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Abstract

A recently developed peridynamic (PD) shell model based on the ordinary
state-based peridynamic theory is adopted to evaluate stress intensity factors
(SIFs) under in-plane loading. Strain and stress components are obtained
by introducing the peridynamic differential operator. In order to evaluate
mixed-mode SIFs, the domain form of the interaction integral is employed.
The adaptive dynamic relaxation technique is utilized to obtain steady-state
solutions, and the energy method is applied to reduce the PD surface effect.
Several numerical examples are considered, including single- and mixed-mode
fracture problems. All the PD results are compared with reference results to
demonstrate the accuracy and effectiveness of the proposed approach. The
present paper aims to examine the performance of the PD shell model in
linear elastic fracture mechanics and provides an effective approach for SIFs
evaluation.

Keywords: Peridynamics; Peridynamic differential operator; Interaction
integral; Stress intensity factors; Fracture; Flat shell

1. Introduction

Structural failure prediction is a challenging work in computational me-
chanics. In classical continuum mechanics (CCM), the governing equations
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are based on partial differential equations (PDEs). PDEs, however, are not
suited for modeling cracks owing to displacement discontinuities. Therefore,
some special numerical techniques are necessarily proposed in conventional
numerical methods. Peridynamics (PD) which is a non-local continuum the-
ory had been introduced by Silling [1,2]. The PD formulations are based on
integro-differential equations which can naturally describe discontinuities in
the analysis domain without any special treatments.

Most PD studies concentrate on the two-dimensional (2D) plane and
three-dimensional (3D) solid models. However, simulating a thin-walled
structure by the 3D PD model is computationally expensive. Structural ide-
alization is one of the approaches to reduce computational time. In CCM, the
Kirchhoff-Love and Mindlin-Reissner plate theories are common approaches
of structural idealization for thin-walled structures. Structural idealization is
also a research branch in the PD theory. O’Grady and Foster [3] introduced a
rotational spring between bonds to simulate the Kirchhoff-Love plate by non-
ordinary state-based peridynamics (NOSPD). Diyaroglu et al. [4] developed
a Mindlin plate model by bond-based peridynamics (BBPD). Chowdhury et
al. [5] proposed a curved bond for linear elastic shells by NOSPD. Nguyen
and Oterkus [6] developed a 3D shell PD model based on the Mindlin plate
theory with drilling rotation by ordinary state-based peridynamics (OSPD).
Yang et al. [7] introduced a Kirchhoff plate model and imposed various
boundary conditions (BCs) by OSPD. Nguyen and Oterkus [8] applied a 3D
shell PD model to evaluate the strength of maritime structures.

Several criteria in the PD theory can be found in previous studies. First,
the critical stretch based on bond elongation [9] was proposed. The crit-
ical stretch mainly deals with mode-I brittle fracture problems. Hence,
the energy-based failure criteria [10,11] were subsequently introduced. Di-
pasquale et al. [12] compared the existing failure criteria in mixed-mode
brittle fracture problems and concluded that a more reliable failure criterion
is required for complex fracture problems.

Critical fracture toughness (Kc) is the major failure criterion in most
experimental and numerical analyses. If stress intensity factor (SIF) in a
cracked structure reaches its critical value, Kc, crack propagation will take
place. In the PD literature, SIFs investigations with respect to the foun-
dation of classical fracture mechanics are rare. Hu et al. [13] derived the
peridynamic J-integral and the results are compared with FEM. Breiten-
feld et al. [14] examined the accuracy of field variables in the vicinity of the
crack front. Le and Bobaru [15] carried out the PD J-integral evaluation with

2



the different techniques of surface effect correction. Stenström and Eriksson
[16] presented the J-integral formulation via displacements from BBPD. The
studies mentioned above only considered pure mode-I fracture problems. Few
papers discussed mixed-mode cases in the PD framework. Jung and Seok [17]
decomposed the PD J-integral into mode-I and -II SIFs to implement fatigue
crack growth analysis. Imachi et al. [18] evaluated mixed-mode dynamic
SIFs for 2D elastic cracked solids.

In the present paper, we provide an approach to evaluate mixed-mode
SIFs in the PD framework. The OSPD model for shell structures [6] is em-
ployed to deal with fracture problems. The energy method [19] is applied to
reduce the surface effect which affects the accuracy of results near domain
boundaries. To obtain steady-state solutions, the adaptive dynamic relax-
ation (ADR) technique [19] is introduced. Additionally, the derivative of
variables in the J-integral formulation is evaluated by introducing the peri-
dynamic differential operator (PDDO) [20]. The interaction integral [21] is
adopted to obtain mixed-mode SIFs. From the conclusions presented in Ref.
[22], membrane SIFs are generally greater than bending SIFs in thin cracked
plates. In thin-walled structures, most of the loads are transferred to the
structure as in-plane stresses [22,23]. Thus, in-plane loads are considered
throughout the present paper.

The remainder of the paper is organized as follows. The PD shell model is
briefly introduced in Section 2. The PDDO and interaction integral are pre-
sented to evaluate mixed-mode SIFs in Section 3. Four numerical examples
are shown in Section 4. The conclusions are given in Section 5.

2. Ordinary state-based peridynamic formulation

2.1. Peridynamic model for shell structures

The PD model for shell structures is based on the ordinary state-based PD
theory. In CCM, the state of a material point is influenced by the material
points located in its immediate vicinity. In contrast to CCM, any point x
interacts with the other material points within a distance δ in the PD theory.
The non-local region is called the horizon. The material points within δ are
called the family of x, Hx [19]. In Fig. 1, the interactional relationship of
material points between CCM and PD is illustrated.

First, the strain energy densities of the PD shell model are defined, in-
cluding in-plane, bending, and shear terms. The strain energy densities are
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represented in a similar manner to the Mindlin plate theory. Next, the equa-
tions of motion of this PD shell model are derived from the principle of
virtual work. Here, the PD shell model is briefly introduced. The details can
be found in Ref. [6]. Note that the small deformation assumption is taken
in the proposed PD model.
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Figure 1: The interactional relationship of material points between CCM and PD.
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Figure 2: Initial and deformed states of a flat shell in PD.

At any instant of time, the material point k interacts with the other ma-
terial points j in its own family, Hx. The interaction between points k and j
is presented in Fig. 2. x(k) and y(k) denote the initial and deformed positions
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of point k, respectively. φ represents the angle of interaction between points
k and j with respect to the x-axis. u(k)=[u v w θx θy]

T and t(k)(j) denote the
displacement and force density vectors of point k, respectively. The equation
of motion for the PD shell model can be written in vector form as:

m(k)ü(k) =
N∑
j=1

(t(k)(j) − t(j)(k))V(j) + b(k) =
N∑
j=1

f(k)(j)V(j) + b(k), (1)

where N is the total number of material points within δ, and V(j) is the
volume of point j. Mass matrix m(k), acceleration vector ü(k), force density
vector f(k)(j), and body force density vector b(k) are given as below:

m(k) =


ρh 0 0 0 0
0 ρh 0 0 0
0 0 ρh 0 0

0 0 0 ρh3

12
0

0 0 0 0 ρh3

12

 , (2)

where ρ and h represent the mass density and thickness of the flat shell,
respectively.

ü(k) =


ü(k)

v̈(k)
ẅ(k)

θ̈x(k)
θ̈y(k)

 , f(k)(j) =


fu
(k)(j)

f v
(k)(j)

fw
(k)(j)

f θx
(k)(j)

f
θy
(k)(j)

 , b(k) =


bx(k)
by(k)
bz(k)
mx(k)

my(k)

 . (3)

The force density vector f(k)(j) of each component is constructed by PD
parameters, bond stretch s, dilatation ϑ, and displacements u. The PD force
densities are expressed as below:

fu
(k)(j) = [

2aipdip
ξ

(ϑip(k) + ϑip(j)) + 4bipsip(k)(j)] cosφ, (4)

f v
(k)(j) = [

2aipdip
ξ

(ϑip(k) + ϑip(j)) + 4bipsip(k)(j)] sinφ, (5)
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fw
(k)(j) =Cs{

w(j) − w(k)

ξ
− 1

2
[−(θy(k) + θy(j)) cosφ

+ (θx(k) + θx(j)) sinφ]},
(6)

f θx
(k)(j) =[

2abdb
ξ

(ϑb(k) + ϑb(j)) + 4bbsb(k)(j)] sinφ

+
1

2
Cs{(w(j) − w(k)) sinφ

− ξ

2
[−(θy(k) + θy(j)) sinφ cosφ+ (θx(k) + θx(j)) sin

2 φ]},

(7)

f
θy
(k)(j) =− [

2abdb
ξ

(ϑb(k) + ϑb(j)) + 4bbsb(k)(j)] cosφ

− 1

2
Cs{(w(j) − w(k)) cosφ

− ξ

2
[−(θy(k) + θy(j)) cos

2 φ+ (θx(k) + θx(j)) sinφ cosφ]}.

(8)

The dilatation ϑl(k) is the relative variation of volume at a material point.
In the PD theory, the dilatation is a function of bond stretch sl(k)(j). l=ip
and l=b represent the dilatation for in-plane and bending deformations, re-
spectively. The dilatation is defined as:

ϑl(k) = dl

N∑
j=1

sl(k)(j)V(j). (9)

The bond stretch for in-plane deformation sip(k)(j) and bending deforma-
tion sb(k)(j) are given below:

sip(k)(j) =
(u(j) − u(k)) cosφ+ (v(j) − v(k)) sinφ

ξ
, (10)

sb(k)(j) =
−(θy(j) − θy(k)) cosφ+ (θx(j) − θx(k)) sinφ

ξ
, (11)
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where ξ is the distance between x(k) and x(j).
The PD parameters can be derived by comparing dilatations and strain

energy densities between CCM and PD. The subscripts of ip, b, and s in the
PD parameters represent in-plane, bending, and shear terms, respectively.
The PD parameters are presented as:

aip =
Eh(3ν − 1)

4(1− ν2)
, dip =

3E

πδ3(1 + ν)
, bip =

2

πhδ2
, (12)

ab =
Eh3(3ν − 1)

48(1− ν2)
, db =

Eh2

4πδ3(1 + ν)
, bb =

2

πhδ2
, (13)

Cs =
3ksE

πδ3(1 + ν)
, (14)

where δ, E, ν, and ks denote the horizon size, Young’s modulus, Poisson’s
ratio, and shear correction factor, respectively.

2.2. Numerical implementation and crack modeling

The equations of motion in PD can directly solve dynamic problems.
For static and quasi-static problems, the ADR technique [19] is necessarily
adopted in PD solutions. By replacing the mass matrix with the stable mass
matrix and damping matrix into the equations of motion, the steady-state
solution can be obtained to solve static problems by the ADR method. The
stable mass matrix for the PD shell model is introduced in Ref. [6].

It is assumed that the PD parameters are computed under complete
neighborhood volumes in the horizon. However, the horizon does not com-
pletely embed in the analysis domain while x approaches domain boundaries.
The parameter value with the complete horizon is slightly different from the
value without the complete horizon [15]. This is called the“ surface effect”
in the PD theory. The energy method [19] is proposed to reduce the surface
effect and obtain more accurate results.

The analysis domain is discretized by uniform scattered particles. A
crack is modeled on the analysis domain by disconnecting bonds between
material points. When the crack segment intersects with the interaction
bond, the interaction bond is irreversibly broken. Crack modeling in the PD
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Crack

Figure 3: Schematic of crack modeling in PD.

theory is expressed in Fig. 3. The solid lines and dashed lines represent
the connected bonds and broken bonds, respectively. The state of bond
interaction is represented by µ(ξ, t) in Eq. (15) [9].

µ(ξ, t) =

{
0 broken bond

1 intact bond
(15)

3. Stress intensity factors evaluation

3.1. Peridynamic differential operator

Generally, the PD theory does not concern derivatives of physical vari-
ables, such as strain and stress. However, strain and stress are possible to be
utilized during numerical implementation in the PD framework, especially
for SIFs evaluation. The PD stress tensor based on nonlocal interactions
was derived by Silling and Lehoucq [24]. Breitenfeld et al. [14] developed
the nonlocal deformation gradient to obtain strain and stress tensors in the
NOSPD formulation. Subsequently, the PD differential operator is proposed
in the concept of nonlocal interactions by Madenci et al. [20]. The PDDO
can deal with higher-order derivatives without any limitations. Thus, the
PDDO is adopted to evaluate strain and stress components in the present
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paper. Field variables can be constructed by the Taylor series expansion.
The 2D spatial function can be written as:

f(x+ ξ) =f(x) + ξ1
∂f(x)

∂x1

+ ξ2
∂f(x)

∂x2

+
1

2!
ξ21
∂2f(x)

∂x2
1

+
1

2!
ξ22
∂2f(x)

∂x2
2

+ ξ1ξ2
∂2f(x)

∂x1∂x2

,

(16)

where ξ1 and ξ2 are the distance between the initial positions of points k and
j in the x1-axis and x2-axis direction, respectively.

The explicit form in PD for variable and its derivatives are defined as:



f(x)
∂f(x)
∂x1

∂f(x)
∂x2

∂2f(x)

∂x2
1

∂2f(x)

∂x2
2

∂2f(x)
∂x1∂x2


=

∫
Hx

µ(ξ, t)f(x+ ξ)


g002 (ξ)
g102 (ξ)
g012 (ξ)
g202 (ξ)
g022 (ξ)
g112 (ξ)

 dV, (17)

where gp1p22 and µ(ξ, t) are the PD function and state of bond interaction,
respectively. The PD function is represented by unknown coefficients ap1p2ij

and weighted function ω(|ξ|) in Eq. (18). The PD function possessed the
orthogonality property is expressed as polynomials:

gp1p22 (ξ) =ap1p200 ω(|ξ|) + ap1p210 ω(|ξ|)ξ1 + ap1p201 ω(|ξ|)ξ2
+ ap1p220 ω(|ξ|)ξ21 + ap1p202 ω(|ξ|)ξ22 + ap1p211 ω(|ξ|)ξ1ξ2,

(18)

ω(|ξ|) = e−(2|ξ|/δ)2 , (19)

a =


a0000 a1000 a0100 a2000 a0200 a1100
a0010 a1010 a0110 a2010 a0210 a1110
a0001 a1001 a0101 a2001 a0201 a1101
a0020 a1020 a0120 a2020 a0220 a1120
a0002 a1002 a0102 a2002 a0202 a1102
a0011 a1011 a0111 a2011 a0211 a1111

 . (20)
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Due to the orthogonality property of the PD functions, it requires to sat-
isfy Aa=b. A is the PD shape matrix, b is the matrix of known coefficients,
and a is the matrix of unknown coefficients. The matrix of unknown coeffi-
cients a is solved by Eq. (23), and the coefficients are substituted into Eq.
(18) to obtain the PD functions. The PDDO employs the concept of nonlocal
interactions within the horizon in Eq. (17). Therefore, in contrast to CCM,
the PDDO possesses the nonlocal characteristics to evaluate field variables
and their derivatives without performing any differential.

A =

∫
Hx

µ(ξ, t)ω(|ξ|)


1 ξ1 ξ2 ξ21 ξ22 ξ1ξ2
ξ1 ξ21 ξ1ξ2 ξ31 ξ1ξ

2
2 ξ21ξ2

ξ2 ξ1ξ2 ξ22 ξ21ξ2 ξ32 ξ1ξ
2
2

ξ21 ξ31 ξ21ξ2 ξ41 ξ21ξ
2
2 ξ31ξ2

ξ22 ξ1ξ
2
2 ξ32 ξ21ξ

2
2 ξ42 ξ1ξ

3
2

ξ1ξ2 ξ21ξ2 ξ1ξ
2
2 ξ31ξ2 ξ1ξ

3
2 ξ21ξ

2
2

 dV, (21)

b =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

 , (22)

a = A−1b. (23)

3.2. Interaction integral

The domain form of the interaction integral [21] is employed to extract
mixed-mode SIFs. The integral domain S is chosen between R1 and R2,
and the schematic illustration of the interaction integral is given in Fig.
4. Meanwhile, the linear weight function q in Eq. (24) is adopted. In
the interaction integral, two states of field quantities that correspond to the
actual and auxiliary states are considered. The superscript “aux” denotes
an auxiliary state chosen as the asymptotic field near the crack tip. The
displacement and stress components of the auxiliary state are taken from
Ref. [25]. The crack faces are assumed to be traction-free. The traction-free
BCs are enforced along the upper and lower surfaces of the crack [20].
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Figure 4: Weight function q for the interaction integral.

q =


1 on R1

0 on R2

0 < q < 1 R2 > r′ > R1

(24)

The domain form of the interaction integral I is written as:

I =

∫
S

{[σiju
aux
i,1 + σaux

ij ui,1]−W intδ1j}q,jdS, (25)

where δij andW int denote the Kronecker delta property and interaction strain
energy, respectively. W int is defined as below:

W int = σijε
aux
ij = σaux

ij εij. (26)

The interaction integral I is written in terms of SIFs in Eq. (27). KI

and KII can be evaluated by choosing appropriate auxiliary fields. While the
auxiliary field of mode-I (Kaux

I =1 and Kaux
II =0) is selected, KI is obtained
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from Eq. (27). KII can be extracted in a similar fashion by selecting the
auxiliary field of mode-II (Kaux

I =0 and Kaux
II =1).

I =
2

E
[KIK

aux
I +KIIK

aux
II ]. (27)

4. Numerical examples

Four numerical examples for single- and mixed-mode fracture problems
are considered to examine the accuracy and effectiveness of the proposed ap-
proach. Meanwhile, it aims to confirm the performance of the PD framework
in linear elastic fracture mechanics (LEFM). All the PD results are compared
with reference results or exact solutions. Please note that in-plane loads are
only considered in the present paper. Additionally, uniform particle distri-
bution is taken in the following examples. The material particle spacing is
denoted as ∆x. All the examples of shell thickness h and horizon size δ are
set to 1 unit and 3.015∆x, respectively. The normalized SIFs are defined as
Fi=Ki/σ

√
πa, where i=I for mode-I and i=II for mode-II.

4.1. Flat square shell with an edge crack under tensile load

A flat square shell including an edge crack under tensile load is analyzed.
The geometry is shown in Fig. 5 (a). The length L and widthW are 100 mm,
and the crack length is a=50 mm. E=72 GPa and ν=1/3 are chosen for the
material properties. The uniform tensile stress σ=1.0 MPa is applied to the
top and bottom edges. Four different particle spacings are taken, including
∆x=2.0, 1.0, 0.5, and 0.4 mm.

SIF represents a “stress state” near the crack tip for providing a quantity
to describe failure behaviors in fracture mechanics. In order to examine the
ability of the proposed approach, the stress components of σ11 and σ22 are
compared between PD and FEM in the first example. As shown in Figs.
6 and 7, σ11 and σ22 distributions in PD are almost the same as the FEM
results. Moreover, σ22 distribution along the r′-axis near the crack tip is
investigated with and without the energy method when the θ′-axis equals 0◦.
From the comparison in Fig. 8 (a), the results with the energy method is more
close to the FEM distribution than the results without the energy method.
It is found that the energy method can effectively correct the surface effect
in analyzing stress near the crack. Thus, the energy method is employed in
the following examples.
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Figure 5: Flat square shell with an edge crack, (a) Under tensile load, (b) Under specified
displacement BCs.
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Figure 6: Comparison of σ11 between FEM and PD, (a) FEM, (b) PD.
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Figure 7: Comparison of σ22 between FEM and PD, (a) FEM, (b) PD.
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Figure 8: (a) σ22 distribution along the r′-axis with and without the energy correction
method under tensile load when the θ′-axis equals 0◦, (b) log (σ22) distribution along the
r′-axis under specified displacement BCs when the θ′-axis equals 45◦.
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To further investigate the effectiveness of capturing stress fields near the
crack tip, the specified displacement BCs corresponding to the K-field solu-
tion [26] is adopted, as illustrated in Fig. 5 (b). For this additional investi-
gation, E=1 GPa and ν=0.25 are assumed. The specified displacement BCs
are expressed in Eq. (28) as:

[
u
v

]
=

KI

2G

√
r′

2π

[
cos θ′

2
(κ− 1 + 2 sin2 θ′

2
)

sin θ′

2
(κ+ 1− 2 cos2 θ′

2
)

]
, (28)

where G=E/2(1+ν) and κ=(3-ν)/(1+ν). KI=1.0 MPa
√
mm is prescribed.

The polar coordinates (r′,θ′) are defined at the crack tip.
The stress component σ22 is calculated along the r′-axis under the speci-

fied displacement BCs when the θ′-axis equals 45◦. log (σ22) distribution near
the crack tip is given in Fig. 8 (b). The slope of log (σ22) equals 0.5 that sat-
isfy the physical behavior in LEFM, and the results have a good agreement
with the analytical results from the K-field solution [26]. From the results
mentioned above, it is demonstrated that the stress fields in LEFM can be
captured by the proposed method.

The convergence analysis of KI is carried out in Fig. 9. The reference
result of KI in this example is 37.72 MPa

√
mm computed from the J-integral

value in Ref. [13]. While the particle spacing is less than 0.5 mm, the error
of KI is less than 1 %. At the same time, the path-independence analysis
of KI is implemented with four different horizon sizes, including δ=6.0, 3.0,
1.5, and 1.2 mm. According to Ref. [18], it recommends that the parameters
of the interaction integral R2-R1 and R1 are set larger than δ to reduce the
influence of the surface effect. From Table 1, the path-independence of KI

can be found. While the ratio of (R2-R1)/a is greater than or equal to 0.2,
the steady PD results are obtained.

Table 1: SIF for different horizon sizes and integral domains.

(R2-R1)/a
δ 0.1 0.2 0.3 0.4 0.5 0.6

6.0 mm 36.467 38.710 38.229 39.160 38.571 39.056
3.0 mm 38.830 38.444 38.471 38.300 38.334 38.309
1.5 mm 37.509 38.006 37.925 37.949 38.006 38.058
1.2 mm 37.619 37.702 37.785 37.767 37.771 37.808
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Figure 9: Convergence analysis of KI .

4.2. Flat rectangular shell with an inclined edge crack under tensile load

A flat rectangular shell including an inclined edge crack under tensile load
is considered. The length L and width W of the rectangular shell are 20 mm
and 10 mm, respectively. Four crack lengths a/W are set from 0.2 to 0.5,
and two crack angles β=30◦ and 45◦ are taken. The uniform tensile stress
σ=1.0 MPa is chosen. The analysis model is illustrated in Fig. 10. Young’s
modulus E and Poisson’s ratio ν are 206 GPa and 0.3, respectively. Three
different particle spacings ∆x=0.125, 0.0625, and 0.03125 mm are adopted.

This example is a mixed-mode fracture problem. The convergence anal-
ysis is carried out for mode-I and -II SIFs. From Fig. 11, it can be clearly
found that the error of KI is obviously less than the error of KII with the
same number of discretization nodes. In this example, it is recommended
that the particle spacing is less than or equal to 0.03125 mm.

Additionally, the normalized mixed-mode SIFs for different crack lengths
and crack angles are investigated. In order to examine the accuracy of the
proposed method, the reference results are chosen from the meshfree method
[27] and the mapping technique [28]. The comparisons between three different
methods are presented in Fig. 12. From the comparisons, the PD results of
β=30◦ and β=45◦ agree well with the other two reference results.
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Figure 10: Flat rectangular shell under tensile load with an inclined edge crack.
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Figure 11: Convergence analysis of KI and KII .
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Figure 12: Normalized mixed-mode SIFs for different crack lengths, (a) β=30◦, (b) β=45◦.

4.3. Flat square shell with an inclined central crack under tensile load

A flat square shell including an inclined central crack under tensile load is
investigated. The geometry sizes are L=W=10 mm. The material properties
of this example are the same as the second example. The shell is subjected
to uniaxial stress, σ=1.0 MPa, as shown in Fig. 13. The crack lengths 2a/W
are adopted from 0.1 to 0.7, and the crack angle β is varied from 0◦ to 90◦.
The particle spacing ∆x=0.03125 mm is used.

2a

W

Lβ

Figure 13: Flat square shell under tensile load with an inclined center crack.

First, the normalized mode-I SIF is evaluated for different crack lengths
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when β equals 0◦, and the results are compared with Ref. [29]. From Fig.
14 (a), the PD results have a good agreement with the reference results.
Meanwhile, the normalized SIF approaches 1.0 when 2a/W equals 0.1. It
means that the case of 2a/W=0.1 can regard as an infinite plate under far-
field uniaxial stress.

Next, the normalized mixed-mode SIFs for different crack angles are cal-
culated. According to the conclusion mentioned above, the analysis model
can be considered as an infinite plate subjected to far-field uniaxial stress
when 2a/W=0.1. Therefore, the exact solutions in Eq. (29) can be taken
to compare with the PD results. Meantime, the XFEM results from Ref.
[21] are also adopted to be reference results. The results from three different
approaches are illustrated in Fig. 14 (b). Even though the crack length is
much less than the shell width, the analysis model is not an infinite plate.
Thus, the PD results are more close to the XFEM results instead of the exact
solutions. In conclusion, the PD results have good accuracy by comparing
three different approaches.

KI = σ
√
πa cos2 β, KII = σ

√
πa cos β sin β. (29)
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Figure 14: (a) Normalized SIF for different crack lengths at β=0◦, (b) Normalized mixed-
mode SIFs for different crack angles.
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4.4. Flat rectangular shell with an inclined eccentric crack under tensile load

The last numerical example deals with a flat rectangular shell under ten-
sile load including an inclined eccentric crack. The geometry sizes, tensile
load, and material properties of this example are identical to the second
example, whereas the half crack length and crack angle have different ar-
rangements. The half crack length a is fixed at 1 mm, and e=W/4 is a
distance for the crack position away from the center of the flat shell. Seven
crack angles β are considered, including 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦.
The geometry and crack position are given in Fig. 15. In this example, the
particle spacing ∆x=0.04 mm is set.

2a

W

L

β

e
A

B

Figure 15: Flat rectangular shell under tensile load with an inclined eccentric crack.

The normalized mixed-mode SIFs of eccentric crack for different crack
angles are assessed. Owing to the crack position which does not locate at
the center of the shell, different SIF results are found for each crack tip. The
PD results are compared with the results from FEM software, Abaqus [30].
The comparisons of crack tip A and B are presented in Fig. 16 (a) and (b),
respectively. The PD results ofKI andKII for each crack tip closely approach
the FEM results. Only eliminating interaction bonds is used to model the
inclined eccentric crack without special numerical treatments. The advantage
of crack modeling in the PD theory is demonstrated in this example.
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Figure 16: Normalized mixed-mode SIFs for different crack angels, (a) Crack tip A, (b)
Crack tip B.

5. Conclusion

The mixed-mode SIFs of flat shells under in-plane loading are evaluated
in the OSPD framework. The PDDO is adopted to calculate strain and stress
components, and those components are substituted into the interaction inte-
gral to evaluate SIFs. Meanwhile, the energy method is used to reduce the
influence of the surface effect. To obtain steady-state solutions, the ADR
technique is employed for static problems. The accuracy and effectiveness
of the proposed approach are examined by comparing PD results with exact
solutions and other numerical methods. According to the comparisons in the
numerical examples, the mixed-mode SIFs are accurately evaluated. More-
over, the advantage of crack modeling in the PD theory is also demonstrated
by eliminating interaction bonds. The arbitrary crack can be easily modeled
without special numerical treatments. The proposed PD approach achieves
the performance of LEFM and provides an alternative approach for mixed-
mode SIFs evaluation under in-plane loading. The research objectives of
future work are to evaluate fracture parameters under out-of-plane loading.
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