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Abstract

Mixed-mode fatigue crack propagation analysis is studied using ordinary
state-based peridynamics. By introducing the concept of “remaining life”,
the fatigue crack nucleation and propagation can be simulated in the PD
framework. The PD fatigue modeling and the crack path prediction is care-
fully investigated. For the comparison purpose, the maximum circumferential
stress criterion is introduced. The interaction integral and the peridynamic
differential operator is employed to evaluate the fracture mechanics param-
eters. Two pre-cracked structures under mixed-mode loading conditions are
provided with the validations from reference solutions.

Keywords: Fatigue crack growth, Peridynamics, Fracture mechanics,
Maximum circumferential stress criterion, Meshfree method

1. Introduction

Structural safety has always been an issue of high concern in the marine
industry. Among the many type of marine structural failures, the fatigue is
commonly regarded as one of the major failure modes for ships and offshore
facilities. These structures, generally, are connected by weld joints, where
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high stresses are likely concentrated [1]. Under cyclic loadings by waves,
winds or even severe conditions, fatigue damage might gradually accumulate
in the weld joints, and contribute to the emergence of crack and failure on the
structure, leading to catastrophic accident eventually. Therefore, the fatigue
fracture analysis is of vital importance in the marine design, assessment and
maintenance.

Even though the mechanism behind the fatigue failure is not fully un-
derstood till today [2], there still many efforts were devoted to the relevant
investigations. Based on the experimental observation of aluminium plates,
Paris et al. [3] had established the relationship between crack growth rate and
range of stress intensity factor (SIF). This pioneering finding had provided
a useful and reliable theoretical support for the damage tolerance evaluation
in many research fields.

With the improvement of computing performance, many numerical meth-
ods were developed into the fatigue crack growth analysis. Sander and
Richard [4] conducted a two-dimensional (2D) mixed-mode fatigue failure
experiment, finding out the retardation effect on fatigue crack growth rate
and crack path deflection. Then by using finite element method (FEM), they
further explored the causes of the retardation under different mixed-mode
loading conditions in detail. Nguyen et al. [5] introduced the cohesive model
into the FEM to resolve the near-tip plastic fields using adaptive meshing to
predict the fatigue life. Yan and Nguyen-Dang [6] utilized the dual boundary
element method to simulate multiple crack fatigue problem. Singh et al. [7]
employed the extended FEM to investigate the influence of different type dis-
continuities on fatigue life. Based on FEM, crack propagation approach was
also proposed to describe the relationship between load cycles and fatigue
crack growth [8-10].

Since cracks and damages are geometrically discontinuous, the partial dif-
ferential equations, which are widely employed in the mesh-based numerical
methods, might become hindrance in the fracture analysis. Re-meshing pro-
cess is necessary during the simulation, negatively affecting the efficiency and
accuracy of the numerical solutions [11-13]. Therefore, many meshfree ap-
proaches were developed. Duflot and Nguyen-Dang [14] proposed a meshfree
method by introducing an enriched weight function. By accurately evaluat-
ing the SIFs, the growth of multiple fatigue cracks were predicted. Jameel
and Harmain [15] predicted the crack growth and evaluated the fatigue life
of the structures with inclusion and hole by using element free Galerkin
method (EFGM) [16]. Pathak et al. [17] investigated the 3D fatigue crack
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behaviours under thermo-elastic loadings by coupling the FEM and EFGM.
Dai et al. [18] analyzed the fatigue crack propagation on cylindrical shell by
using reproducing kernel particle method (RKPM) [19-21].

In recent years, peridynamic (PD) theory was proposed for the frac-
ture analysis [22], and it has many applications in several fracture problems
[23,24]. Oterkus et al. [25] proposed a novel fatigue model in predicting the
crack growth. The bond stretch in this model consist of elastic and plastic
part. Meanwhile, the critical stretch will decrease as the number of load
cycle increase. Therefore, it could simulate the fatigue damages caused by
the plastic deformation. Silling and Askari [26] introduced the concept of
“remaining life” to the bond kinematics. In considering the S-N curve and
Paris law [3,27], the fatigue crack initiation and propagation can be respec-
tively simulated. Based on Silling’s model [26], Nguyen et al. [28] developed
a novel bond breakage criterion for the fatigue model. The fatigue crack
growth was determined by cyclic bond energy release rate. Jung and Seok
[29] had extended the Silling’s model by taking the mixed-mode loading con-
dition into consideration, and successfully applied in the fatigue crack growth
analysis of heterogeneous material [30]. There are also many researches and
applications of the PD fatigue model, which can be found in the literature
[31-33].

Even though there are many studies about the prediction of fatigue crack
growth by using PD in the literature, an in-depth investigation is still neces-
sary. Therefore, several 2D model with pre-existed crack will be tested in this
study. The interaction integral, originally proposed by Yau et al. [34], will be
reformulated based on the PD framework and utilized in the calculation of
SIFs. Meanwhile, the crack growth based on maximum circumferential stress
(MCS) criterion, proposed by Erdogan and Sih [35], will also be examined
as a comparison with the PD fatigue model. The bond-based PD (BPD), as
originally proposed by Silling [22,36], is an over simplified model, which have
some limitations on material properties. Poisson’s ratio is constant as 1/3
and 1/4 for 2D and 3D problems, respectively. Therefore, it is not suitable
for simulations considering plastic deformation. Hence, Silling [37] modified
the BPD model and proposed ordinary state-based peridynamics (OSPD) by
introducing the concept of “state”.

In this study, mixed-mode fracture analysis on 2D problems are provided
based on the OSPD. Both original PD fatigue model and PD MCS model will
be demonstrated and compared in detail. Therefore, in the second section,
the concept of OSPD and the corresponding PD fatigue model will be briefly
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illustrated. The meshfree interaction integral method is addressed in the
third section. Then, mixed-mode numerical studies are presented in the
fourth section to validate the PD fatigue model. Finally, some major findings
of this research are discussed and concluded in the final sections.

2. 2D Ordinary state-based peridynamics

PD is firstly introduced by Silling [22] as an alternative approach of solid
mechanical modeling. As a nonlocal theory, PD has taken long range in-
teractions into consideration, which is fundamentally different from classical
continuum mechanics (CCM) [38]. In numerical modelling of PD, structures
are discretized by finite number of material points accompanied with vol-
umes in space without meshing. Therefore, it has superiority in the fracture
analysis. As shown in Fig. 1, material point could build up interactions with
its neighbour points within certain distance, named as “Horizon” (Hx). The
interaction between each pair of points is known as “bond”, where pairwise
force might arise after deformation. The horizon size is denoted as δ. In
this study, δ is selected as 3 times of grid space by considering the numerical
accuracy and computational efficiency.

Initial configuration Deformed configuration

Figure 1: Kinematics in OSPD.
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2.1. Equation of motion

Different from CCM, the motion of a material point in PD can be de-
scribed by an integral equation as:

ρüi =

∫
Hx

{tij(ui,uj,xi,xj, t)− tji(ui,uj,xi,xj, t)}dVj + bi(t), (1)

where ρ refers to the mass density of a point. xi and xj are the position
vector of points i and j, respectively, in the initial configuration. ui and uj

represent the displacement vectors. tij and tji are the pairwise force vectors
of points as shown in Fig. 1. bi(t) refers to the body force density subjected
to the point i at time t. The volume of point j is denoted as Vj.

In the numerical implementation of Eq. (1), Vj on the horizon boundary
might not be fully enclosed due to the disk shape of the horizon. Therefore,
some correction factors added on the volume is necessary to ensure the ac-
curacy of the numerical simulation. The pairwise force densities are derived
from the strain energy density, which consists of the dilatation and distortion
terms as:

W = a1θ
2
i + b

∫
Hx

ωij(|yj − yi| − |xj − xi|)2dVj, (2)

where yi and yj refer to the position vectors on bond in the deform configu-
ration. θi is the dilatation term for point i, which can be expressed as:

θi = d

∫
Hx

ωijsij
yj − yi

|yj − yi|
· (xj − xi)dVj, (3)

where ωij and sij are weight function and stretch for a bond. ωij is manually
defined, which controls the strength of the interactions between points on a
bond. Usually, the farther distance between the points, the weaker the bond.
In this article, the bond stretch and weight function are respectively defined
as:

ωij =
δ

|xj − xi|
, sij =

|yj − yi| − |xj − xi|
|xj − xi|

. (4)

a1, b and d in Eqs. (2) and (3) are PD parameters. For 2D analysis, they
can be expressed as:

a1 =
λα− µ

2
, b =

6µ

πhδ4
, d =

2

πhδ3
, (5)
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where h represents thickness of the 2D structure. Lamé’s constant, λ and µ,
and coefficient α are expressed as:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (6a)

α =

{
(1− 2ν)/(1− ν) for plane stress

1 for plane strain
. (6b)

Therefore, the pairwise bond force density tij can be determined from the
spatial partial differentiation of W , which can be expressed as:

tij =
1

Vj

∂W

∂(|yj − yi|)
yj − yi

|yj − yi|

= 2a1d · ωijθiΛij
yj − yi

|yj − yi|
+ 2b · ωij(|yj − yi| − |xj − xi|)

yj − yi

|yj − yi|
,

(7)

where Λij can be expressed as:

Λij =
yj − yi

|yj − yi|
· xj − xi

|xj − xi|
. (8)

Substituting Eq. (7) to Eq. (1), the motion of material points could be
determined.

2.2. Static solution

Even though Eq. (1) is in the dynamic form, it can still be applied in static
analysis. Kilic and Madenci [39] introduced adaptive dynamic relaxation
(ADR) technique, which is derived from the theory proposed by Underwood
[40]. By manually introducing damping modulus into the dynamic formed
equation of motion, the numerical solutions could converge into static values.
ADR is an explicit method, but it does not have limitations on time step size
[38]. Moreover, it does not require high computing performance. Therefore,
it is convenient to be implemented in PD.

However, in some special problems without sufficient boundary constraints,
it will take relatively long computing time for structures to reach a steady
state. Meanwhile, for quasi-static analysis with crack growth, the damping
factors might need to be modified as the crack propagating in order to get a
good computing efficiency. In this manner, the ADR, perhaps, is not suitable
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in the simulation of fatigue crack growth, since it requires large amount of
computational time.

Apart from ADR, the static solution can also be calculated by setting ρüi

in Eq. (1) to 0. Then, Eq. (1) can be numerically reformulated as:∑
Hx

[tij(ui,uj,xi,xj, t)− tji(ui,uj,xi,xj, t)]Vj = −bi(t), (9)

where
∑

Hx
refers to the summation within the horizon. Then, substituting

Eq. (7), Eq. (9) can be rewritten as:∑
Hx

2ωij{a1d(θi+θj)Λij+2b(|yj−yi|−|xj−xi|)}
yj − yi

|yj − yi|
Vj = −bi(t). (10)

The bond stretch sij in Eq. (4) represents the elongation or shortening
of a bond. It can also be reformulated as:

sij =
(uj − ui)e

1
ij + (vj − vi)e

2
ij

|ξ|
, (11)

where ui and uj are displacements along x-direction of points i and j, re-
spectively. Similarly, vi and vj refer to the displacements along y-direction.
The bond length |ξ| can be expressed by |xj-xi|. e1ij=cosφ and e2ij=sinφ
respectively express the x- and y-components of unit vector along the bond.
φ is the angle between bond and x-axis. Therefore, the dilatation term, Eq.
(3), can be numerically rewritten as:

θi = d
∑

Hx

ωijΛijVj

[
−e1ij −e2ij e1ij n2

ij

]
·
[
ui vi uj vj

]T
= kθ

i · uL,

(12)
where kθ

i is the coefficient matrix of θi with 1×2n in size. uL is the displace-
ment vector in terms of point i and all its neighbour points with 2n×1 in
size. They can be expressed as:

kθ
i = d

[
elem1 elem2 c1Λije

1
ij1

c1Λije
2
ij1

... cnΛije
1
ijn cnΛije

2
ijn

]
,
(13a)

uL =
[
ui vi uj1 vj1 ... ujn vjn

]T
, (13b)

where the coefficients c1 and cn refer to ωij1Vj1 and ωijnVjn , respectively. The
elements in Eq. (13a), elem1 and elem2, can be expressed as:

elem1 = −
∑

Hx

ωijΛije
1
ijVj, elem2 = −

∑
Hx

ωijΛije
2
ijVj. (14)
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Therefore, for global structure, the dilatation term can be expressed as:

Θ =
[
θ1 θ2 ... θN

]T
=

[
kθ
1 kθ

2 ... kθ
N

]T ·
[
u1 v1 u2 v2 ... uN vN

]T
= Kθ ·UT ,

(15)

whereKθ is the global coefficient matrix of dilatation with the size of N×2N .
Besides, U refers to the global displacement vector with the size of 1×2N .
N is the total number of material points in the structure.

According to Eqs. (1) and (7), the resultant force on one point can be
decomposed into two terms, which can be expressed as:∑

Hx

(tij − tji)Vj = 2a1d
∑

Hx

ωijΛij(θi + θj)
[
e1ij e2ij

]T
Vj

+ 4b
∑

Hx

ωij

[
(uj − ui)e

1
ij + (vj − vi)e

2
ij

] [
e1ij e2ij

]T
Vj.

(16)
The first term of right hand side of Eq. (16) is named as “Term 1” and the

second term is denoted as “Term 2”. Hence, the Term 1 can be reformulated
as:

Term 1 = 2a1d
∑

Hx

ωijΛijVj

[
e1ij e1ij
e2ij e2ij

]
·
[
θi θj

]T
= kdila

i ·
[
θi θ1 ... θn

]T
,

(17)

where the local coefficient matrix for this term, kdila
i , can be expressed as:

kdila
i = 2a1d

[∑
Hx ωijΛije

1
ijVj c1Λije

1
ij1

... cnΛije
1
ijn∑

Hx ωijΛije
2
ijVj c1Λije

2
ij1

... cnΛije
2
ijn

]
. (18)

Therefore, for all points in global scale, the first term in the pairwise force
density can be expressed as:

Term 1 = Kdila ·Θ = Kdila ·Kθ ·UT , (19)

where the Kdila is the collection of corresponding local coefficient matrix in
a matrix with a size of 2N×N , which can be written as:

Kdila =
[
kdila
1 kdila

2 ... kdila
N

]T
. (20)
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On the other hand, the second term corresponding to distortion, can be
locally expressed as:

Term 2 = 4b
∑

Hx

ωijVj

[
−(e1ij)

2 −e1ije
2
ij (e1ij)

2 e1ije
2
ij

−e1ije
2
ij −(e2ij)

2 e1ije
2
ij (e2ij)

2

]
·
[
ui vi uj vj

]T
= kdist

i · uL,
(21)

where the local coefficient matrix for the second term, kdist
i can be expressed

as:

kdist
i = 4b

[
elem3 elem4 c1(e

1
ij1
)2 c1e

1
ij1
e2ij1 ... cn(e

1
ijn)

2 cne
1
ijne

2
ijn

elem4 elem5 c1e
1
ij1
e2ij1 c1(e

2
ij1
)2 ... cne

1
ijnn

2
ijn cn(e

2
ijn)

2

]
,

(22)
where the elements, elem3, elem4 and elem5, can be respectively expressed
as:

elem3 = −
∑

Hx

ωij(e
1
ij)

2Vj, elem4 = −
∑

Hx

ωije
1
ije

2
ijVj,

elem5 = −
∑

Hx

ωij(e
2
ij)

2Vj.
(23)

Therefore, for all points in global scale, the second term in the pairwise
force density can be expressed as:

Term 2 = Kdist ·UT , (24)

where the Kdist is the collection of corresponding local coefficient matrix in
a matrix with a size of 2N×2N , which can be written as:

Kdist =
[
kdist
1 kdist

2 ... kdist
N

]T
. (25)

Hence, by reformulating the Eq. (7) in terms of Eqs. (19) and (24), and
then substituting back to Eq. (9), the relationship between displacements
and loadings can be established as:

−
[
Kdila ·Kθ +Kdist

]
·UT = K ·UT = b, (26)

where K can be regarded as the global stiffness matrix of the structure based
on the generalized Hooke’s law, and the loading vector b, with the size of
2N×1 can be expressed as:

b =
[
bx1 by1 bx2 by2 ... bxN byN

]T
, (27)

where bxi and byi are x- and y-components of loading. Then, by multiplying
inverse of the stiffness matrix, the displacement field of the structure can be
determined as:

UT = K−1 · b. (28)
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2.3. Peridynamic fatigue model

In original PD framework, once the bond stretch exceeds a critical value,
sc, bond will irreversibly break as shown in Fig. 2. As the percentage of
broken bond increasing, crack nucleation and propagation can be observed.
However, cracks and damages can still gradually accumulate in a body under
cyclic loadings even though the critical bond stretch, sc, is not met. In order
to simulate this fatigue damage, Silling and Askari [26] proposed a PD fatigue
model by introducing a concept of “remaining life” for the bond. The decay
of the remaining life depends on the cyclic strain range, ϵ, which is provided
as:

ϵ = |ϵ+ − ϵ−| = |ϵ+(1−R)|, (29)

where ϵ+ and ϵ− are bond stretch at maximum and minimum loadings, re-
spectively. It could also be expressed by the load ratio, R, which is the ratio
between maximum and minimum loadings. With the increase of load cycle,
NL, the remaining life, λf , will decrease. Once, the λf reduces below 0, then
bond will break, and the fatigue damage emerges. The remaining life decay
can be expressed as:

dλf (NL)

dNL

= −A(ϵ− ϵth)
m, (30)

where ϵth refers to the threshold cyclic bond stretch, which is the minimum
value that will lead to the remaining life decay.

Before damage After damage

Figure 2: Damage for a material point within its horizon.

In PD fatigue model, crack nucleation, stable crack growth and unstable
crack propagation are respectively defined as Phase I, II and III. A and m
are parameters, which depend on different phases. For crack nucleation, the
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remaining life decay in a single cycle without considering the threshold bond
stretch can be numerically expressed as:

λf (NL) = λf (NL − 1)− A1ϵ
m1 , (31)

where A1 and m1 are fatigue parameters in Phase I. Eq. (31) gives the rela-
tionship between bond remaining life on current and last cycles. Considering
the remaining life just reaches 0 at cycle N1, the bond will break in the next
cycle. In this manner, A1ϵ

m1N1=1. Reconstructing in logarithmic scale as
logN1=-logA1-m1 log ϵ, a linear relationship can be derived as shown in Fig.
3. Then the parameters A1 and m1 can be determined respectively.

Experiment results

Fitted results

Slope:

Figure 3: S-N curve derived from experiment.

For Phase II, the remaining life reduction in a single cycle without con-
sidering the threshold bond stretch can be numerically expressed as:

λf (NL) = λf (NL − 1)− A2ϵ
m2 , (32)

where parameters, A2 and m2, can be calculated according to Paris law [3],
which is expressed as:

da

dNL

= C̄∆Km̄, (33)

where a refers to the crack length. ∆K represents the range of SIFs. C̄
and m̄ are fitting parameters which can be derived from experimental data
of the material. In order to better describe the fatigue crack growth, Silling
and Askari [26] introduced a local coordinate system always originated at
the crack tip, as shown in Fig. 4. The relationship between global and local
coordinates are given as:

xl = x− da

dNL

NL, (34)

11



where xl and yl are axes of local coordinate system. For bond on the crack
tip, which is called “critical bond”, the λf will reach 0 for the first time
during cyclic loadings. For bond on the edge of horizon, λf=1.

crack surface

Figure 4: Bonds ahead of crack tip.

As crack grows, the bond on the horizon edge will move to the crack tip.
At the same time, the remaining life will gradually decrease and eventually
break. This process can be represented by an integration as:

λf (xl = 1) = λf (xl = 0) +

∫ δ

0

dλf

dxl

dxl. (35)

Substituting Eq. (30) without considering ϵth to Eq. (35), the crack
growth rate can be reformulated as:

da

dNL

= A2

∫ δ

0

ϵm2dxl. (36)

According to [26], based on the mode-I assumption, the stretch of bond
in the vicinity of the crack tip can be expressed as:

ϵ(xl) = ϵ(0)f̂ , (37)

where f̂ is relevant to the material property and position. Therefore, Eq.
(36) can be rewritten as:

da

dNL

= A2(ϵ(0))
m2

∫ δ

0

f̂m2dxl = A2(ϵ(0))
m2β. (38)

Hence, by comparing Eq. (38) with Eq. (33), the relationship of m2=m̄
is confirmed, while the parameter A2 is still unknown since β is unknown.
Therefore, a trial test is necessary.
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In the trial test, an arbitrary value of A2, denoted as Atrial
2 , is defined.

Then, by carrying out trial simulation, the relationship of crack growth rate,
(da/dNL)

trial and SIFs range, ∆Ktrial, is derived. By comparing with the
Paris Law, the real value of A2 can be determined, which is expressed as:

A2 = Atrial
2

(da/dNL)

(da/dNL)trial
. (39)

Apart from PD fatigue model, the Paris Law can also be directly employed
with the help of MCS criterion, which will be demonstrated in the following
sections in detail.

3. Stress intensity factors

A2 and m2 in Eq. (32) are determined from the Paris law. As shown in
Eq. (33), the SIF range plays an important role in fatigue analysis. SIFs
describe the stress state in the vicinity of crack tips, which are commonly
applied in the fracture analysis. J-integral method, proposed by Rice [41], is
widely used by many researches in the literature [42-44] and previous works
[45,46].

3.1. Interaction integral in peridynamics

A local coordinate system originated on crack tip is defined as shown
in Fig. 5. To avoid the geometrical singularity, a closed form line contour
is generated surrounding and away from the crack tip. However, since the
formulation of the integral is in a line form, it is complicated in numerical
simulation under PD framework. Hence, by using equivalent domain integral
technique [47], J-integral in a domain form can be expressed as:

J =

∫
A

(σkluk,1 −Wδ1l)q,ldA+

∫
A

(σkluk,1 −Wδ1l),l q dA, (40)

where W is the strain energy density. σkl is the stress in the local coordi-
nate system. uk,1 represents the spatial derivative along the x-axis in local
coordinate system. A is the area enclosed by Γ0, Γ and crack surfaces. q is a
manually defined weight function as shown in Fig. 5. q equals to 1 at crack
tip, while 0 on integral contour edge. rd refers to the size of integral domain.
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In this study, the q can be described as:

q =


1 within Γ0

(0, 1) between Γ0 and Γ
0 outside Γ

. (41)

crack surface

Figure 5: Layout of domain J-integral.

As one type of domain integral, interaction integral method defines an
auxiliary field for stress and displacement fields, which is denoted as “aux”.
By superimposing (denoted as “sup”) and decomposing the real and auxiliary
fields, the interaction integral in static case can be expressed as:

I =

∫
A

{(σaux
kl uk,1 + σklu

aux
k,1 )− σaux

km εkmδ1l} q,l dA+

∫
A

ρüku
aux
k,1 q dA, (42)

where εkm represents the component of strain tensor. In Eq. (42), the first
integral represents the static effect, while the second one refers to the dy-
namic effect. The stress and displacement fields can be derived directly from
William’s solution [48]. Finally, the mode-I and -II SIFs in the real field can
be respectively extracted by:

KI =
E∗

2
I (Kaux

I = 1, Kaux
II = 0), (43a)

KII =
E∗

2
I (Kaux

I = 0, Kaux
II = 1), (43b)

where Kaux
I and Kaux

II are manually defined mode-I and -II SIFs in auxiliary
field, respectively. Meanwhile, E∗=E is for plane stress assumption, while
E∗=E/(1− ν2) is for plane strain assumption.
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3.2. Peridynamic differential operator

Eq. (42) is composed of several terms with spatial partial derivatives.
There are many approaches to solve these PDEs, such as finite difference
method [49,50] and moving least square method [43,51]. Alternatively, PDDO
proposed by Madenci et al. [52] can be employed based on the framework of
PD. PDDO is calculated based on the Taylor Series. In this study, the 2D
second order Taylor Series is utilized as:

f(xj) = f(xi) + ξ1
∂f(xi)

∂x
+ ξ2

∂f(xi)

∂y
+

1

2!
ξ21
∂2f(xi)

∂x2

+
1

2!
ξ22
∂2f(xi)

∂y2
+ ξ1ξ2

∂f(xi)

∂x∂y
+R0,

(44)

where f(xi) and f(xj) refer to arbitrary physical parameters. ξ1 and ξ2 are
the components of ξ along x- and y-coordinates. R0 denote the remainder
terms of the Taylor Series, which can be neglected.

By moving the first term on the right side to the left, multiplying each
term with a PD function, gp1p22 (ξ), invoking the orthogonality property of the
PD function, the PDEs can be transformed into spatial integral equation.
The gp1p22 (ξ), as a key parameter in the PDDO, is determined by the shape
functions in PD framework. Usually, the parameters with p1+p2=1 are used
in the 1st order differentiation. For p1+p2=2, they are applied in the second
order differentiation. For p1+p2=0, they are not considered. More detailed
information can be found in [52] and previous works [45,46,53,54]. Therefore,
the relationship between PDE and spatial integral equation up to second can
be expressed as:

∂f(xi)
∂x

∂f(xi)
∂y

∂2f(xi)
∂x2

∂2f(xi)
∂y2

∂2f(xi)
∂x∂y


=

∫
Hx

(f(xj)− f(xi))


g102 (ξ)
g012 (ξ)
g202 (ξ)
g022 (ξ)
g112 (ξ)

 dV. (45)

In this article, the PD functions for the first order partial differential
terms in 2D form is employed, which are given as:

g102 (ξ) =
2

πh|ξ|δ2
cosφ, g012 (ξ) =

2

πh|ξ|δ2
sinφ. (46)
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3.3. Maximum circumferential stress criterion

Damages and cracks can automatically nucleate and propagate in PD
by bond breaking. However, in order to examine the accuracy of the crack
propagation, methods based on classical theory are also employed. Erdogan
and Sih [35] proposed the MCS criterion. They believed that crack should
propagate along the direction, where the circumferential stress reaches the
maximum value. Therefore, the crack inclination angle, ϕ, is determined as:

ϕ = 2arctan

1

4

KI

KII

± 1

4

√(
KI

KII

)2

+ 8

 . (47)

Meanwhile, the equivalent SIF, Keq, can also be calculated based on the
relationship between KI and KII as:

Keq =
1

4

(
3 cos

ϕ

2
+ cos

3ϕ

2

)
KI −

3

4

(
sin

ϕ

2
+ sin

3ϕ

2

)
KII. (48)

The SIFs can be calculated by interaction integral with the help of PDDO,
and consequently, the ϕ and Keq can also be determined. Substituting Keq

back to the ∆K in the Paris Law in Eq. (33), the magnitude of the fatigue
crack growth in each cycle can be determined.

4. Numerical studies

Two mixed-mode fatigue failure analyses are presented. In Section 4.1, a
2D plate with pre-existing edged crack is studied. The fatigue crack growth
and fatigue life will be evaluated in detail. In Section 4.2, the fatigue crack
growth of root crack in a fillet welded joint is simulated. The crack paths
calculated by PD fatigue model and MCS criterion are respectively investi-
gated.

Since fatigue crack growth usually requires long time period, it can be re-
garded as a quasi-static problem. Different from ADR, the static calculation
as described in Section 2.2 usually requires a good computing performance,
since the stiffness matrix in Eq. (28) is large in size, especially for intermedi-
ate or refined discretization. However, the majority elements of the stiffness
matrix are 0, and hence, the sparse matrix technique is employed to save com-
puting resources and dramatically reduce the computing times. Therefore,
for each cycle with new bond breakage, crack will propagate. Consequently,

16



a static evaluation based on the new crack length is carried out. According to
Section 2.3, the number of the cycles and the extreme values of bond stretch
in each cycle are considered in the fatigue crack growth life prediction.

Start
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and damage

Set up family 
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material point

Define phase for 

each point based 

on damage
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New damage

N
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Figure 6: Flowchart of fatigue evaluation by OSPD.

The evaluation process can be described by a flowchart as shown in Fig.
6. For each cycle, it is necessary to judge whether to perform the fatigue anal-
ysis. Therefore, the maximum bond stretch, smax, are derived. If smax≤sc,
the fatigue evaluation is conducted. The prediction of fatigue crack growth
follows the procedures in Section 2.3 or 3.3. Once the bond breaks, new crack
surface will emerge. Then, a static analysis based on current loadings and
crack length are conducted. This process keeps going until smax>sc. Then,
the fatigue analysis will be terminated and fracture analysis on Phase III will
be conducted.

4.1. Edged crack plate under mixed-mode tension

Sajith et al. [55] experimentally and numerically investigated the different
fracture models by examining the fracture behaviour of 2D plate made by
aluminium alloy 6061-T6 under mixed-mode loading conditions. The fitting
parameters in Eq. (33), C̄ and m̄, are derived from the experiment tests,
which are respectively given as 4.3378×10−7 (mm/cycle)/(MPa·m0.5) and
2.6183. In this section, the crack propagation and fatigue life of this structure
are reviewed by using PD.

The layout and geometry are presented as shown in Fig. 7. The elastic
modulus and Poisson’s ratio are 68 GPa and 0.33, respectively. Fracture
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toughness is 48.7 MPa
√
m. The threshold strain is not considered and the

plane stress assumption is applied. The maximum loading, Pmax, is 16 kN
with loading angles of γ=45◦ and 60◦, and the load ratio is defined as 0.1.
The plate is fully fixed by the pins located on the lower region of the plate,
while loadings are applied to the pins on the upper region. The pins on the
plate can be regarded as rigid bodies. The loadings can be decomposed as:

P1 = Pmax(0.5 cos γ + sin γ), (49a)

P2 = −Pmax sin γ, (49b)

P3 = Pmax(0.5 cos γ − sin γ). (49c)

45

54

54

90

148

18 1827 27

14

Figure 7: Layout and geometry of the plate with edged crack (unit: mm).

Before conducting the fatigue crack growth analysis, it is important to
validate the accuracy of PD modelling. The crack opening displacements
(COD) at maximum loading in the first cycle are provided in Fig. 8 with the
FEM solutions calculated by ANSYS [56] as comparison. The PD model for
each case is uniformly discretized by 180×296 material points, i.e., the grid
spacing, ∆x, equals to 0.5 mm. In order to add constraints on pins, the rows
and columns of corresponding fixed points in the stiffness matrix and loading
vector are removed, since the displacements of these points are already de-
fined as 0. For FEM model, PLANE183 element is selected. Uniform mesh is
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applied on the majority of the plate, while for crack tip region, skewed mesh
is utilized. There are total number of 14,868 elements and 45,079 nodes.
Nodes at the centre of lower pins are fully constrained, while at the centre
of top pins are subjected to loadings. As shown in Fig. 8, for both cases,
the COD in x- and y-direction by PD are matched well with those by FEM.
Hence, the crack patterns are also the same.
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Figure 8: COD comparisons: (a) ux and uy at γ=45◦, (b) ux and uy at γ=60◦.

The mode-I and -II SIFs are also provided in Table 1. As the loading angle
increase, the KI decreases, while the KII increases. For both cases, the values
of KI and KII by OSPD have good agreements with FEM. The maximum
differences between OSPD and FEM solutions are below 1%. Meanwhile, the
path independency can be accomplished. Both COD and SIFs results has
proved the accuracy of OSPD. Then the fatigue crack growth is evaluated.

The S-N curve and Paris Law diagram can be derived for the literature
[55,57]. Therefore, the values of A1, m1 and m2 can be calculated as, 103.75,
2.2915 and 2.6183, respectively. However A2 can not be derived directly,
and a trial test is necessary as mentioned in Section 2.3. Atrial

2 is randomly
defined as 2,000. In considering the Eq. (39) and following the procedure
shown in Fig. 6, the real value of A2 is determined as 1,066. Fig. 9 and Fig.
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Table 1: Mixed-mode SIFs by OSPD for edge-cracked plate (unit: MPa
√
m).

45◦ 60◦

rd KI KII KI KII

30∆x 8.7891 -4.4533 6.2083 -5.3770
45∆x 8.8440 -4.4716 6.2470 -5.4002
60∆x 8.8715 -4.4799 6.2664 -5.4107
FEM 8.7883 -4.4580 6.2051 -5.3824

10 show the predicted fatigue life and crack propagation path of the pinned
plate under loadings, respectively. Results are compared with experimental
data from [55].

For each cycle, position of the crack tip should be recorded. A crack
length increment is the distance of crack tips between NL and NL+1 cycles.
By integrating of the crack length increments in each cycle, the variation
of crack length can be determined. Then, the comparisons in crack length
between experiment and PD are shown in Fig. 9. The relatively large Atrial

2

gives an over-estimation in the reduction of bond remaining life, leading to
a short life cycles. After modification of A2 based on experimental data, the
prediction from OSPD matches well with experiments in both loading cases.
The predicted crack propagation paths under different loadings are provided
in Fig. 10. The crack growth predictions determined by PD fatigue model
and PD MCS criterion are compared with the experiment data, meanwhile,
a novel energy-based criteria for PD fatigue model proposed by Nguyen et al.
[28], is also employed for comparison. Relatively good agreements between
the experiment data and numerical solutions can be obtained.

4.2. Fatigue crack growth of a root crack in a fillet welded joint

To further evaluate the capability of PD fatigue model, fatigue crack
growth of a root crack in a welded joint structure is analysed. The main
layout and geometry of the welded joint cross section are provided as shown
in Fig. 11 [58]. It is assumed that the structure is also made of same mate-
rial in previous example from [55]. Uniform stress loadings, σ11 and σ22 are
subjected to the far ends of the joint. σ22 is defined as 50 MPa. The ratios
of applied stresses, σ11/σ22, are set as -1, 0, 1, respectively. Meanwhile, the
plane stress assumption is employed. For better comparisons of the numeri-
cal solutions, the normalized SIFs are employed, which can be expressed as
K̄i=Ki/(σ22

√
πa), in which i=I, II. a refers to crack length.
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Figure 9: Prediction of fatigue crack growth life: (a) γ=45◦, (b) γ=60◦.
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Figure 10: Crack propagation path: (a) γ=45◦, (b) γ=60◦.
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Figure 11: Layout and geometry of a weld joint structure (unit: mm).

Since the experimental data are not available in the literature, the PD
parameter, A1 and m1, can not be determined. Moreover, the prediction of
fatigue life can not be provided either. However, as shown in Eq. (32), the
decrease of bond remaining life is proportional to the exponent of cyclic bond
stretch. It controls the speed of remaining life decay, but it will not affect
the direction of fatigue crack growth. Therefore, in this section, only crack
propagation under different loading ratios are evaluated in detail.

The weld joint structure is uniformly discretized by points with a grid
spacing of ∆x=0.1 mm. Since the bottom and left edges are symmetric
surfaces as shown in Fig. 11, two fictitious regions with three layer of points
are employed to represent boundary constraints. Therefore, the number of
the points is 36,925 in real region and 1,500 in fictitious region, respectively.

Fig. 12 shows the COD results in the initial state of fatigue analysis
comparing with FEM produced by ANSYS [56]. The PD solution and FEM
solutions match well in CODs along y-direction for all loading conditions.
However, the solutions of CODs along x-direction are slightly different at
crack tip region, which may be due to the non-local property of PD. The
magnitude of displacements in front of the crack tip might be affected by
those behind the crack tip. As a consequence, the KI values between two
methods agree well with each other, while there are differences in KII values
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Figure 12: COD comparison of welded joint under different loading conditions at initial
state: (a) ux and uy at σ11/σ22=1, (b) ux and uy at σ11/σ22=0, (c) ux and ux at σ11/σ22=-
1.
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as shown in Table 2, which might due to the small values of the reference
KII. As the decrease of σ11/σ22, the sliding between upper and lower surfaces
gradually diminish. Therefore, the loadings on the weld toe change from
mixed-mode condition to mode-I condition.

Table 2: Normalized mixed-mode SIFs comparison for weld joint.

σ11/σ22 1 0 -1
K̄I K̄II K̄I K̄II K̄I K̄II

PD 0.6116 -0.0959 0.7285 -0.0663 0.8453 -0.0368
FEM 0.6080 -0.0941 0.7270 -0.0639 0.8460 -0.0336

RKPM [58] 0.6073 -0.0939 0.7259 -0.0636 0.8450 -0.0331
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Figure 13: Crack path comparison by different numerical methods under different loading
conditions: (a) σ11/σ22=1, (b) σ11/σ22=0, (c) σ11/σ22=-1.
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The crack growth in the weld toe structure under different loading con-
ditions is provided in Fig. 13. As σ11/σ22 changes from 1 to -1, the crack
inclination angle decreases correspondingly, which is due to the decrease of
the mode-II influence based on Eq. (47). Reference solutions [58] produced
by RKPM, which were well validated by extended FEM, are also provided.
Numerical solutions calculated by MCS criterion have good agreements with
the reference solutions in all loading conditions. However, there are gaps
between PD predictions and reference solutions. Moreover, the magnitude
of the differences increases as the mode-II influence increases.

4.3. Discussion

The accuracy of numerical solutions about the crack path and fatigue life
predictions in pure mode-I were well proved in [28]. However, it may not
always give good predictions in the mixed-mode fatigue crack growth path.
One of the possible reasons might be the COD disturbance around the crack
tip as shown in Fig. 12, which leads to a different crack pattern as compared
with FEM solutions, and hence, the core bond might change. Another possi-
ble reason might be the mode-I assumption in PD fatigue model. As shown
in Fig. 4, the core bonds perpendicular to the crack surface are assumed to
be failed during cyclic loading. However, in mixed-mode loading conditions,
these bonds might not have the maximum stretch. Instead, some slant bonds
will firstly reach the maximum stretch state and then break, as shown in Fig.
14.

Meanwhile, in the framework of PD, the crack extension does not directly
determined by the stress intensity around the crack tip. The stress state in
the vicinity of the crack tip region is usually reflected by the different extent
of bond stretches. Due to the bond distribution around the crack tip, there
may not have enough options for cracks to propagate.

As shown in Fig. 14, the broken bond in the cases of σ11/σ22=0 and 1
are the same at the initial crack growth stage. Therefore, if the direction of
broken bonds match with the direction by MCS criterion, the PD will give
relatively accurate prediction as shown in Section 4.1. Otherwise, there might
be a difference between PD crack growth and reference solutions. Hence, as
shown in Fig. 13, for σ11/σ22=0 and 1, the crack growth direction differs with
the reference solutions in the initial stages. For σ11/σ22=-1, since the initial
stage is a mode-I dominant loading condition, the crack growth calculated by
PD matches with those by MCS and RKPM. As the further growth of crack,
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the mode-II influence becomes evident, and then the crack path gradually
differs with the reference solutions.

PD crack path MCS crack path Intact bond Broken bond

Figure 14: Fatigue crack growth at initial stage.

The MCS criterion utilized in this study have a relatively good estima-
tion of crack growth path. However, the prediction of fatigue life might not
always be accurate due to the relative large integral contour during the cal-
culation of SIFs. Moreover, as a classical method in fracture analysis, MCS
criterion might have difficulties in the simulations of some complex fracture
behaviours, such as crack branching.

Overall, the PD fatigue model use trial and real processes to simulate the
fatigue crack growth with certain extent accuracy. By distinguishing Phases I
and II, the fatigue crack nucleation and propagation are well presented. Both
original fatigue model and MCS criterion are based on PD framework. Hence,
the crack propagation can be automatically calculated and predicted without
re-meshing and any further manual intervention as commonly applied in
classical methods. Meanwhile, since the new damage still relies on the bond
breakage, the main logic of predicting crack nucleation and propagation does
not change. Therefore, the fatigue analysis can be directly switched to fast
crack growth analysis (Phase III) without further modification. It reduces
the complexity and increases the efficiency of numerical calculation. The
non-local MCS criterion can be employed to aid the crack propagation path
prediction by PD.

5. Conclusion

In this study, performance of PD fatigue model in the mixed-mode frac-
ture analysis is evaluated in detail. The fatigue crack growth is assumed
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as a quasi-static process. Therefore, to determine the displacement field in
each crack increment, the static formulation is introduced. The meshfree
interaction integral method is employed to calculate the SIFs. The PDDO
is utilized to transform the PDE in the equation of interaction integral into
corresponding spatial integral form. Moreover, the non-local MCS criterion
based on PD framework is also tested as comparison.

Two numerical methods are implemented in the fatigue crack growth
analysis. First, a pinned plate with edged crack made by aluminium alloy
is studied. The crack growth paths and fatigue lives for different loadings
are compared and discussed. Secondly, a welded joint structure with a root
crack under different loadings are investigated. Only crack growth paths
are compared due to the limitations of experimental data. To sum up, the
PD fatigue model and the non-local MCS criterion have their own merits
and drawbacks in the mixed-mode fatigue failure analysis. Hence, in the
future studies, it is of vital importance to improve the numerical accuracy of
the PD fatigue model in the fracture analysis. This study have given non-
local meshfree solutions for the fatigue failure analysis, which might provide
theoretical supports for the engineering applications.
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