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Abstract

Several numerical examples for cracked folded structures are analyzed to
investigate the mixed-mode stress resultant intensity factors (SRIFs). The
kinematic formulations of structures are derived by the first order shear defor-
mation plate theory. A Galerkin meshfree six degrees of freedom (6DOFs) flat
shell is employed, in which the reproducing kernel (RK) is used as the mesh-
free interpolant. A diffraction method, visibility criterion and enriched basis
are introduced to model the through crack. J-integral is evaluated based on
the stress resultants and is decomposed into the symmetric and asymmetric
parts for extracting the mixed-mode SRIFs. Not only the stiffness matrix but
also the J-integral are discretized by nodes. They are numerically integrated
by the stabilized conforming nodal integration (SCNI) and the sub-domain
stabilized conforming integration (SSCI) techniques. The effectiveness of the
meshfree modeling and accuracy in the SRIFs are discussed.
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1. Introduction

Evaluation of cracks or defects in shell structures is one of great impor-
tance in analyzing the structural integrity and reliability of thin-walled struc-
tures such as ship’s hull, aircraft fuselage and pressure vessel [1-6]. Stress
intensity factors (SIFs) are the fracture mechanics parameters in evaluating
the mechanical behaviors of the damaged structures. A number of stud-
ies have been carried out to examine the SIFs in solids and structures due
to significance of fatigue and fracture assessment. However, most of the
studies dealing with fracture problems based on two-dimensional (2D) plane
strain/plane stress condition and the three-dimensional (3D) continuum me-
chanics theory [7,8].

When treating fracture problems in shell structures, not only membrane
but also bending deformations are taken into account for the structural anal-
ysis and the SIFs evaluation, see e.g., Refs. [9-11] and references therein. A
conventional modeling of a cracked shell structure such as the finite element
method (FEM) often requires a special treatment of the shear locking prob-
lems. To offer high accuracy computation of the stress/strain components
around the crack, fine meshes are also required to the conventional FEM
simulation. So far, effective computational methods have been proposed to
analyze the cracked plate and shell problems. Dolbow et al. [12] treated
fracture problems in plates by employing MITC4 plate element and the ex-
tended FEM (XFEM) [13, 14]. Baiz et al. analyzed linear buckling analysis of
cracked plates using smoothed FEM and XFEM [15]. Additionally, cracked
functionally graded plates were analyzed for vibration problems by an 8-node
shear flexible element [16] and XFEM [17]. Dirgantara and Aliabadi analyzed
cracked shells by the dual boundary element method [18,19].

In the last two decades, meshfree methods [20-22], isogeometric analysis
[23], wavelet Galerkin methods [24-28] and etc. have been developed and
applied to the plate and shell problems [29-33]. Because continuous functions
are adopted in the approximation of the plate and shell deformations, the
methods can address the shear locking problem without special treatments in
the formulation and discretization. The continuous stress/strain components
are well suited for the fracture mechanics parameter evaluation.

The authors’ previous study, structural analyses by meshfree method had
been carried out. RKs [21] were adopted as the meshfree interpolant to ap-
proximate the membrane and plate bending deformations. Mindlin-Reissner
plate theory, i.e., first order shear deformation plate theory [34,35] was cho-
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sen. The shear locking problem was addressed by imposing so-called Kirch-
hoff Mode Reproducing Condition (KMRC) [34]. A structure was discretized
by nodes. SCNI [36,37] and SSCI [38-43] were applied as numerical inte-
gration. The recent advance of SCNI/SSCI was presented, which are nest-
ing sub-domain gradient smoothing integration and RK gradient smoothing
framework [44,45]. So far, a flat shell with five degrees of freedom (5DOFs)
was developed for solving geometrical nonlinear analyses [46] and buckling
problems [47,48]. A singular kernel (SK) [49] was also adopted to impose
Kronecker delta property on the nodes for applying the essential boundary
conditions (BCs). In addition, to treat the folded geometry, a drilling DOF
was included. Buckling problems of stiffened plate structures were analyzed
using the 6DOFs flat shell [50,51].

In the present study, several numerical examples for cracked folded struc-
ture are analyzed and the mixed-mode SRIFs are evaluated using the effective
meshfree modeling. The folded structures are solved by the 6DOFs flat shell
formulation and discretization. A diffraction method, visibility criterion [52]
and enriched basis [53] are introduced to model the through crack. J-integral
is decomposed into the symmetric and asymmetric parts employing the stress
resultants for extracting the mixed-mode SRIFs. It is discretized by nodes
and is integrated numerically by SCNI and SSCI. A path independency in the
SRIFs is examined and the results are compared with the reference solutions
and commercial FEM software solutions. Although the authors developed
J-integral meshfree discretization technique in [54] and adopted for mem-
brane fracture problems [55] and bending fracture problems [56], there is no
adoption of cracked flat shell and cracked folded structure problems. Because
membrane deformation is dominant in the fracture problems, the membrane
SRIFs are only investigated in the fracture mechanics parameter evaluations.

The structure of the paper is follows. A meshfree flat shell formulation
and discretization for cracked folded structure is presented in Section 2. A
technique to evaluate the SRIFs for flat shell structures is presented in Section
3. Numerical examples are shown in Section 4. Conclusions are given in
Section 5.

2. Galerkin meshfree flat shell formulation and discretization

2.1. Galerkin meshfree flat shell formulation

A Galerkin flat shell formulation is employed and the RKs are adopted
as the meshfree interpolants for analyzing a linear elastic folded structure
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problem including a through crack. A schematic of a cracked flat shell is
presented in Fig.1(a). x1-x2-x3 is chosen as a global coordinate system. The
middle-section of the shell is assumed on x1-x2 plane, and x3 (−t/2<x3<t/2)
is taken as normal direction of the x1-x2 plane. t is the shell thickness.
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Figure 1: A cracked flat shell. [(a) A deformed cracked shell, (b) 5DOFs per node to
approximate the shell deformation, (c) Membrane deformation, (d) Bending deformation]

The nodes are scattered on the middle-plane of the shell. Each node has
5DOFs as shown in Fig.1(b). There are two membrane deformation com-
ponents (u1mid and u2mid) and three bending deformation components (u3,
θ1, and θ2) as shown in Fig.1(c) and (d), respectively. Where ui mid (i=1,2)
are the displacement components of the xi-direction. u3 is the displacement
component along x3-direction. θi (i=1,2) are the rotation components in
terms of the xi-direction. The displacement vector in the flat shell u(x) at
position x can be described, as:

u(x) =


u1(x)
u2(x)
u3(x)

 =


u1mid(x) + zθ2(x)
u2mid(x)− zθ1(x)

u3(x)

 , (1)

where ui(x) (i=1,2,3) is the displacement components. z (||z||≤t/2) is taken
as a coordinate along the shell thickness direction. The virtual work principle
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for the flat shell is written as:∫
Ω

σ : δε dΩ− δW = 0,

δW =

∫
Γ

p̄ · δu dΓ +

∫
Ω

q̄ · δu3 dΩ +

∫
Γ

M̄nn · δθn dΓ, (2)

where δu={δu1 δu2}T , δu3 and δθn (n=1,2) are the variations corresponding
to components of the displacements and rotations. Ω and Γ are the analysis
domain and its boundary. p̄, q̄, and M̄nn are traction on the boundary,
distributed pressure on the shell, and moment on the boundary, respectively.
ε (=εij) is a strain tensor. The components can be written as:

ε11 =
∂u1mid

∂x1

− z
∂θ1
∂x1

, ε22 =
∂u2mid

∂x2

− z
∂θ2
∂x2

,

2ε12 =

(
∂u1mid

∂x2

− z
∂θ1
∂x2

)
+

(
∂u2mid

∂x1

− z
∂θ2
∂x1

)
,

2ε31 =
∂u3

∂x1

− θ1, 2ε23 =
∂u3

∂x2

− θ2. (3)

They are rewritten in a vector form, as:

{ε} = {ε11 ε22 ε12 ε31 ε23}T . (4)

When {σ}={σ11 σ22 σ12 σ31 σ23}T is assumed a vector form of the stress
tensor σ, the stress-strain relation is written in matrix form, as {σ}=D {ε}.
D is a matrix of elastic constants. For an isotropic elastic material, it is
represented as:

D =
E

(1− ν2)


1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2
0 0

0 0 0 κ1−ν
2

0
0 0 0 0 κ1−ν

2

 . (5)

E and ν are the Young’s modulus and the Poisson’s ratio, respectively. κ
is a shear correction factor and κ=π2/12 is selected. By employing stress
components of σ, the stress resultants in the flat shell can be written as:

N11

N22

N12

 =

∫ t/2

−t/2


σ11

σ22

σ12

 dx3,
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
M11

M22

M12

 =

∫ t/2

−t/2

z


σ11

σ22

σ12

 dx3,

{
Q1

Q2

}
=

∫ t/2

−t/2

{
σ31

σ23

}
dx3, (6)

where Nij, Mij and Qi are stress resultants in terms of membrane, bending
moment and shear forces, respectively. As for the numerical integration
along the shell thickness direction, three-point Newton-Cotes quadrature is
adopted.

2.2. Meshfree modeling of cracked folded structure

Meshfree modeling for structural analysis and fracture problems are briefly
presented. The detail has been reported and can be found in [46,50,54-
56]. RKs are set each node to interpolate deformation of the cracked flat
shell as shown in Fig.1(a). The u1mid(x), u2mid(x), u3(x), θ1(x) and θ2(x) in
eq.(1) are respectively represented as displacement components in a vector
form as di(x) (i=1, · · · , 5). The approximated vector at position x, i.e.,

dh(x)=
{
dh1 dh2 dh3 dh4 dh5

}T
is written by employing the RKs, as:

dh(x) =
NP∑
I=1

ΨI(x)dI , (7)

where dI={d1I d2I d3I d4I d5I}T is a coefficient vector of the I-th node,
and NP is a total number of nodes in the meshfree discretization. ΨI(x) is a
RK in terms of the I-th node. A cubic spline is chosen as the original kernel
function ϕaI(xI − x, hI), which can be written as:

ΨI(x) = HT (xI − x)b(x)ϕaI(xI − x), (8)

ϕaI(xI − x, hI) =
10

7πh2
I


1− 3

2
s2I +

3
4
s3I (0 ≤ sI ≤ 1)

1
4
(2− sI)

3 (1 ≤ sI ≤ 2)
0 (2 ≤ sI)

, (9)

where sI (=||xI −x||/hI) is a normalized distance from center of the kernel.
A parameter hI (=αIh

p
I) is defined for each node. hp

I is an averaged node
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distance surrounding the I-th node, and αI is a parameter to control the
function support. A complete quadratic basis is chosen as the basis vector
H(x)={1 x1 x2 x2

1 x1x2 x2
2} in eq.(8) to satisfy KMRC [34]. This is

necessary condition to address the shear locking problem in the plate bending
analysis.
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Figure 2: Crack modeling employing the meshfree method. [(a) Diffraction and visibility
criterion, (b) SCNI and SSCI for the crack modeling]

A schematic illustration of the meshfree crack modeling is presented in
Fig.2(a). The crack segment is represented by assembly of the nodes while
double nodes are set along the crack segment. A diffraction method and
visibility criterion [52] are introduced. When a crack segment crosses the
function support, the function is cut by a visibility criterion. While a diffrac-
tion method is adopted when the function support includes the crack tip.
The original function support sI for the I-th node is modified, as:

ŝI =

(
s1 + s2(x)

s0(x)

)λ
s0(x)

hI

, (10)

where s0(x)=||x − xI ||, s1=||xc − xI ||, and s2(x)=||x − xc|| are normal-
ized distances as shown in Fig.2(a), which is evaluated by modifying the
original distance sI in eq.(9). xc and xI are position vectors at the crack
tip and the I-th node. ŝI is the modified function support size. A pa-
rameter to define the shape of the RKs is set λ=1.0. An enriched ba-
sis [53] is introduced to effectively represent the 1/

√
r′ stress singularity

around the crack tip. A sinusoidal function is included in the basis vec-
tor as H(x)={1 x1 x2 x2

1 x1x2 x2
2

√
r′ sin(θ′/2)} where r′ and θ′ are local

polar coordinate originated the crack tip as shown in Fig.2(a). The enriched
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basis is employed when the crack tip is located within the function support.
The discretization of the cracked region is presented in Fig.1(b). The cracked
shell is partitioned by the Voronoi cell diagram. A nodal integration tech-
nique SCNI [36] and SSCI [38] are adopted for the numerical integration of
the stiffness matrix in eq.(2). When the crack segment crosses the Voronoi
cell, SSCI is employed by dividing a number of triangular domains while
SCNI is adopted for another region.

A drilling DOF is introduced as the six-th DOF in the 5DOFs meshfree
flat shell modeling. The virtual work principle including the drilling DOF is
presented based on eq.(2), as:∫

Ω

σ : δε dΩ + δWT = δW, (11)

where δWT is a penalty energy [61] which can be written as:

WT = κTGtAK

[
θ3 −

1

2

(
∂u2mid

∂x1

− ∂u1mid

∂x2

)]2
, (12)

where G (=E/2(1 + ν)) is a transverse elasticity modulus and t is a shell
thickness. AK is area of the K-th node ΩK which is defined by the Voronoi
cell. κT=0.1 is chosen as a parameter to define the penalty energy. The
virtual strain εθ3 in terms of the drilling DOF θ3 is defined, as:

εθ3 = θ3 −
1

2

(
∂u2mid

∂x1

− ∂u1mid

∂x2

)
. (13)

When a virtual stress Rθ3=2κTGεθ3 is defined in terms of eq.(13), the penalty
energy of eq.(12) can be rewritten as WT=Rθ3εθ3tAK/2. The virtual strain
εθ3 are integrated by SCNI/SSCI, the detail was given in Ref. [51]. Then,
the εθ3 of the drilling DOF θ3 can be written, as:

εθ3 =
NP∑
I=1

{
1

2

∂ΨI

∂x2

− 1

2

∂ΨI

∂x1

0 0 0 ΨI

}
d̂I

=
NP∑
I=1

Bθ3I d̂I , (14)

where Bθ3I is the displacement-strain relation matrix in terms of the drilling
rotation component. d̂(x) is the 6DOFs displacement vector. It is rewritten
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by considering the six-th DOF as well as 5DOFs flat shell, as:

d̂h(x) =
NP∑
I=1

ΨI(x)d̂I , (15)

where d̂I is the coefficient vector of the I-th node.
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Figure 3: Meshfree modeling for a folded plate structure.

It is well-known that the standard RK does not satisfy so-called Kronecker
delta property d̂h(x)̸=d̂I . The SK [49] is introduced for essential BC enforce-
ments and modeling of the folded structure. A schematic illustration of the
folded structure modeling is presented in Fig.3. There are two plates ”Plate
1” ”Plate 2” and the local coordinate systems are xP1

1 -xP1
2 -xP1

3 and xP2
1 -xP2

2 -
xP2
3 , respectively. A global stiffness matrix of the folded plate structure is

generated by employing a transformation matrix [50]. By introducing the
6DOFs flat shell, SK and the transformation matrix, a folded plate structure
can be analyzed successfully as well as finite element modeling.

3. Evaluation of the mixed-mode SRIFs

3.1. SRIFs in a cracked flat shell

In the flat shell formulation, plane stress condition is assumed for the
membrane deformation while Mindlin-Reissner plate theory is for the bend-
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ing deformation. When a crack embedded in the flat shell and contact on
the crack face is neglected, two membrane and three bending SRIFs can be
defined, i.e., crack opening K1m and shear deformation K2m for membrane
SIFs and symmetric K1b, anti-symmetric K2b and shear K3b for bending SIFs
[58], respectively. A schematic illustration of the deformation modes is rep-
resented in Fig.4(a)-(e). It is known that most of the loads are transferred as
membrane stresses to the thin walled structure, e.g., the cracked box beam
problem, membrane SRIFs K1m and K2m are only treated. For the bending
deformation problems, please see [54,56].

(a) (b)

(e)(d)(c)

Figure 4: Membrane and moment intensity factors correspond to deformation modes of a
cracked body [58]. [(a) K1m, (b) K2m, (c) K1b, (d) K2b, (e) K3b]

3.2. J-integral evaluation for a cracked flat shell

J-integral is employed for analyzing the membrane SRIFs based on the
stress resultants of the flat shell. A counter integral form of the J-integral
can be written, as:

Jlm =

∫
ΓJint

1

t

(
Wmn

′
l −N ′

ij

∂u′
i

∂x′
l

n′
j

)
dΓJint, (16)
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where Jlm (l=1, 2) are the path-independent integrals with the membrane
components in a flat shell. t is a shell thickness. ( )′ in eq.(16) is physical
values defined by a local coordinate from the crack tip. ΓJint is an open
contour surrounding the crack tip as shown in Fig.5(a). u′

i (i=1,2,3) are
displacements along x′

i-axis defined in Fig.5(b). Wm is strain energy density
in terms of the membrane deformation. It is written, as:

Wm =

∫ ε′

0

N ′
ijdε

′
ij, (17)

where N ′
ij is stress resultants defined in eq.(6).

n

ΓJint

’

Crack Crack tip

(a) (b)

x

x2

1
x3

x’1x’2

r

x’3

x’1

x’2

u’1

u’2u’3

Physical values

ds m
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Figure 5: A path-independent integral for membrane deformation. [(a) A contour integral,
(b) Displacements based on polar-coordinate system of the crack tip]

The relationship between the J-integral and the SRIFs are represented,
as:

J1m =
K2

1m +K2
2m

Ē
, (18)

where Ē is a material parameter. Ē=E is chosen for the assumption of the
plane stress condition.

3.3. Mode separation of the J-integral

The J-integral is decomposed into mixed-mode SRIFs K1m and K2m by a
decomposition method [55,59,60]. The membrane J-integral component J1m
is separated into two modes, as:

J1m = JS
1m + JAS

1m , (19)
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where JS
1m and JAS

1m are separated values of the path-independent integral
in terms of the symmetrical and asymmetric deformation across the crack
segment. The separated Jk

1m can be discretized, as:

Jk
1m =

∫
ΓJint

1

t

(
W k

mn
′
1 −Nk

ij

∂uk
i

∂x′
1

n′
j

)
dΓJint, (20)

where k=S and AS. They are symmetric and asymmetric components, re-
spectively. They are evaluated two points (x′

1, x
′
2) and (x′

1,−x′
2) as shown

in Fig.5(a) that located symmetrical position across the crack segment. The
separated stress resultants N k={Nk

11 Nk
22 Nk

12}T (k=S, AS) can be written,
as:

NS(x′
1, x

′
2) =

1

2


N ′

11(x
′
1, x

′
2) +N ′

11(x
′
1, −x′

2)
N ′

22(x
′
1, x

′
2) +N ′

22(x
′
1, −x′

2)
N ′

12(x
′
1, x

′
2)−N ′

12(x
′
1, −x′

2)

 , (21)

NAS(x′
1, x

′
2) =

1

2


N ′

11(x
′
1, x

′
2)−N ′

11(x
′
1, −x′

2)
N ′

22(x
′
1, x

′
2)−N ′

22(x
′
1, −x′

2)
N ′

12(x
′
1, x

′
2) +N ′

12(x
′
1, −x′

2)

 . (22)

W k
m in eq.(18) is a strain energy density evaluated by the separated two

components. It is written, as:

W k
m =

∫ εk

0

Nk
ijdε

k
ij. (23)

The J-integrals in eq.(18) can be transformed into the mixed-mode SRIFs,
as:

JS
1m =

K2
1m

Ē
, JAS

1m =
K2

2m

Ē
. (24)

3.4. J-integral discretization employing the meshfree method

A nodal integration technique SSCI is adopted to discretize the separated
J-integrals in eq.(20). A schematic illustration of the J-integral discretization
is shown in Fig.5(c). A triangular domains are arranged along the contour.
The J-integral is discretized by SSCI and physical values along the contour
is smoothed. The discretization form can be written, as:

J̃k
1m =

Ncell∑
m=1

1

t

(
W̃ k

mn
′
1 − Ñk

ij

∂ũk
i

∂x′
1

n′
j

)
m

dsm, W̃ k
m =

1

2
Ñk

ij ε̃
k
ij, (25)
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where (˜) represents smoothed operation for the physical values. Ncell is
number of triangular domains along the contour.

4. Numerical examples

In this section, four numerical examples for single- and mixed-mode crack
problems are considered to show the accuracy, performance and effectiveness
of the developed meshfree approach and the fracture evaluation technique.
For the analyses of the cracked flat shell problems, 5DOFs flat shell is adopted
while 6DOFs flat shell is chosen for the folded structure problems.

The accuracy of the SRIFs for the numerical and reference solutions is
examined. The error ηi % is defined as

ηi =
|KNum.

i −KRef.
i |

KRef.
i

× 100 [%], (26)

whereKNum.
i andKRef.

i (i=1m, 2m) are the numerical and reference solutions,
respectively.

4.1. A flat shell including a center crack under tensile load

A rectangular flat shell including a center through crack under tensile
load is analyzed. The geometry is shown in Fig.6(a). The width is b=10 mm
and the height c=2b. The crack length is varied from a/b=0.1 to 0.7. Two
kinds of shell thickness t are chosen, i.e., b/t=2 and 10, respectively. E=210
GPa and ν=0.3 are chosen for the material property.

A close-up view of the meshfree model for a/b=0.5 is presented in Fig.6(b).
Half of the structure x1>0 (shaded region in Fig.6(a)) is modeled. The nodes
are uniformly distributed to an entire model. The support size is set to
αI=2.5. Voronoi cell diagram is applied to an entire model to generate the
meshfree model. The cell is sub-divided around the segment for the crack
modeling and the J-integral evaluation. When imposing the essential BCs,
u3=0 along x2=-c and x2=c; u1mid=u2mid=0 on x1=b, x2=−c; u1mid=0 on
x1=b, x2=c, respectively. For assuming symmetrical BCs, u1mid=θ2=0 along
x1=0. Uniform tensile pressure p0 is applied along the edges x2=±c. The
mode-I SRIF K1m is normalized, as: F1m(=K1m/

p0
t

√
πa) where F1m is nor-

malized mode-I SRIF.
A path independency of the mode-I SRIF is firstly examined. A rectan-

gular contour is adopted for the J-integral evaluation as shown in Fig.6(b).
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Figure 6: A rectangular flat shell including a center crack. [(a) Analysis model to be
solved, (b) A close-up view of the meshfree model for a/b=0.5]

The results for the case of a/b=0.5 are presented in Fig.7(a) for b/t=2 and
10. r is a parameter to define size of the contours. The vertical axis is the
normalized SRIF and the horizontal axis is parameter r. As the reference so-
lution, a rectangular domain including a centered crack [63] is adopted. The
reference solution is for 2b/c=∞. A path independency of the SRIF can be
found for b/t=2 and 10. In addition, the SRIF is evaluated by changing the
crack length a/b and they are compared with the reference solutions. The
results are shown in Fig.6(b) from a/b=0.1 to 0.7, respectively. Same nor-
malized SRIF are obtained for b/t=2 and 10, and they are good agreement
with the reference solutions. It is found that the normalized mode-I SRIF in
flat shell under uniform load coincides with the mode-I SIF in 2D problems.

4.2. A cruciform test specimen including a center crack under tensile load

A cruciform test specimen including an inclined through crack is analyzed.
The model subjected to tensile load is represented in Fig.8(a). The specimen
is modeled by the flat shell with a thickness t of 1.0 mm. Whole model is
discretized. The size is b1=165 mm, b2=100 mm, c1=75 mm, and c2=50
mm. The half crack length a is varied, including a/c2=0.4, 0.6, 0.8 and
1.0, respectively. E=200 GPa and ν=0.3 are chosen. Fig.8(b) is a close-up
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Figure 7: Normalized SRIFs for various path radius when b/t=2 and 10. [(a) Path inde-
pendency, (b) Variations of the SRIF for a/b]

view of the meshfree model when a/c2=0.6 and ω=π/4 deg.. The support
size is set from αI=2.6 to 2.7. As the essential BCs, u1mid=u3=θ1=θ2=0
on x1=c1, x2=−b1; u1mid=0 on x1=c1, x2=b1, respectively. To suppress the
rigid rotation, u2mid=0 on x1=0, x2=0 is applied to one side of the crack
segment. Uniform pressure p0 is applied along x2=±b1. The normalized
SRIFs F1m(=K1m/

p0
t

√
πa) and F2m(=K2m/

p0
t

√
πa) are evaluated.
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Figure 8: A cruciform test specimen including an inclined center crack. [(a) Analysis
model to be solved, (b) Close-up view of the meshfree model for a/c2=0.6 and ω=π/4
deg.]

Path independency of the mixed-mode SRIFs is examined for a/c2=0.8,
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ω=π/4 deg.. The results are presented in Fig.9(a) and (b) for F1m and F2m,
respectively. As the reference solutions, mixed-mode SIFs for 2D problems
evaluated by FEM [64] are adopted. It is found that the mixed-mode SRIFs
are path independency. The SRIFs are compared with the reference solutions
by changing the crack length, a/c2=0.6, 0.8 and 1.0 for the inclined angle
from 0 to π/2 deg.. The results are also good agreement with the 2D SIFs. It
is confirmed that the SRIFs in a flat shell can be evaluated in high accuracy
for the meshfree modeling under tensile load.
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Figure 9: Normalized mixed-mode SRIFs for various path radius when a/c2=0.8 and
ω=π/4 deg.. [(a) F1m, (b) F2m]
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Figure 10: Normalized mixed-mode SRIFs for various crack angle when a/c2=0.6, 0.8 and
1.0. [(a) F1m, (b) F2m]

4.3. A stiffened plate with an edge crack under tensile load
A stiffened plate including an inclined through crack under tensile load

shown in Fig.11(a) is considered. The length of plate-1 and plate-2 is L1=60
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mm. The width of plate-2 is L2=30 mm and the height of plate-1 is L3=30
mm. The thickness of both plates is t=0.3 mm. The crack length a is set to
5, 10, 15 and 20 mm, respectively, which is located at plate-1 and crack angle
ω=0, 30 and 45 deg.. The meshfree model for a=10 mm and ω=30 deg. is
presented in Fig.11(b) and the close-up view of plate-1 is shown in Fig.11(c).
The support size is set from αI=2.5 to 2.7. E=200 GPa and ν=0.3 are chosen.
In stiffened plate model, u1mid=u2mid=u3=0 on x1=L1/2, x2=x3=0; u1mid=0
on x1=L1/2, x2=L2, x3=L3; u3=0 on x1=0 and L1, x2=L2, x3=0 and only
uniform pressure p0 is applied along both edges of plate-1 on x2=0 and 60
mm, as shown in Fig.11(a). The normalized SRIFs F1m(=K1m/

p0
t

√
πa) and

F2m(=K2m/
p0
t

√
πa) are evaluated.
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p
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3
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w

Figure 11: A stiffened plate including an inclined edge crack. [(a) Analysis model to be
solved, (b) Meshfree model for a=10 mm and ω=30 deg., (c) Close-up view of meshfree
model on plate-1 for a=10 mm and ω=30 deg.]

Path independency of the mixed-mode SRIFs is examined for a=10 mm
and ω=30 deg.. The results are presented in Fig.13(a) and (b) for F1m

and F2m, respectively. The results of path independency are compared with
commercial FEM software, Abaqus [65]. It provides an evaluation of the
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Figure 12: FEM model for cracked stiffened plate for a=10 mm and ω=30 deg.. [(a) FEM
model, (b) Close-up view]

J-integral and an interaction integral method to extract individual SIFs for
a crack under mixed-mode loading. For the FEM model in Fig.4.3, the crack
tip is surrounded by 3-node triangular S3 shell elements; the remaining area
is meshed by 4-node quadrilateral S4R shell elements. The element size is
0.2 mm near the crack tip; the element size is 0.4-0.5 mm along crack in the
FEM model to get fully converged solution. The FEM results are average
of SIFs for five contours. It is found that the mixed-mode SRIFs are path
independency. The SRIF is calculated by changing crack length for different
crack angles and they are compared with the FEM results. The results are
shown in Fig.14. The SRIFs have good accuracy of proposed method for
different crack length and crack angle. It indicates that the meshfree method
can be an effective approach for stiffened plate with crack.

Table 1: Comparison for SRIFs of stiffened plate (ω=0 deg.)

ω=0 deg.
RKPM FEM

a F1m F1m η1m
5 1.529 1.524 0.33%
10 1.855 1.848 0.41%
15 2.566 2.550 0.59%
20 4.278 4.239 0.93%

The influence of stiffener (plate-2) on plate-1 is discussed in this presented
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(a) (b)

Figure 13: Normalized mixed-mode SRIFs for various path radius when a=10 mm and
ω=30 deg.. [(a) F1m, (b) F2m]

Table 2: Comparison for SRIFs of stiffened plate (ω=30 deg.)

ω=30 deg.
RKPM FEM

a F1m F2m F1m F2m η1m η2m
5 1.233 0.410 1.231 0.406 0.19% 0.88%
10 1.430 0.461 1.426 0.458 0.28% 0.68%
15 1.858 0.546 1.849 0.542 0.49% 0.82%
20 2.711 0.693 2.691 0.693 0.72% 0.03%

Table 3: Comparison for SRIFs of stiffened plate (ω=45 deg.)

ω=45 deg.
RKPM FEM

a F1m F2m F1m F2m η1m η2m
5 0.930 0.483 0.924 0.477 0.66% 1.34%
10 1.025 0.518 1.020 0.516 0.51% 0.46%
15 1.270 0.585 1.262 0.580 0.66% 0.80%
20 1.767 0.643 1.754 0.642 0.77% 0.13%
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(a) (b)

(c)

Figure 14: Normalized mixed-mode SRIFs for various crack angles when a=5, 10, 15 and
20 mm. [(a) 0 deg., (b) 30 deg., (c) 45 deg.]
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paper. Two different Young’s moduli E for the stiffener, e.g., E=200 GPa
and e=E/100 GPa, are particularly investigated. Fig.15 shows the normal-
ized SRIFs of different Young’s modulus for stiffener for various cases. The
computed results are also compared with reference solution of 2D rectangular
plate for which E=0 GPa for the stiffener is taken. Here, EE and Ee stand
for the Young’s moduli for plate-1 and plate-2, respectively. It is found that
the SRIF results of Ee and 2D plate are very close. Two different phenomena
in each figure could be observed. When a/L2 is lower than critical value, the
SRIFs of EE are larger than that of Ee and 2D plate. On the contrary, the
SRIFs of EE are smaller than SRIFs of Ee and 2D plate when a/L2 is higher
than critical value. The critical values are 0.37, 0.42 and 0.51 when crack
angle is 0, 30 and 45 deg., respectively. The aω in Fig.15(d) can be obtained
from crack length times cosine of crack angle. It is found that all of aω ap-
proximately equal 10-11 mm (about one-third of plate width). It means that
the stiffener can significantly reduce the values of the SRIF when the crack
length of perpendicular direction aω gets over one-third of plate width.

4.4. A box beam with a through crack under bending and torsion load

The last numerical example deals with a cracked cantilever box beam
under bending and torsion load. The geometry and BC are sketched in
Fig.16. The size of the box beam is L1=800 mm，L2=800 mm and L3=100
mm. Four flat shells are joined each other to form the box beam structure.
The shell thickness is t=2.0 mm. The material property is E=70 GPa and
ν=0.3. The half crack length a is varied and SRIFs are investigated. As
the essential BCs., one side of the box beam on x2=0 mm is clamped. As
the load conditions, force couple f=5,000 N is applied on x2=L2, x3=0 as
shown in Fig.16. Half meshfree model and close-up view of top plate are
represented in Fig.17(a) and (b) for a=200 mm. The symmetry and anti-
symmetry BCs are applied along x1=200 mm for bending case and torsion
case, respectively. The symmetry is set to u1mid=θ2=0; the anti-symmetry is
set to u2mid=u3=θ1=0. The support size is αI=2.5 to 2.7 in meshfree model.
The normalized SRIFs of bending and torsion are respectively represented,
as:

F1m = K1m/(σmax

√
πa);F2m = K2m/(σmax

√
πa), (27)

F1m = K1m/(τmax

√
πa);F2m = K2m/(τmax

√
πa), (28)
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Figure 15: Normalized mixed-mode SRIFs for various Young’s modulus of stiffener. [(a)
0 deg., (b) 30 deg., (c) 45 deg., (b) Schematic diagram of aω on stiffened plate]
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where σmax and τmax are the maximum stress of bending and torsion, as:

σmax = 2f(L2)(L3/2)/Ī, (29)

τmax =
2f

Ī

[
L3 − 2t

4
+

L1

2
(L3 − t)

]
. (30)

Ī is the moment of inertia, as:

Ī =
1

12

[
L1L

3
3 − (L1 − 2t)(L3 − 2t)3

]
. (31)
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Figure 16: A cantilever box beam including a through crack. [(a) Bending, (b) Torsion]

(a) (b)

Figure 17: Meshfree model of cracked box beam. [(a) Meshfree model for a=200 mm, (b)
Close-up view of top plate for a=200 mm]

23



(a) (b)

Z

Y

X

X

Y

Z

XY

Z

Figure 18: FEM model of cracked box beam for a=200 mm. [(a) Whole view , (b) Close-up
view of top plate

Figure 19: Deformed shape of the box beam due to bending.
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Figure 20: Deformed shape of the box beam due to torsion.

Prior to cracked box beam, the box beam model without crack is firstly
analyzed. Fig.19 shows u3 deflection results along the center line on the
top plate between RKPM and FEM due to bending. Fig.20 visualizes the
deformed shape on x2=800 mm between RKPM and FEM due to torsion.
The RKPM results have good agreement with FEM solutions on both cases.

Fig.21(a)-(d) show normalized SRIFs for a=200 mm with different con-
tours for J-integral on bending and torsion loads. As same as the third
example, the 3-node triangular S3 shell elements and 4-node quadrilateral
S4R shell elements are used in model, as shown in Fig.4.4. The element size
is 1.0 mm near the crack tip; the element size is 2.0-7.5 mm along crack to ob-
tain fully converged results. The FEM result are average of stress intensity
factors for five path contours. The path-independency of the mixed-mode
SRIFs is examined. The normalized SRIFs for both mode-I and mode-II
considering various crack lengths are plotted in Fig.22. The SRIFs results
are compared with the FEM results. For different crack lengths, the SRIFs
which are calculated by the developed method are in good agreement with
the FEM solutions. It is confirmed that cracked box beam, such kind of
folded structures, can be successfully simulated by the proposed meshfree
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modeling.

(a) (b)

(c) (d)

Figure 21: Normalized mixed-mode SRIFs for various path radius when a=200 mm. [(a)
F1m under bending, (b) F2m under bending, (c) F1m under torsion, (d) F2m under torsion]

Table 4: Comparison for SRIFs of box beam (Bending).

Bending
RKPM FEM

2a F1m F2m F1m F2m η1m η2m
100 0.332 0.029 0.331 0.029 0.20% 0.13%
200 0.357 0.056 0.356 0.056 0.08% 0.01%
300 0.399 0.082 0.398 0.082 0.21% 0.30%
400 0.459 0.105 0.459 0.105 0.05% 0.03%
500 0.545 0.127 0.546 0.127 0.05% 0.12%
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(a) (b)

Figure 22: Normalized mixed-mode SRIFs for various crack lengths. [(a) Bending, (b)
Torsion]

Table 5: Comparison for SRIFs of box beam (Torsion).

Torsion
RKPM FEM

2a F1m F2m F1m F2m η1m η2m
100 0.078 0.234 0.078 0.234 0.24% 0.03%
200 0.157 0.223 0.157 0.223 0.00% 0.07%
300 0.240 0.204 0.240 0.204 0.07% 0.42%
400 0.329 0.178 0.329 0.178 0.02% 0.26%
500 0.433 0.144 0.434 0.144 0.05% 0.26%
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5. Conclusion

The effective meshfree Galerkin formulation is presented for single-mode
and mixed-mode fracture problems. To simulate the behavior of folded struc-
tures, an enhanced 6DOFs flat shell model has been developed by integrating
a drilling DOF into the existing 5DOFs meshfree flat shell model. In addi-
tion, the numerical integration technique is based on SCNI and SSCI for not
only virtual work principle but also J-integral. The decomposition procedure
is applied to separate mixed-mode SRIFs into mode-I and -II SRIFs. Several
numerical examples are investigated, including flat shell, stiffened plate and
box beam. The SRIFs are calculated and the path-independency of SRIFs
are examined. The SRIFs of proposed method are compared with reference
solutions and FEM solutions. The comparison reveals that high accuracy
on SRIFs from meshfree modeling are obtained. In addition, it should be
note that the stiffener can significantly decrease the values of SRIF when the
crack length of perpendicular direction over one-third of plate width. From
several numerical examples, it indicates that the presented formulation can
be a effectively approach in modeling crack problems of folded structure.
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