past

20 years, there has been much research into the devel-
opment of new meshfree methods, boundary treatment
techniques and discretization for solving science and en-

gineering problems. The meshfree/particle methods are
summarized in [6] [7] [8] [9] [10].

Transportation vehicles, such as ships, aircraft and

railcars, are very large structures composed of thin-
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plates. When axial compressive stress in the in-plane

direction acts on the structure and reaches a critical
value, the structural members undergo buckling. The
deflection begins to increase in addition to the in-plane

displacement after the buckling. In assessing the in-
tegrity and reliability of the structures, buckling/post-
buckling behaviors of the structural members are im-

portant. Although direct approaches for three-dimensional
continuum using meshfree analyses have been adopted
for thin-plate/shell structures [11] [12] [13], structural

modeling based on a classical beam or plate theory is
useful, as are finite element methods (FEMs), from the
viewpoint of computational efficiency. Researchers have

attempted to analyze plate/shell structures with mesh-
free methods. Krysl and Belytschko firstly solved plate
[14] and shell [15] problems using the EFGM. Long

and Atluri solved the thin-plate bending problem us-
ing the MLPG method [16]. Wang and Chen solved the
Mindlin-Reissner plate theory using the RKPM with
stabilized conforming nodal integration (SCNI) [17] and

the thin-plate bending problem using the Hermite re-
producing kernel (HRK) and sub-domain stabilized con-
forming integration (SSCI) [18] [19] [20]. Chen andWang

also developed shear deformable shells in Cartesian co-
ordinates using the RKPM [21]. The Kirchhoff plate
problem was solved by Liu et al. [22] using a mesh-

free Hermite-type radial point interpolation method.
Noguchi et al. carried out geometrical nonlinear anal-
yses for shell and spatial structures using the EFGM

[23], and Wang et al. solved the problem of shear de-
formable plates with geometrical nonlinearity with RKs
and SCNI [24]. Elastic buckling analysis of plates and

corrugated plates using a meshfree approach has been
carried out, employing eigenvalue analyses to evaluate
the buckling loads and buckling modes [25] [26] [27].

Liew et al. [28] developed a geometrical nonlinear ap-
proach for folded plate structures. An adaptive enrich-
ment meshfree approach was presented by Lu et al. [29]

to evaluate the buckling and post-buckling behaviors
in sheet metal forming. Rabczuk et al. [30] solved the
problem of arbitrarily evolving cracks in a thin-shell

structure considering nonlinear dynamic fracture phe-
nomena using the EFGM.

In this study, large deflection analysis of plate struc-
tures is presented to evaluate buckling and post-buckling
behaviors using RK approximation. A geometrical non-

linear formulation of plate bending problems consid-
ering in-plane deformations is developed. The bending
components are represented by Mindlin-Reissener plate

theory proposed by Wang et al. [17]. The formulation
includes the shear deformable effect and has a locking-
free property for imposing the Kirchhoff mode repro-

ducing condition (KMRC) with pure bending mode.

The properties are satisfied by employing more than

complete quadratic bases in the construction of RKs. In
addition, in-plane deformations are approximated using
RK approximation. They are coupled and formulated

using the total Lagrangian formulation to solve the gen-
eral plate bending problem with geometrical nonlinear-
ity. Each node has five degrees of freedoms (DOFs).

The model is discretized with a Voronoi cell diagram
[31], and the tangent stiffness matrix is numerically in-
tegrated through SCNI [32] [33] and SSCI [18] to elim-

inate spatial instability in nodal integration.

In buckling analysis of plates under uniaxial thrust,

the in-plane displacement of the edges in their perpen-
dicular direction is assumed to be uniform in consider-
ing the continuity of the plating. In addition, a periodic

boundary condition (BC) is considered in assuming pe-
riodicity of the structures. In such BCs, some node dis-
placements/rotations should be synchronized with oth-

ers. However, the enforcements introduce difficulties in
the meshfree approaches because the RK function does
not have the so-called Kronecker delta property. So far,

techniques have been adopted to treat BCs and con-
tact problems; e.g., Lagrange multipliers [2], penalty
methods [23] [34], coupling with the conventional FEM

[35] [36] [37], the full transformation method [38], the
mixed transformation method and the boundary singu-
lar kernel method [39]. In this study, the multiple point

constraint (MPC) technique is introduced to assume
continuity of plating and periodicity of structures. The
enforcements can be consistently discussed the essen-

tial BC enforcements as well. Nevertheless, the MPC
technique is a simple and efficient approach for enforc-
ing BCs in FEMs, and it should be considered when

adopting a meshfree approach because the RKs have
a compact support property. In this work, we investi-
gate the MPC technique and find that the approach

does not exactly pass the so-called patch test. We then
propose an approach to improve the accuracy of the so-
lution. Although it is possible for BCs to be enforced

by other enforcement approaches, the MPC technique
is free from the ill-condition of the tangent stiffness ma-
trix and there are no additional DOFs in terms of the

enforcements. Nagashima [40] adopted MPC enforce-
ments to treat essential BCs in two-dimensional EFGM
analyses, and researchers [41][42] have employed the ap-

proach to treat the periodic BC of rubber materials.
There have been a few discussions and reports of em-
ploying MPC techniques in taking a meshfree approach

and in plate buckling/post-buckling analyses assuming
continuity of plates and periodicity of the structures.
As numerical examples, buckling/post-buckling analy-

ses of plates and stiffened plates subject to uni-axial
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thrust are demonstrated to validate the proposed ap-

proach.
The layout of this paper is as follows. A geometrical

nonlinear formulation using RK approximation for the

plate bending problem considering in-plane deforma-
tion is presented in Chapter 2. An MPC technique for
enforcing continuity of plating and periodicity of struc-

tures is presented in Chapter 3. Chapter 4 demonstrates
the buckling/post-buckling analysis of plates and stiff-
ened plates as the numerical examples. Finally, conclud-

ing remarks are given in Chapter 5.

2 Geometrical nonlinear formulation for the
plate bending problem

2.1 Representation of a plate deformation

Fig. 1 (a) is a schematic illustration of a plate bending
problem. The surface area of the plate is S, the plate
thickness is th and the plate volume is V (= S × th).

The plate boundary is denoted L. A discretization of
the plate adopting a meshfree approach is shown in
Fig. 1 (b). The nodes are distributed in the middle
surface of the plate. Meshfree interpolation functions

are generated on nodes located in the support area. In
buckling/post-buckling analyses of the plate under uni-
axial thrust, membrane deformations are not insignif-

icant compared with the bending components. A ge-
ometrical nonlinear plate bending formulation is em-
ployed considering in-plane deformations. In this formu-

lation, two DOFs (up1, u
p
2) plus three DOFs (w, β1, β2)

are considered per node. up1 and up2 are in-plane dis-
placements in x1 and x2 directions, w is the deflection

component of the plate, and β1 and β2 are deflection
angles relative to the x1 and x2 axes as shown in Fig.
1 (a). The DOFs of a node are illustrated in Fig. 1

(c). To describe general plate deformation, in-plane de-
formation and bending components are coupled. The
displacement vector u(x) for a plate is represented as

u(x) =


u1
u2
u3

 =


up1 − zβ1
up2 − zβ2

w

 , (1)

where ui(i = 1, 2, 3) represents plate displacement along
the xi(i = 1, 2, 3) axis. z (|z| ≤ th/2) represents the
plate thickness direction. The deflection angles β1 and

β2 are obtained according to Mindlin-Reissner plate
theory:

β1 =
∂w

∂x1
− γ1, β2 =

∂w

∂x2
− γ2, (2)

where γi(i = 1, 2) denotes the shear strains in the x1
and x2 directions.

2.2 Reproducing kernel approximation

Let the middle surface in Fig. 1 (a) be discretized by a

set of NP nodes (x1, · · · ,xI , · · · ,xNP ) as shown in Fig.
1(b). Hereafter, the in-plane (membrane) components
(up1, u

p
2) and bending components (w, β1, β2) are de-

noted {up1 u
p
2 w β1 β2 } = { v1 v2 v3 v4 v5 } for simplic-

ity of description. In this approach, the vectors vhi (x)(i =
1, · · · , 5) are represented by RKs ψI(x) (I = 1, · · · , NP ):

vhi (x) =
NP∑
I=1

ψI(x)viI , (i = 1, · · · , 5) (3)

where viI denotes the coefficient vectors correspond-
ing to displacement/rotational components. The RK

function ψI(x) is constructed as the sum of the orig-
inal kernel function ϕaI(x) so as to satisfy the so-called
consistency condition [43]. The RK function ψI(x) is

represented using a basis vector h(x) and coefficient
vector b(x):

ψI(x) = hT (xI − x)b(x)ϕaI(xI − x). (4)

Complete quadratic bases are used as the basis vector in

this formulation; i.e., hT (x) = {1 x1 x2 x21 x1x2 x22 }.
And, bT (x) = { b00 b10 b01 b20 b11 b02 } is the coefficient
vector of the RK function. So far, several functions have

been proposed as the original kernel function [7][9]. For
example, the cubic spline kernel function is written as

ϕaI(xI − x, h) =
10

7πh2


1− 3

2s
2 + 3

4s
3 (0 ≤ s ≤ 1)

1
4 (2− s)3 (1 ≤ s ≤ 2)

0 (2 ≤ s)
,

(5)

where s(=|xI − x|/h) is the normalized distance from
the center of the kernel and h is a parameter that de-

termines the function support.

The consistency condition in the two-dimensional

case is expressed as

NP∑
I=1

ψI(x)x
i
1Ix

j
2I = xi1x

j
2, (0 ≤ i+ j ≤ 2). (6)

Eq. (6) can be rewritten as the following vector form:

NP∑
I=1

ψI(x)h(xI − x) = h(0). (7)

Substituting eq.(4) into eq.(7), a simultaneous linear
equation is obtained:

M(x)b(x) = h(0), (8)
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Fig. 1 Implementation of a meshfree method for a plate bending problem [(a) Plate model to be solved, (b) A meshfree
discretization of the plate, (c) Five DOFs per node]

where M(x) is a moment matrix, written as

M(x) =

NP∑
I=1

h(xI − x)hT (xI − x)ϕaI(xI − x). (9)

We can obtain the coefficient vector b(x) by solving

eq.(8). The equation (4) can be rewritten as

ψI(x) = hT (0)M−1(x)h(xI − x)ϕaI(xI − x). (10)

The deformation of the plate expressed by eq.(1) can

be represented in matrix form:

uh(x) =
NP∑
I=1

NIVI , (11)

where uh(x) is a displacement vector, NI is a matrix
of RKs regarding the displacement and rotational com-

ponents, and VI denotes their coefficient vectors. These
terms are expressed as

uh =
{
uh1 u

h
2 u

h
3

}T
, (12)

NI =

ψI 0 0 −zψI 0
0 ψI 0 0 −zψI

0 0 ψI 0 0

 , (13)

VI =
{
v1I v2I v3I v4I v5I

}T
. (14)

In plate bending formulation, the so-called KMRC [17]

[18] should be satisfied to solve thin-plate deformation.
The pure bending mode w̄I is expressed by quadratic
polynomial:

w̄I =

2∑
i+j=0

cijx
i
I1x

j
I2, (15)

where cij is an arbitrary constant and I express the I-

th node. Angles β̄I1 and β̄I2 are expressed by partial
derivatives of w̄I :

β̄I1 =
2∑

i+j=1

icijx
(i−1)
I1 xjI2, (16)

β̄I2 =
2∑

i+j=1

jcijx
i
I1x

(j−1)
I2 . (17)

Here, the KMRC can be expressed as properties of the
approximates of curvature κ̄hIij and shear strain γ̄hIi:

κ̄hIij =
NP∑
I=1

1

2

(
ψI,j β̄Ii + ψI,iβ̄Ij

)
= const., (18)

γ̄hIk =
NP∑
I=1

(
ψI,kw̄I − ψβ̄Ik

)
= 0, (19)

where {i, j} = {1, 2}, k = {1, 2},

where ψI,i (i = 1, 2) denotes partial derivatives of ψI .
According to the literature [17], it follows from eqs. (18)

and (19) that

NP∑
I=1

ψI,i

[
(xk1x

l
2),j

]
I
= (xk1x

l
2),ij = const., (20)

for k + l = 0, 1, 2.

Table 1 gives the error norms between the exact modes
and approximates. 11 × 11 regularly distributed nodes

are considered. The basis vectors are

hT
L = {1 x1 x2 }, (21)

hT
BL = {1 x1 x2 x1x2 }, (22)

hT
Q = {1 x1 x2 x21 x1x2 x22 }, (23)

where hL, hBL and hQ are linear, bi-linear and com-
plete quadratic bases, respectively. The components in
Table 1; (i) pure bending mode w̄I , (ii) derivative ∂w̄I/∂x1
and (iii) derivative ∂w̄I/∂x2 are considered. When the
RK shape function is once differentable, eq. (20) is sat-
isfied. However, if the basis vector is less than the com-

plete quadratic, the pure bending mode and its deriva-
tives cannot be represented exactly as shown in Table
1. The complete quadratic is thus applied in this study.
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Table 1 Error norms of the pure bending mode

(i) (ii) (iii)

Linear 7.84E+00 9.52E-01 9.52E-01

Bi-linear 2.79E+00 8.53E-01 8.53E-01

Quadratic 1.59E-14 7.53E-15 8.59E-15

2.3 A geometrical nonlinear formulation

A total Lagrangian formulation is used to describe the

large deflection of a plate. Green-Lagrange strains and
second Piola-Kirchhoff stresses are used to express the
principle of virtual work. The virtual work at time t′ =

t+∆t can be expressed as∫
V

t′

0 S : δt
′

0 EdV = t′δR,

t′δR =

∫
St

t′

0 t̄ · δudS, (24)

where t′

0 S and t′

0 E are the second Piola-Kirchhoff stress

tensor and Green-Lagrange strain tensor, respectively
at time t′, which refers to the initial configuration. The
terms with δ are variational components. t′δR is the

virtual work of the external force; V is the volume of
the analysis domain; and t′

0 t̄ is the traction force vec-
tor for the traction boundary St at time t′. To derive

the tangent stiffness matrix for the incremental nonlin-
ear analysis, the virtual work principle is decomposed
according to linear relations of the displacement vec-

tor at time t′ : t′u = tu + u, where tu is the dis-
placement vector at time t, and u is the increment
from time t to t′. The Green-Lagrange strain tensor is
t′

0 E = t
0E+0EL+0ENL and the second Piola-Kirchhoff

stress tensor is t′

0 S = t
0S + 0S. Therefore, eq. (24) can

be rewritten as∫
V

0S : (δ0EL + δ0ENL)dV +

∫
V

t
0S : δ0ENLdV

= t′δR−
∫
V

t
0S : δ0ELdV, (25)

where 0EL and 0ENL are the linear and nonlinear parts

of the Green-Largange strain increment. 0S is the sec-
ond Piola-Kirchhoff stress increment from time t to t′.
The left-hand side of eq. (25) can be linearized:

lim
∆t→0

{left hand side of eq. (25)} /∆t

=

∫
V

t
0Ṡ : δ0ELdV +

∫
V

t
0S : (δ0ENL)̇dV, (26)

where the term 0S : δENL is more than the second-
order of u. It can be ignored because u → 0 when∆t→
0. Additionally, · denotes a material time derivative.

Finally, we obtain a linearized equation for the virtual

work principle of eq. (25):[∫
V

t
0Ṡ : δ0ELdV +

∫
V

t
0S : (δ0ENL)̇dV

]
∆t

=t′

0 δR−
∫
V

t
0S : δ0ELdV. (27)

In this study, the MPC technique is adopted to assume

the continuity of plating and periodicity of structures
as well as the essential BCs. They are included as a
constraint condition in the weak form. The next chapter

presents the MPC technique and implementation.

2.4 Nodal integration

In the meshfree formulation, SCNI [32][33] and SSCI
[18][19][20] are introduced as the numerical integration
of the tangent stiffness matrix of eq. (27). The nu-

merical integration techniques satisfy the so-called in-
tegration constraint (IC), which is a necessary condi-
tion for linear exactness in the Galerkin-based mesh-

free method. In addition, numerical instabilities due to
a spurious mode of the tangent stiffness matrix com-
posed by using direct nodal integration can be avoided.

In SCNI and SSCI, the strain components are smoothed
using the Gauss divergence theorem. Nodes are dis-
persed on the plate as shown in Fig. 2 (a). xK is the

coordinate of the K-th node.

2.4.1 SCNI

The discretized model of Fig. 2 (a) employing SCNI
is shown in Fig. 2 (b). A Voronoi cell diagram [31] is
adopted to automate the generation of the model. Each

node is surrounded by a Voronoi cell. The area within
the solid line ΓK is ΩK . n is a normal vector of ΩK .
In SCNI, differentiations of the displacement/rotational

components vhi,j(xK) are represented as

vhi,j(xK) =
1

AK

∫
ΩK

vhi,j(xK)dΩ

=
1

AK

∫
ΓK

vhi (xK)njdΓ

=

NP∑
I=1

1

AK

∫
ΓK

ψI(xK)njviIdΓ

=

NP∑
I=1

bIj(xK)viI ,

where i = {1, 2, 3, 4, 5}, j = {1, 2}. (28)

The scalar value bIi(xK) is represented as

bIi(xK) =
1

AK

∫
ΓK

ψI(xK)nidΓ, i = {1, 2}, (29)
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xK
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ΩK: Integration domain for K-th node

xK

Normal vector

n

 Phisical value points

ΩK i: Sub-domain for K-th node

Normal vector

n

ΓK: Boundary of Integration domain ΩK ΓK i: Boundary of sub-domain ΩK i

xK i

xK

(a) (b) (c)

Voronoi cell

Fig. 2 Discretization of a rectangular plate using nodes [(a) Distributed nodes on a plate, (b) SCNI with a Voronoi cell
diagram, (c) SSCI with a sub-domain of the Voronoi cell]

where AK is the area of ΩK , ni (i = 1, 2) denotes the x1
and x2 components of the normal vector of the bound-
ary ΓK . Gauss quadrature is performed in the line in-

tegration of eq.(29).

2.4.2 SSCI

SSCI is also introduced to effectively integrate the stiff-

ness matrix. SCNI is basically adopted in the numerical
integration, but the Voronoi cell is further divided to ac-
curately integrate the stiffness matrix where high gra-

dients of displacements/stresses are located. The dis-
cretization model of Fig. 2 (a) using SSCI is shown in
Fig. 2 (c). ΩK in Fig. 2 (b) is divided using triangular

domainsΩKi . xKi is the center of gravity of the triangu-
lation, the point have stress/strain components values.
In SSCI, the differentiations of displacement/rotational

components vhj,k(xKi) are expressed as

vhj,k(xKi) =
1

AKi

∫
ΩK

vhj,k(xKi)dΩ

=
1

AKi

∫
ΓKi

vhj (xKi)nkdΓ

=
NP∑
I=1

1

AKi

∫
ΓKi

ψI(xK)nkvjIdΓ

=
NP∑
I=1

bIk(xKi)vjI ,

where j = {1, 2, 3, 4, 5}, k = {1, 2}. (30)

The scalar value bIj(xKi) is expressed as

bIj(xKi) =
1

AKi

∫
ΓKi

ψI(xKi)njdΓ, j = {1, 2}, (31)

where AKi is the area of ΩKi , ni (i = 1, 2) denotes
the x1 and x2 components of the normal vector of the
boundary ΓKi . Gauss quadrature is performed on the

line integration of eq.(31).

2.5 Discretization of the weak form

The virtual work of the principle as shown in eq. (27)

is discretized through RK approximation, SCNI and
SSCI. The displacement at time t : tuh(x) is given
by eq. (11). The Green-Lagrange strain components at
time t can be written as{

0EL11 0EL22 20EL12 20EL31 20EL23

}T

=

NP∑
I=1

t
0BLIVI , (32)

where the matrix t
0BLI is the linear part of the Green-

Lagrange strain increment for the I-th node. The com-
ponents can be represented in matrix form as

t
0BLI =

bI1F11 bI1F21 bI1F31

bI2F12 bI2F22 bI2F32

bI1F12 + bI2F11 bI1F22 + bI2F21 bI1F32 + bI2F31

ψI,1F13 ψI,1F23 ψI,1

ψI,2F13 ψI,2F23 ψI,2

−zbI1F11 −zbI1F21

−zbI2F12 −zbI2F22

−z(bI1F12 + bI2F11) −z(bI1F22 + bI2F21)

−ψIF11 −ψIF21

−ψIF12 −ψIF22

 ,
(33)
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where bIi(i = 1, 2) denotes the line integrations with

SCNI as shown in eq. (29) or with SSCI as shown in eq.
(31) , ψI are RKs, and ψI,i(i = 1, 2) denotes differenti-
ation of RKs for the I-th node. Fij denotes deformation

gradient tensors and is expressed as

Fij = δij +
∂tuhi
∂Xj

, (34)

where ∂tuhi /∂Xj is the differentiation of displacements
tuhi (x) in terms of coordinate systems of initial config-
uration Xj (j = 1, 2, 3) . In the derivation of eq. (33),
deflection angle components are ignored since they are

assumed to be smaller than the other terms. The de-
formation gradient tensors Fij are derived with SCNI
in a previous step. In a similar manner, the nonlinear
part of strain increments t

0BNLI for the I-th node are

expressed as{
uhT
,1 uhT

,2 uhT
,3

}T
=

NP∑
I=1

t
0BNLIVI , (35)

where uhT
,i (i = 1, 2, 3) denotes vectors in terms of the

differentiation of displacements uh,i (i = 1, 2, 3):

uhT
,i =

{
uh1,i uh2,i uh3,i

}
, i = {1, 2, 3} . (36)

The matrix t
0BNLI is composed from bIi(i = 1, 2) and

RKs ψI :

t
0BNLI =



bI1 0 0 −zbI1 0
0 bI1 0 0 −zbI1
0 0 bI1 0 0
bI2 0 0 −zbI2 0
0 bI2 0 0 −zbI2
0 0 bI2 0 0
0 0 0 −ψI 0
0 0 0 0 −ψI

0 0 0 0 0


. (37)

Substituting matrices t
0BL and t

0BNL into eq.(27),
the stiffness equation from time t to t′ is obtained:

t
0KV = t′

0 F − t
0Q, (38)

where t
0K is the stiffness matrix, t0Q is the internal force

vector and t′

0 F is the external force vector at time t′.
Their components are expressed as

t
0KIJ = t

0KL IJ + t
0KNL IJ , (39)

t
0KL IJ =

NP∑
K=1

t
0B

T
L I(xK)Dt

0BL J(xK)AK , (40)

t
0KNL IJ =

NP∑
K=1

t
0B

T
NL I(xK)t0S̄(xK)t0BNL J (xK)AK ,

(41)

t
0QI =

NP∑
K=1

t
0B

T
L I(xK)t0Ŝ(xK)AK . (42)

t
0KL and t

0KNL are the initial displacement term and

initial stress term of the stiffness matrix t
0K. AK is the

area of ΩK as shown in Fig. 2 (b). In this analysis, the
plate is elastic material and a plane stress condition is

assumed in the in-plane deformation. The stress-strain
relation is derived as

D =
E

1− ν2


1 ν 0 0 0
ν 1 0 0 0

0 0 1−ν
2 0 0

0 0 0 κ 1−ν
2 0

0 0 0 0 κ 1−ν
2

 , (43)

where κ is the shear correction factor; κ = π2/12 is
adopted. E is Young’s modulus and ν is Poisson’s ratio.

Matrix t
0S̄ in eq. (41) is expressed using second Piola-

Kirchhoff stress components as

t
0S̄ =

 t
0S11I

t
0S12I

t
0S13I

t
0S21I

t
0S22I

t
0S23I

t
0S31I

t
0S32I

t
0S33I

 , (44)

where I is a 3× 3 unit vector. Additionally, vector t
0Ŝ

in eq. (42) is expressed as

t
0Ŝ

T =
{

t
0S11

t
0S22

t
0S33

t
0S12

t
0S23

t
0S31

}
. (45)

Because the deformation along the thickness direction

is not considered, the stress component t
0S33 is assumed

to be zero. In this formulation, the integration in the
plate thickness direction is performed analytically as∫

V

· · · dV = th

∫
S

· · · dS (46)∫
V

z · · · dV = 0 (47)∫
V

z2 · · · dV =
t3h
12

∫
S

· · · dS. (48)

The linearized eq.(38) is solved from time t to t +∆t.
The Newton-Raphson method is adopted to obtain the

solution at time t′.

3 Treatment of BCs employing the MPC
technique

In the preliminary stage, we follow the MPC technique
for enforcing essential BCs in a meshfree approach [40],

and the technique is extended to adopting BCs assum-
ing continuity of plating and periodicity of structures.
A two-dimensional rectangular plate is used to describe

the problems as shown in Fig. 3(a). The left edge and
underside edge are enforced as essential BCs. In-plane
displacement of the right edge in the perpendicular di-

rection is assumed to be uniform. The prescribed force
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Fig. 3 Schematic illustrations of the two-dimensional rectangular plate model [(a) Dimensions of the rectangular plate model,
(b) Meshfree discretization, (c) BC enforcement using the MPC technique]

is also enforced on the right edge. Numerical tests are
performed to examine the MPC technique using this
model. Only in-plane deformations are treated for sim-

plicity of discussion, but the technique can easily be
extended to plate bending problems that have rota-
tional components. Verification for the plate bending

problems is presented in numerical examples. In large
deflection analyses of plates, the support size of the ker-
nel functions is set to be uniform.

3.1 Enforcement of essential BCs

Essential BC enforcements using the MPC technique
are presented. Here, we treat the enforcement on the
left edge of the rectangular plate (Case 1) as shown in

Fig. 3(c). We denote the four nodes along the edge as
K,L,M and N . The positions are xK , xL, xM and xN

respectively. The displacement in the x1 direction can

be represented by RKs as

vh1K =

NP∑
I=1

ψI(xK)v1I , vh1L =

NP∑
I=1

ψI(xL)v1I ,

vh1M =
NP∑
I=1

ψI(xM )v1I , vh1N =
NP∑
I=1

ψI(xN )v1I , (49)

where RKs ψI(xK), ψI(xL), ψI(xM ) and ψI(xN ) (I =

1, · · · , NP ) are assumed to be zero when the nodes are
located in the external region of a RK function support
as shown in Fig. 3 (b). The displacement of eq. (49) can

be rewritten in matrix form as

vh
1 = N1V1 = c, (50)

where vh
1 = {v1K v1L v1M v1N}T is the dis-

placement vector and V1 = {v11 · · · v1NP }T is the

coefficient vector in terms of the RKs. c is an enforced

value vector on the edge. When the edge is fixed, the
vector c becomes a zero vector. N1 is a matrix of the
RKs. The matrix can be written as

N1 =


ψ1(xK) · · · ψNP (xK)
ψ1(xL) · · · ψNP (xL)

ψ1(xM ) · · · ψNP (xM )
ψ1(xN ) · · · ψNP (xN )

 . (51)

Performing a fundamental operation with pivot for eq.
(50), we can separate the DOFs into dependent DOFs

and independent DOFs. Eq. (50) can be rewritten as

[I, T , 0]


VD

VI

VO

 = c̃, (52)

where I is a unit vector, T is a matrix after the elimi-

nation process, and 0 is unrelated part of the enforce-
ments. VD, VI and VO are vectors in terms of dependent
DOFs, independent DOFs and the unrelated DOFs, re-

spectively. And c̃ is an enforced value vector after the
rearranging. The rank of VD+VI+VO is NP , and the
VD has same rank with the c̃. By rearranging eq. (52),

we obtain

VD = −TVI + c̃. (53)

Dependent vector VD can be represented by the super-

position of tensor product TVI and vector c̃.

3.2 Synchronization of node displacements/rotations

In the finite element analysis, the assumption of con-

tinuity of plating and periodicity of structures can be
implemented by constructing tying relations between
nodes; i.e., some node displacements/rotations are syn-

chronized with others. However, the RKs do not have
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the so-called Kronecker delta property, and the treat-

ment is thus slightly complicated. Here, we assume a
tying relation on the right edge of the rectangular plate
(Case 2) as shown in Fig. 3(c). We denote the four nodes

along the edge as K ′, L′,M ′ and N ′. Additionally, the
displacement in the x1 direction can be defined as eq.
(49). In this case, the nodes K ′, L′,M ′ and N ′ always

remain in straight line. The relation can be written as
vector v′h

1 :

v′h
1 =


vh1L′ − vh1K′

vh1M ′ − vh1K′

vh1N ′ − vh1K′

 , (54)

where nodeK ′ is a master node and the others are slave

nodes of the synchronization of DOFs. Displacement
vh1L′ , vh1M ′ and vh1N ′ are synchronized to vh1K′ so as to
keep straight line. According to the relation in eq. (54),

the displacement in the x1 direction is expressed as

v′h
1 = N ′

1V
′
1 = c′, (55)

where c′ is the enforced value vector and V ′
1 is the co-

efficient vector for the x1-direction component. To con-
struct a tying relation, the enforced value c′ is taken as
a zero vector. The matrix N ′

1 can be written as

N ′
1 =

ψ1(xL′)− ψ1(xK′) · · · ψNP (xL′)− ψNP (xK′)
ψ1(xM ′)− ψ1(xK′) · · · ψNP (xM ′)− ψNP (xK′)

ψ1(xN ′)− ψ1(xK′) · · · ψNP (xN ′)− ψNP (xK′)

 .
(56)

We perform the fundamental operation with pivot of

eq.(55). The relation between the dependent-node vec-
tor V ′

D and independent-node vector V ′
I is

V ′
D = −T ′V ′

I + c̃′, (57)

where T ′ is the matrix after the fundamental operation
and c̃ is the enforced value vector after the elimination
process. In this section, we only present the enforce-

ment to keep a straight edge. Similarly, we can con-
sider a periodic BC for synchronizing node displace-
ments/rotations of adjacent edges of the rectangular

plate.

3.3 Degeneration of the tangent stiffness matrix

The tangent stiffness matrix can be degenerated em-
ploying the relation of dependent DOFs and indepen-
dent DOFs as shown in eq. (53) and (57). We derive

a relation using the dependent-DOF vector VD and
independent-DOF vector VI of eq. (53):

V =


VD

VI

VO

 =

I −T 0
0 I 0
0 0 I


c̃
VI

VO

 = CVc, (58)

whereC is the transformation matrix. When the known

vector c̃ ̸= 0, the matrix of eq. (58) will be degenerated.
Adopting the relation of eq. (58) to the virtual work
principle in eq. (27), we have

δV T
c CTKCVc = δV T

c CTF − δV T
c CTQ. (59)

Finally, we obtain

KcVc = Fc −Qc, (60)

where Kc(= CTKC), Fc(= CTF ) and Qc(= CTQ)
are the global tangent stiffness matrix, external force
vector and internal force vector after the degeneration.

The degeneration of the tangent stiffness matrix is time
consuming. In this study, the node-by-node calculation
is implemented in numerical code.

3.4 Evaluation of the MPC technique

When adopting the MPC technique for enforcing the

essential BC and tying relation as mentioned in the
previous section, displacements near the boundaries are
violated. In this section, we examine the problem and

propose an approach to improve the accuracy. The rect-
angular plate model and BCs shown in Fig. 3(a) are
used in the validation. The size of the rectangular plate

is 1000×1000 mm. Using the BCs, we obtain a linear
exact solution (the so-called constant strain condition)
in the finite element analysis. The RK models are shown

in Fig. 4 (a), (b) and (c). Hereafter, we refer to the mod-
els as Models A1, B1 and C1, respectively. Model A1
is a regular distributed model. Models B1 and C1 are

irregular distributed models. Boundary nodes of Model
B1 are regular but those of Model C1 are irregular.
The models have 121 nodes (11× 11). A Voronoi cell is

employed to automate the model generation. The pa-
rameter that determines the support of the kernel is
h = 1.15a (a is distance between nodes) in all cases.

To check the problem, differences between the ex-

act solution of displacements u1 along the underside
(x2 = 0) are shown in Fig. 5. The cubic spline func-
tion in eq. (5) is adopted as the original kernel function

ϕaI(x). Although the exact solution is obtained at the
both ends (x1=0, 1000 mm), there is violation of dis-
placements near the edges in all regular and irregular

models. The width of the violation becomes small as
the node density increases, but the error remains. The
representation of eq. (53) is the same as that of eq.

(50), and we can therefore obtain approximated dis-
placements vh

1 in eq. (50) exactly along the edges using
vectors VI and VD. However, the vectors VI and VD

do not have a one-to-one relation, because matrix T in
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Fig. 4 RK models (11×11 nodes) [(a) Model A1, (b) Model B1, (c) Model C1]
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Model A1 (Cubic spline function)

Model B1 (Cubic spline function)

Model C1 (Cubic spline function)

Fig. 5 Error in displacement u1 along the x1 direction (x2 =
0) employing a cubic spline function (h = 1.15a)

eq. (53) is non-regular. The solution then deteriorates

near the edges after solving eq. (60).
We then propose an approach to improve the so-

lution. A higher-order spline function is introduced as

the original kernel function ϕaI(x). Here, we assume
the n-th-order spline function consists of an n-th-order
piecewise polynomial function. The one-dimensional n-

th-order spline function can be written as a power series
[44]:

ϕ(n)(x) =
1

n!

n+1∑
k=0

(−1)k n+1Ck(x− k)n+ (61)

x+ = max[0, x] (62)

xn+ = (x+)
n, (63)

where the function support is

supp ϕ(n) = [0, n+ 1]. (64)

In this evaluation, fifth, seventh and ninth-order spline
functions are adopted. The shapes of the spline func-

tions are shown in Fig. 6. The support of the spline
functions (n = 5, 7 and 9) is enlarged as the order in-
creases, as shown in eq. (64). The support is scaled so

as to coincide with the support size of the cubic spline
function. To accurately integrate the tangent stiffness
matrix using SCNI, 10-point Gauss quadrature is used

when the higher order spline functions are adopted.

Normarized distance

K
e
rn

e
l 
v
a
lu

e

Cubic spline function (n=3)

5th-order spline function (n=5)

7th-order spline function (n=7)

9th-order spline function (n=9)

Fig. 6 Shape of n-th-order spline functions (n=3, 5, 7 and
9)

Differences between the exact solutions of displace-

ments u1 along the underside (x2 = 0) are shown in
Fig. 7 when adopting a ninth-order spline function. The
amplitude of the violation is small compared with that

in Fig. 5. Hence, the relation between the independent
DOFs VI and the dependent DOFs VD improves when
a higher-order function is adopted in generating the ma-

trix T . Stress norms (L1-norm) of σ11 are compared in
Fig. 8 for several RK models. The horizontal axis repre-
sents the use of the n-th-order spline function. Models

A2 and B2 are regular and irregular models with 21×21
nodes, and Models A3 and B3 are regular and irregular
models with 41 × 41 nodes. The models are presented

in Fig. 9 (a), (b), (c) and (d), respectively. In the fig-
ures, the error uniformly converges when a higher-order
spline function is adopted. Additionally, the error in the

models with regularly distributed nodes (A1, A2, A3) is
small compared with that in the models with irregular
distributed nodes (B1, B2, B3). In addition, as the node

density increases, the error uniformly converges. It is
thus found that the adoption of the higher-order spline
function reduces the error near the enforced boundary

and is effective when the MPC technique is used to en-
force the BCs in the meshfree approach.

Error distributions of stress σ11 obtained employing

the cubic spline function are shown in Fig. 10 (a), (b)
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Fig. 7 Error in displacement u1 along the x1 direction (x2 = 0)
employing a ninth-order spline function (h = 1.15a)
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Fig. 8 Error norm of stress σ11 (h = 1.15a)

(a) (b) (c) (d)

Fig. 9 RK models (21×21 and 41×41 nodes) [(a) Model A2, (b) Model B2, (c) Model A3, (d) Model B3]

Table 2 Maximum error (%) of stress σ11 (h = 1.15a)

(%)

n=3 n=5 n=7 n=9

Model A1 1.70E+00 7.45E-01 1.37E-01 4.92E-02

Model B1 5.55E+00 2.44E+00 1.22E+00 7.06E-01

Model C1 7.07E+00 2.91E+00 1.21E+00 7.14E-01

Model A2 1.75E+00 7.36E-01 1.35E-01 4.92E-02

Model B2 6.11E+00 2.90E+00 1.30E+00 1.24E+00

Model A3 1.76E+00 7.34E-01 1.35E-01 4.92E-02

Model B3 8.16E+00 2.42E+00 7.12E-01 5.11E-01

Table 3 Maximum error (%) of stress σ11 (h = 1.30a)

n=3 n=5 n=7 n=9

Model A1 2.24E+00 5.88E-01 1.74E-01 1.16E-01

Model B1 3.33E+00 3.66E+00 3.10E+00 2.18E+00

Model C1 8.29E+00 5.54E+00 3.08E+00 2.07E+00

Model A2 2.23E+00 6.02E-01 1.72E-01 1.16E-01

Model B2 4.02E+00 3.15E+00 2.34E+00 1.35E+00

Model A3 2.25E+00 6.04E-01 1.71E-01 1.16E-01

Model B3 5.35E+00 4.04E+00 2.07E+00 1.15E+00

(%)

and (c) for Models A1, B1 and C1, respectively. The

error is located on the enforced boundaries. The error
in the irregular distributed model is greater than that
in the regular distributed model. Fig. 11 (a), (b) and

(c) presents the error in stress σ11 when employing the
ninth-order spline function. The amplitude of the er-
ror is small in all cases. Table 2 presents the maximum

errors for Models A1, B1, C1, A2, B2, A3 and C3 for
different orders of spline functions (n=3, 5, 7 and 9).
The support size h = 1.15a is used in the literature,

and numerical results of h = 1.30a are also presented
to check how the support size affects the solution. The
maximum error of stress σ11 is presented in Table 3. As

the function support size increases, the error is inclined
to increase. Although the maximum stress error also

uniformly converges when a higher-order spline func-

tion is adopted, more than 1% error remains in the
analysis of Model B2 in Table 2. The error occurs lo-
cally on the boundary region near the nodes distributed

with high irregularity. Because the matrix T in eq. (53)
is non-regular, the solution is sensitively affected by the
irregularity of the node distribution near the boundary

compared with other enforcement techniques, such as
the penalty method and Lagrange multiplier. Hence,
further research is needed in the analysis of a model

with a highly irregular node distribution, and it should
address the adoption of the MPC technique in regions
of high stress concentration such as at a hole edge or

near a crack tip.
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Fig. 10 Error distribution of σ11 (Cubic spline function, h = 1.15a) [(a) Model A1, (b) Model B1, (c) Model C1]
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Fig. 11 Error distribution of σ11 (Ninth-order spline function, h = 1.15a) [(a) Model A1, (b) Model B1, (c) Model C1]

However, the global error norm uniformly converges
as the node density increases as seen in Fig. 8. The error
due to the inconsistency is therefore small compared

with the global accuracy.

4 Numerical examples

Geometrical nonlinear analyses of plates and buckling
analysis of a rectangular plate and stiffened plate struc-

ture are demonstrated as numerical examples. Valida-
tion and accuracy are discussed for the formulation
of the plate bending analysis and the enforcement of

the MPC technique. In the analysis, cubic, fifth-order,
seventh-order and ninth-order spline functions are adop-
ted as the original kernel function and the function sup-

port is set as h = 1.15a. Young’s modulus is 206 GPa
and Poisson’s ratio is ν =0.3 in all cases.

4.1 Geometrical nonlinear analysis of plates

Bending analyses of a rectangular plate with geomet-
rical nonlinearity are performed. The size of the rect-

angular plate is 1000×1000 mm. The plate thickness
th is assumed as 10 mm. RK models A1, A2 and A3
(regularly distributed nodes) and B1, B2 and B3 (ir-

regularly distributed nodes) are adopted. The node lo-
cations and the Voronoi cell diagrams correspond to
the illustrations in Fig. 4 (a), (b) and 9 (a)-(d), re-

spectively. Each node has five DOFs (up1, u
p
2, w, β1, β2).

Analyses employing two BCs are performed; one anal-
ysis is of a simply supported model and the other is of
a clamped edge model. Fig. 12 (a) is a schematic illus-

tration of the simply supported model. In the analysis,
all deflection components on the four edges are fixed.
Additionally, the underside edge of the plate (x2=0) is

fixed in the x2 direction and the left edge (x1=0) is fixed
in the x1 direction. The other two edges are enforced
with a tying relation considering the in-plane displace-

ment of the edges in their perpendicular direction to
be uniform. All rotational components are free. Fig. 12
(b) is an illustration of the clamped edge model. In the

analysis of the clamped edge model, all components are
fixed along all edges. The MPC technique is introduced
to enforce both the essential BCs and tying relation.

In both analyses, uniform pressure is applied to the
top of the plate and increased to 2.0 MPa. Geometrical
nonlinear analyses are performed using MSC.Marc for

the simply supported and clamped edge models as ref-
erence solutions. In the analyses, the rectangular plate
is equally divided into 100×100 rectangular elements.

A bilinear quadrilateral thick shell element (element
no.75) is adopted [45]. The element is an assumed strain
type element in order to avoid shear locking of bending

and it has 6 DOFs per node. The numbers of DOFs are
605(A1, B1), 2205(A2, B2), and 8405(A3, B3). In the
reference solution 61206 DOFs are used.

Pressure-deflection curves for the simply supported
model and clamped edge model are shown in Fig. 13 and

14, respectively. In these figures, analysis results for RK



Elastic large deflection analysis of plates subjected to uni-axial thrust using meshfree Mindlin-Reissner formulation 13

x1

x2

(a)

T
y
in

g

Tying

x1

x2

E = 206 GPa

ν = 0.3

1000 mm

1
0

0
0

 m
m

x1

x3

x1

x3

Uniform pressure Uniform pressure

(b)

Fig. 12 Analysis model for the plate bending problem [(a)
Simply supported model, (b) Clamped edge model]

models A3 and B3 employing a cubic spline function

and ninth-order spline function are shown. Good results
are obtained for both regular and irregular models com-
pared with the reference solutions. The error in maxi-

mum deflection in the final step is evaluated in Fig. 15
for the RK models (A1, A2, A3) employing cubic, fifth-
order, seventh-order and ninth-order spline functions.

The error is constantly converges in all cases. Conver-
gence for the clamped edge model is slower than that
for the simply supported model. Furthermore, stress
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Fig. 13 Pressure-deflection curves (Simply supported model)

distributions of the plate in the final step are com-
pared for the analyses with the cubic spline function

and ninth-order spline function. Fig. 16 presents the
mid-surface nominal stresses S11 and S22 along the x di-
rection (x2=500 mm) for RK models A3 and B3. These

stresses are compared with the MSC.Marc results. Be-
cause the convergence of the clamped edge model anal-
yses is slow as shown in Fig. 15, stress distributions

of a finer model (61x61 nodes) are presented in Fig.
17. The 61x61-node regular and irregular models are
respectively called models A3’ and B3’. The results for

the regular (A3’) and irregular (B3’) models are in good
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Fig. 17 Stress distribution of the clamped edge model along
the x1 direction (x2=500 mm, 61×61 Model A3’, B3’)
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agreement with the reference solution. The numerical

results show that the plate bending analysis using an
RK and SCNI obtain high-accuracy deformation/stress
results and that the approach is effective in plate bend-

ing analysis including geometrical nonlinearity.
In the previous chapter, we mentioned that the adop-

tion of the MPC technique cannot pass the so-called

patch test exactly, and we proposed improving the so-
lution by employing a higher-order spline function as
the original kernel function. However, the effect of the

violation was small compared with the global accuracy.
This can be discussed in terms of the maximum de-
flection and overall stress distributions of this example.

Other numerical examples are investigated in the next
section.

4.2 Buckling/post-buckling analysis of a rectangular
plate

In the analyses carried out in the previous section, bend-
ing deformation was dominant. Here, we solve the prob-
lem of both bending and membrane deformation to ver-

ify the enforcements of the MPC technique. RK models
A1, A2, A3, B1, B2 and B3 are also used.

Large deflection analyses of a rectangular plate sub-

jected to uniaxial thrust are carried out to evaluate the
buckling/post-buckling behaviors. Illustrations of the
rectangular plate model and the analysis procedures are

presented in Fig. 18 (a) and (b). Plate thickness th is
assumed to be 5 mm. The BCs and tying relation are
the same as those of the simply supported model solved

in section 4.1. The analysis is carried out into two steps.
Uniform pressure is applied to the top of plate in the
first step in Fig. 18 (a), and uniaxial thrust is adopted

in the consecutive steps as shown in Fig. 18 (b). Step 1
is thus considered as the introduction of the initial im-
perfection. Analyses with three uniform pressures are

adopted; the maximum deflection A0 in step 1 is set to
be A0/th=0.01, 0.05 and 0.1. A point load is adopted
and increased to 2.0e5 N on the tying edge (x1=1000

mm). Analyses are also performed employing cubic,
fifth-order, seventh-order and ninth-order spline func-
tions. The same analysis is performed using MSC.Marc

to provide reference solutions. To check the sensitivity
of the initial imperfection in the buckling/post-buckling
behaviors, analysis with very small pressure is also car-

ried out using MSC.Marc. In this case, the pressure is
set such that A0/th=1e-4 in step 1.

The numerical results are shown in Fig. 19 and 20

for Model A3 (regular model) and Model B3 (irreg-
ular model) respectively. Additionally, a convergence
study is carried out for the regular models (A1, A2 and

A3) employing the cubic, fifth-order, seventh-order and
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Fig. 18 Model for the buckling analysis of a rectangular
plate [(a) Step 1 (Uniform pressure), (b) Step 2 (Point loads)]
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Fig. 20 Load-deflection curve for Model B3 (irregularly dis-
tributed model)

ninth-order spline functions in Fig. 21. The numerical
results are in good agreement with the reference solu-
tions in all cases. Additionally, the numerical results

converge as a finer RK model is adopted. It is found
that the sensitivity of initial imperfections is well rep-
resented in the buckling analyses. Stress distributions

S11 and S22 along the x1 direction (x2=500 mm) in the
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Fig. 21 Convergence study (A0/th=0.01)

final step are shown in Fig. 22 for Models A3 and B3.

Good results are obtained compared with the reference
solution.
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Fig. 22 Stress distribution along the x1 direction (x2=500
mm)

To compare the present method with FEM in terms of
the accuracy, the stress distributions S11 and S22 are

presented in Fig. 23. Model A2 is chosen and the FEM
model has the same number of nodes. In addition, the
results on middle part of the plate and the edge are

focused. Although both results show good agreement
with the reference solution, the accuracy of the present
method is superior to that of the FEM in the compari-

son. These results imply the effectivity of the proposed
approach.

As was the case in section 4.1, there are also little
differences between the analyses with the cubic spline
function and the higher-order spline function in the

global stress evaluation of the structural analysis. The
inexactness of the MPC technique affects the local stress-
level approach, but the effect is small relative to the

global error in examples 4.1 and 4.2.
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Fig. 23 Stress distribution along the x1 direction (x2=500
mm, Model A2)

4.3 Buckling/post-buckling analysis of a stiffened plate

Large deflection analysis of a stiffened plate structure

is demonstrated to evaluate the buckling/post-buckling
behaviors. The solutions of MSC.Marc are used as ref-
erence solutions. The stiffened plate structure is often

used in ships and ocean structures to prevent buck-
ling of the structural members [46]. The stiffened plate
structure model is shown in Fig. 24 (a). The model

is periodic structure that is stiffened by longitudinal
girders and transverse frames. The distance between
adjacent transverse frames is a=1000 mm and that be-

tween adjacent longitudinal girders is b=500 mm. The
aspect ratio a/b is 2.0. Plate thickness th is assumed to
be 10 mm. In structural analysis of the stiffened plate

structure, the shaded region (IJKL) in Fig. 24 (b) is
used. The model is the so-called double-span double-
bay model. RK models A4 and B4 are shown in Fig.

25(a) and (b). The models have 1891 (61 × 31) nodes
(9455 DOFs). The reference solution uses 30906 DOFs.
In Fig. 25(a) and (b), Voronoi cells are the calculation

domain of SCNI and triangles in the Voronoi cells are
the domain of SSCI, where deflections are fixed. The
domains are also employed to automate the model gen-

eration.

In this case, there are two buckling half waves in the
loading direction. The maximum deflection of the wave
A0 is assumed to be 0.1 mm (A0/th=0.01). The waves

are adopted as the initial configuration in the analy-
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Fig. 24 Analysis model for buckling analysis of a stiffened
plate [(a) Stiffened plate structure (a/b=2.0), (b) Double-bay
double-span model]
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Fig. 25 RK models (61×31 nodes)[(a) Model A4, (b) Model
B4]

sis using MSC.Marc calculation. On the other hand,

in the proposed approach, the waves are adopted as a
displacement mode U0. U0 is a function of the coordi-
nates so as to represent the waves. Assuming that the

model is under the equivalent condition when the mode
of buckling half waves U0 is applied, there are external
forces equal to the internal nodal forces. That is, the

initial condition of the analysis is

t0
0 KU0 = t0

0 F − t0
0 Q = 0, (65)

where t0 is the time step for the shape of waves adopted
and t0

0 K, t0
0 F and t0

0 Q are the tangent stiffness matrix,

external works vector and internal works vector at time
step t0, respectively. Therefore, it is little but the ef-
fect of initial stresses is considered in the analysis. The

analysis is carried out after the condition of eq.(65) is
satisfied. BCs are described in Fig. 24 (b). Deflections
are fixed along the longitudinal girders and transverse

frames. Considering continuity and periodicity of the
structure, which depend on the buckling half waves, a
periodic BC is enforced along lines IL and JK and a

symmetrical BC is enforced along lines IJ and KL. As
the load cases, there is into two steps. Uniform pressure
is applied to the top of the plate in the first step assum-

ing water pressure (wp), and uniaxial thrust is adopted
in subsequent steps. Four cases of uniform pressure are
considered (wp = 0.0, 0.1, 0.2, 0.3 MPa) and a point

load is adopted and increased to 2.5e6 N on the tying
edge (x1=1000 mm). Analyses are performed employing
cubic, fifth-order, seventh-order and ninth-order spline

functions.

The numerical results are shown in Fig. 26-29 for
Model A4 (regular model) and Model B4 (irregular

model). The numerical results are in good agreement
with the reference solutions in all cases. In Fig. 26 and
27, it is found that the effect of water pressure is well

represented in the analyses, and it is also found that
the deformations depend on the initial buckling half
waves even if water pressure was applied. Stress dis-

tributions S11 and S22 along the x1 direction (the line
KL, x2=500 mm) in the final step are shown in Fig. 28
and 29 for Models A4 and B4. In Fig. 28, the case that

water pressure is not applied is presented. In Fig. 29,
the case that water pressure is 0.3 MPa is presented.
Good results are obtained compared with the reference

solution, there are also little differences between the so-
lutions with cubic spline function and with ninth-order
spline function. Moreover, the stress is periodic in the

both ends of the line KL because of the enforcement
of the periodic BC, the validity of the adoption of the
MPC technique as the enforcement of periodic BC was

presented.



Elastic large deflection analysis of plates subjected to uni-axial thrust using meshfree Mindlin-Reissner formulation 17

Deflection (mm)

L
o
a
d
 (

N
)

A4 (Cubic spline)
A4 (9th-order spline)
MSC.Marc

wp=0.0MPa

wp=0.1MPa

wp=0.2MPa

wp=0.3MPa

Point A Point B

Fig. 26 Load-deflection curve for Model A4 (regularly dis-
tributed model)

Deflection (mm)

L
o
a
d
 (

N
)

Point B

B4 (Cubic spline)
B4 (9th-order spline)
MSC.Marc

wp=0.0MPa

wp=0.1MPa

wp=0.2MPa

wp=0.3MPa

Point A

Fig. 27 Load-deflection curve for Model B4 (irregularly dis-
tributed model)

x1 direction (x2=500mm)

S
tr

e
ss

 v
a
lu

e
 (

M
P

a
)

stress S11

stress S22

Model A4 (Cubic spline)
Model A4 (9th-order spline)
Model B4 (Cubic spline)
Model B4 (9th-order spline)
MSC.Marc 

Fig. 28 Stress distribution along the x1 direction
(wp=0.0MPa, x2=500 mm)

x1 direction (x2=500mm)

S
tr

e
ss

 v
a
lu

e
 (

M
P

a
)

Model A4 (Cubic spline)
Model A4 (9th-order spline)
Model B4 (Cubic spline)
Model B4 (9th-order spline)
MSC.Marc 

stress S11

stress S22

Fig. 29 Stress distribution along the x1 direction
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5 Conclusion

This paper presented the buckling/post-buckling anal-
ysis of plate structures using RK approximation and
treatment of the boundary condition considering the

continuity/periodicity of structures. In-plane and bend-
ing deformations were coupled and the total Lagrangian
formulation is used to represent general plate bend-

ing with geometrical nonlinearity. The representation
of bending deformation is based on Mindlin-Reissner
plate theory, and the plate is shear-deformable in the

present approach. Nodal integration was performed by
SCNI and SSCI so as to satisfy the integration con-
straint. The MPC technique was used for the essential

BC and synchronization of DOFs. When adopting the
MPC technique to enforce the essential BC and tying
relation, displacements and stresses near the bound-

aries are violated. The problem of adopting the MPC
technique was discussed for stress-level evaluation and
we proposed an approach to improve the solution. A

higher-order spline function was introduced as the orig-
inal kernel function, which reduced the amplitude of
the violation. However, the violation is a local problem

near the enforced boundaries; the effect of the violation
was small in terms of the global accuracy in patch test.
The problem was also examined by numerical examples.

Simple-bending and buckling/post-buckling analyses of

a rectangular plate and stiffened plate structure were
presented as numerical examples to demonstrate the va-

lidity of the proposed approach. The results indicated
good agreement with a reference solution obtained us-
ing commercially available FEM software. Hence, we

should consider issues arising when applying the MPC
technique to problems such as a stress concentration
near boundaries, which was not so much the case in the

examples presented in this paper. Moreover, the BCs
such as periodic or essential BCs were well adopted
by the MPC technique; the technique is an effective

means with witch to solve problems of plate bending or
buckling/post-buckling behavior.

Analyses of the stiffened plate structure were carried

out for numerical examples, but longitudinal girders
and transverse frames were not modeled in the analyses.
We will solve the stiffened plate structure considering

plate and plate conbinations using the MPC technique
in future work.
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