広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	On-scene time delays for epileptic seizures in developed community-based integrated care system regions
Author(s)	Yamada, Hidetada; Neshige, Shuichiro; Nonaka, Megumi; Takebayashi, Yoshiko; Ishibashi, Haruka; Motoda, Atsuko; Aoki, Shiro; Yamazaki, Yu; Maruyama, Hirofumi
Citation	Epilepsy & Behavior , 151 : 109612
Issue Date	2023-12-28
DOI	
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00055881
Right	© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/ licenses/by-nc-nd/4.0/ This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご 確認、ご利用ください。
Relation	

Epilepsy & Behavior

On-scene time delays for epileptic seizures in emergencies during a social pandemic: a population-based study --Manuscript Draft--

Manuscript Number:	EB-D-23-00189R1
Article Type:	Research Paper
Keywords:	people with epilepsy; emergency medical service; on-scene time delay; resource allocation; total call volume; non-COVID-19 critical disease
Corresponding Author:	Shuichiro Neshige
	Japan
First Author:	Hidetada Yamada
Order of Authors:	Hidetada Yamada
	Shuichiro Neshige
	Megumi Nonaka
	Yoshiko Takebayashi
	Haruka Ishibashi
	Atsuko Motoda
	Shiro Aoki
	Yu Yamazaki
	Hirofumi Maruyama, Professor
Abstract:	Objectives
	The on-scene time of Emergency Medical Services (EMS), including time for hospital selection, is critical for people in an emergency. However, the outbreak of the novel coronavirus disease 2019 (COVID-19) led to longer delays in providing immediate care for individuals with non-COVID-19-related emergencies, such as epileptic seizures. This study aimed to examine factors associated with on-scene time delays for people with epilepsy (PWE) with seizures needing immediate amelioration.
	Materials & Methods
	We conducted a population-based retrospective cohort study for PWE transported by EMS between 2016 and 2021. We used data from the Hiroshima City Fire Service Bureau database, divided into three study periods: "Pre phase", the phase before the COVID pandemic (2016–2019); "Early phase", the early phase of the COVID pandemic (2020); and "Middle phase", the middle phase of the COVID pandemic (2021). We performed linear regression modeling to identify factors associated with changes in EMS on-scene time for PWE during each period. In addition, we estimated the rate of total EMS call volume required to maintain the same on-scene time for PWE transported by EMS during pandemic expansion.
	Results
	Among 2,205 PWE transported by EMS, significant differences in mean age and prevalence of impaired consciousness were found between pandemic phases. Total EMS call volume per month for all causes during the same month <5,000 (-0.55 min, 95% confidence interval [CI] -1.02 – -0.08, p=0.022) and transport during the Early phase (-1.88 min, 95%CI -2.75 – -1.00, p<0.001) decreased on-scene time, whereas transport during the Middle phase (1.58 min, 95%CI 0.70 – 2.46, p<0.001) increased on-scene time for PWE transported by EMS. The rate of total EMS call volume was estimated as 0.81 (95%CI -0.04 – 1.07) during the expansion phase of the pandemic to maintain the same degree of on-scene time for PWE transported by EMS before the

	pandemic.
	Conclusions
	On-scene time delays on PWE in critical care settings were observed during the Middle phase. When the pandemic expanded, the EMS system required resource allocation to maintain EMS for time-sensitive illnesses such as epileptic seizures. Timely system changes are critical to meet dramatic social changes.
Suggested Reviewers:	Takashi Watari Shimane University wataritari@gmail.com Dr. Watari is a famous clinician and researcher of General Medicine and Emergency Medicine. We look up to him as a leader of this field.
	Taro Shimizu Professor, Dokkyo Medical University shimizutaro7@gmail.com Professor Shimizu is a famous clinician and researcher of general medicine and emergency medicine. We look up to him as a leader of this field.
	Ewa Baum Poznan University of Medical Sciences ebaum@ump.edu.pl Dr. Baum is a famous researcher of Social Sciences. We look up to her as a leader of this field.
	Katsuya Kobayashi Cleveland Clinic 31258a@kuhp.kyoto-u.ac.jp Dr. Lastrucci is a famous researcher of this field. We look up to him as a leader of this field.
	Daichi Sone University College London d.sone@ucl.ac.uk
	Takayoshi Shimohata Professor, Gifu University shimohata@gmail.com Professor Shimohata is a famous clinician and researcher of Neurology. We look up to him as a leader of this field.
Response to Reviewers:	Replies to Reviewer 2 We wish to express our earnest appreciation to Reviewer #2 for providing encouraging comments and insightful suggestions that have helped us to improve the paper. Our responses are presented below.
	Comment 1: Does the EMS system throughout Japan run in a similar fashion to what the authors outline in Hiroshima, or is it unique to this area of Japan?
	Reply 1: Thank you for the constructive comment. The emergency medical services (EMS) system in Japan is designed uniformly nationwide and activated by a universal emergency call number anywhere in Japan. Upon receiving an emergency call, the fire department sends the nearest available ambulance to the operational site. There are 733 fire department headquarters and 1,714 fire stations. Although there are some variations in each fire department, the median time from EMS call to EMS arrival on the scene was 8 min, with only a 1-min difference across the regions in Japan. Thus, we have added the relevant texts as follows:
	p. 9, line 131 to 134 (in Materials & Methods) "The EMS system in Japan is designed uniformly nationwide and operated throughout

the country by local fire departments [1, 19]. In Hiroshima city, EMS is through the Hiroshima City Fire Service Bureau, which responds to emergency requests via a universal emergency call number "

In this relation, we revised the texts in Limitation accordingly:

p. 20, line 313 to 315 p. 21, line 316 to line 320 (in Limitation)

"First, the present study was performed using population-based data from a single region. Thus, there are limitations in generalizing the results of this study. As the EMS system in Japan is operated by local fire departments (733 fire departments in total), regional differences in the EMS system and the distribution of medical facilities were not negligible [19, 35]. However, the EMS system in Japan is well designed. The median time between EMS call to EMS arrival on the scene varies only by less than a minute across different regions in Japan [19]."

Comment 2:

In the Results section, the authors exclude 10,115 cases with "acute symptomatic seizures". Can the authors better define what they mean by this and why these patients were excluded from the study?

Reply 2:

Thank you for the pertinent comment. The present study focused on PWE (who had a seizure chronically); because PWE are at risk to require emergency transport services repetitively in their usual. Thus, we did not include a patient with acute symptomatic seizures. To clarify the reason for inclusion criteria and definition of acute symptomatic seizure, we have added the relevant texts as follows:

p. 11, line 155 to line 160 (in Materials & Methods)

"This study focused on patients who experienced chronically recurrent seizures, particularly those who were expected to require emergency transport services repetitively. Thus, PWE were eligible for inclusion. In contrast, patients with acute symptomatic seizures (seizures occur in close temporal relationship with an acute CNS insult, which may be metabolic, toxic, structural, infectious, or due to inflammation) and psychiatric causes were excluded [21]."

Along with a newly added reference:

p. 27, line 437 to line 438 (in References)

"[21]Beghi E, Carpio A, Forsgren L, Hesdorffer D.C, Malmgren K, Sander J.W. et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010;51 (4): 671–5."

We also revised the relevant texts in Results accordingly: p. 16, line 232 to line 233 (in Results)

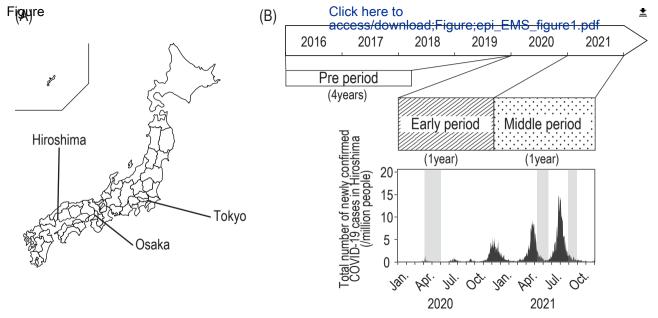
"Among 12,320 cases with any seizures transported by EMS, 10,115 cases with < 16 years of age, with acute symptomatic seizures, or psychiatric causes were excluded."

Comment 3:

In the Conclusion section, the authors provide some suggestions but I believe the paper would benefit from a paragraph on the larger implications of the study regarding anticipating and ensuring resources and funding for similar public health emergencies to ensure adequate provision of emergency health care.

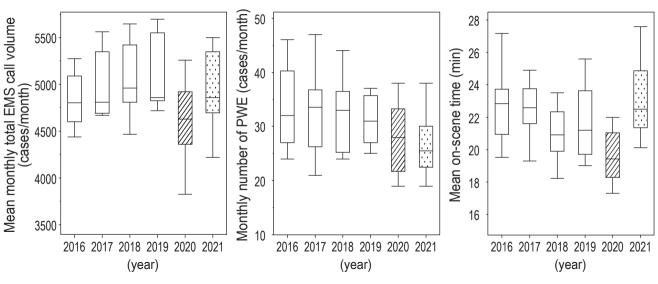
Reply 3:

Thank you for the fruitful comments and suggestions. We essentially agree with you. Thus, we have revised the conclusion accordingly:


p. 22, line 336 to line 341 (in Conclusions)

"Thus, our study underscores the need for national and local governments to prepare and allocate resources and funding for comparable public health crises, in order to ensure sufficient availability of emergency medical services (EMS) and healthcare.

Additionally, clinicians should also consider providing intensive follow-up through telemedicine to prevent occasional seizure worsening for PWE during pandemics."


Highlights

- On-scene time delays for epileptic seizures were prominent during the pandemic.
- Emergency total call volume affected on-scene time for epileptic seizure.
- Resource allocation is required to maintain emergency medicine during a pandemic.

Figure

Click here to access/download;Figure;epi_EMS_figure2.pdf

1	On-scene time delays for epileptic seizures in emergencies during a social
2	pandemic: a population-based study
3	
4	Hidetada Yamada, Shuichiro Neshige, Megumi Nonaka, Yoshiko Takebayashi, Haruka
5	Ishibashi, Atsuko Motoda, Shiro Aoki, Yu Yamazaki, Hirofumi Maruyama
6	
7	Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate
8	School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-
9	8551, Japan
10	
11	Corresponding author
12	Shuichiro Neshige, MD, PhD
13	Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate
14	School of Biomedical Sciences
15	1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
16	Tel: +81-82-257-5201; Fax: +81-82-505-0490
17	E-mail: <u>s-neshige@hiroshima-u.ac.jp</u>
18	

20	ORCID number:
21	Hidetada Yamada: 0000-0002-1749-0646
22	Shuichiro Neshige: 0000-0002-5879-155X
23	Megumi Nonaka: 0000-0002-2193-3083
24	Yoshiko Takebayashi: 0000-0002-8143-5553
25	Haruka Ishibashi: 0000-0002-5428-5350
26	Atsuko Motoda: 0000-0002-6322-3098
27	Shiro Aoki: 0000-0001-5348-5783
28	Yu Yamazaki: 0000-0002-0806-4960
29	Hirofumi Maruyama: 0000-0001-7613-8717
30	
31	Data availability statement
32	The data that support the findings of this study are available on request from the
33	corresponding author. The data are not publicly available due to privacy or ethical
34	restrictions.
35	
36	Ethics approval statement

- 37 This study was approved by the Ethics Committee of Hiroshima University Hospital
- 38 (approval no. E2021-2566-01).
- 39

40 **Patient consent statement**

41 All patients provided informed consent to participate.

42 Abstract

Objectives: The on-scene time of Emergency Medical Services (EMS), including time 43 for hospital selection, is critical for people in an emergency. However, the outbreak of 44 45 the novel coronavirus disease 2019 (COVID-19) led to longer delays in providing 46 immediate care for individuals with non-COVID-19-related emergencies, such as epileptic seizures. This study aimed to examine factors associated with on-scene time 47 delays for people with epilepsy (PWE) with seizures needing immediate amelioration. 48 Materials & Methods: We conducted a population-based retrospective cohort study for 49 50 PWE transported by EMS between 2016 and 2021. We used data from the Hiroshima City Fire Service Bureau database, divided into three study periods: "Pre phase", the 51 52 phase before the COVID pandemic (2016–2019); "Early phase", the early phase of the 53 COVID pandemic (2020); and "Middle phase", the middle phase of the COVID pandemic (2021). We performed linear regression modeling to identify factors 54 associated with changes in EMS on-scene time for PWE during each period. In addition, 55 we estimated the rate of total EMS call volume required to maintain the same on-scene 56 time for PWE transported by EMS during pandemic expansion. 57 Results: Among 2,205 PWE transported by EMS, significant differences in mean age 58 and prevalence of impaired consciousness were found between pandemic phases. Total 59

60	EMS call volume per month for all causes during the same month <5,000 (-0.55 min,
61	95% confidence interval [CI] -1.02 – -0.08, p=0.022) and transport during the Early
62	phase (-1.88 min, 95%CI -2.75 – -1.00, p<0.001) decreased on-scene time, whereas
63	transport during the Middle phase (1.58 min, 95%CI 0.70 – 2.46, p<0.001) increased
64	on-scene time for PWE transported by EMS. The rate of total EMS call volume was
65	estimated as 0.81 (95%CI -0.04 – 1.07) during the expansion phase of the pandemic to
66	maintain the same degree of on-scene time for PWE transported by EMS before the
67	pandemic.
68	Conclusions: On-scene time delays on PWE in critical care settings were observed
69	during the Middle phase. When the pandemic expanded, the EMS system required
70	resource allocation to maintain EMS for time-sensitive illnesses such as epileptic
71	seizures. Timely system changes are critical to meet dramatic social changes.
72	
73	Keywords: people with epilepsy; emergency medical service; on-scene time delay;
74	resource allocation; total call volume; non-COVID-19 critical disease

76 Abbreviations:

- EMS, Emergency medical services; PWE, people with epilepsy; COVID-19,
- coronavirus disease 2019; ANOVA, analysis of variance; SD, standard deviation; CI,
- 79 confidence interval

80

82 1. Introductions

Emergency medical services (EMS) facilitate the categorization of hospital resources to 83 identify hospitals capable of handling emergency patients and enable EMS personnel to 84 85 rapidly transport patients to appropriate medical facilities [1]. In EMS systems, the onscene time, including the time required for on-site treatment and the time for selection 86 of a hospital, is critical in life-threatening situations. A delay in definitive treatment can 87 lead to unfavorable outcomes [2-6]. Epileptic seizures resulting in status epilepticus is 88 an emergency disease in which "time is brain". The prognosis for status epilepticus 89 90 deteriorates with increasing seizure duration [7]. Thus, extended on-scene time can 91 result in poorer prognosis for people with epilepsy (PWE). 92 The novel coronavirus disease 2019 (COVID-19) has had a tremendous impact 93 on medical care worldwide [8]. In the EMS setting, various impacts became visible following the outbreak of COVID-19, including a surge in the number of EMS calls, 94 delays in EMS response times, and declines in non-COVID-19 emergency cases [9, 10]. 95 In addition, people who required immediate care for non-COVID-19 causes faced 96 longer delays during the pandemic, which could have critical implications for 97 98 neurological prognosis [11, 12]. PWE are sensitive to dramatic changes in social situations and seizure exacerbation has been reported in 17.5% of PWE during the 99

100	pandemic [13, 14]. However, whether these PWE were transported promptly or
101	experienced delays during the pandemic is uncertain, highlighting the need to examine
102	emergency responses for PWE using EMS.
103	The factors contributing to on-scene time delays in EMS during unusual
104	circumstances, including pandemics, are numerous and encompass a lack of human and
105	material resources [15]. Identifying the factors associated with on-scene time delays in
106	EMS during a pandemic could shed light on the limitations of the medical care system
107	for PWE during future unusual circumstances. We therefore hypothesized that on-scene
108	time delays in the treatment of PWE would be visible in EMS settings during the
109	pandemic. In addition, such situations may be associated with demand-supply gaps in
110	EMS, as the volume of EMS calls exceeded the availability of local medical resources,
111	regardless of the number of PWE in emergency conditions. To this end, we conducted a
112	longitudinal population-based study to identify factors associated with on-scene time
113	delays in the treatment of PWE in emergencies, and to evaluate the demand-supply gap
114	in EMS.
115	

117 2. Materials & Methods

118 **2.1.** Study design

119	We conducted this population-based retrospective cohort study for PWE transported by
120	the Hiroshima City Fire Service Bureau EMS between 1 January 2016 and 31
121	December 2021. Data were retrieved from the Hiroshima City Fire Service Bureau
122	database, including patient characteristics and EMS time records. To evaluate the
123	impacts of demographic and social factors, we used local and national government
124	official reports and EMS provider reports. This study was approved by the Hiroshima
125	University Hospital Ethics Committee (approval no. E-2566).
126	
127	2.2. Geography and the medical care system in Hiroshima city
128	Hiroshima city is an ordinance-designated city in western Japan, with an urban and
129	suburban area of 906.69 km ² and a population of approximately 1.19 million
130	(Figure 1A) [16]. Trends in newly confirmed patients with COVID-19 per million

- people in this area are summarized in Figure 1B [17, 18]. The EMS system in Japan is
- 132 designed uniformly nationwide and operated throughout the country by local fire
- departments [1, 19]. In Hiroshima city, EMS is through the Hiroshima City Fire Service
- Bureau, which responds to emergency requests via a universal emergency call number.

135	The total EMS call volume for all causes before the pandemic in this area was about
136	55,000–60,000 per year and 4,500–5,500 per month [20]. Monthly total EMS call
137	volume trends with all causes in this area are summarized in Figure 2 [20]. EMS for
138	PWE in Hiroshima city have been provided by some emergency and critical care
139	medical centers cooperating with the Epilepsy Center in Hiroshima University Hospital,
140	the largest epilepsy center in Hiroshima prefecture, accredited by the Japanese Epilepsy
141	Society.
142	
143	2.3. Data sources
144	EMS system records are collected using standardized data collection forms and include
145	patient characteristics, time of day, and time course of transport [19]. Emergency room
146	doctors at the receiving hospital clinically determine diagnoses for the illness. These
147	data are completed by EMS personnel and then transferred to the information center at
148	the local fire department [19]. In the present study, we used data for all emergency
149	patients with epileptic seizures who required EMS in 2016–2021 obtained from
150	Hiroshima City Fire Service Bureau after removal of all personal identifiers.
151	

2.4. Inclusion and exclusion criteria

153	We included patients ≥ 16 years of age who experienced an epileptic seizure and were
154	transported by the Hiroshima City Fire Service Bureau EMS between 1 January 2016
155	and 31 December 2021. This study focused on patients who experienced chronically
156	recurrent seizures, particularly those who were expected to require emergency transport
157	services repetitively. Thus, PWE were eligible for inclusion. In contrast, patients with
158	acute symptomatic seizures (seizures occur in close temporal relationship with an acute
159	CNS insult, which may be metabolic, toxic, structural, infectious, or due to
160	inflammation) and psychiatric causes were excluded [21].
161	
162	2.5. Observational periods
163	This study period was divided into three observational periods based on temporal spikes
164	in infections during the COVID-19 pandemic in Japan: a 4-year phase before the
165	COVID pandemic ("Pre period", January 2016–December 2019, representing baseline
166	data); a 1-year phase early in the COVID pandemic ("Early period", January-December
167	2020, a year after the World Health Organization Country Office in China was informed
168	of cases of pneumonia of unknown etiology); and a 1-year phase in the middle of the

- COVID pandemic ("Middle period", January-December 2021, a year after the COVID-169
- 19 vaccine started in Japan) (Fig. 1B) [18, 22]. 170

172	2.6. Demographic and clinical parameters for EMS response
173	We evaluated patient-associated factors including age, sex, and initial field vital signs
174	(level of consciousness and body temperature). We classified patients with body
175	temperature \geq 37.5°C as having fever and patients in states other than fully awake and
176	oriented as having impaired consciousness. We also evaluated clock-associated factors
177	as the date and time of day, divided into daytime (08:00–19:59) and nighttime (20:00–
178	07:59).
179	
180	2.7. EMS response time
181	EMS response time was defined as the elapsed time from initiation of an EMS call to
182	arrival at a hospital, and was further divided into three categories: response time; on-
183	scene time; and transport time [15, 23]. On-scene time was defined as the time from
184	arrival at the scene to departure from the scene [15, 23].
185	
186	2.8. Confounding factors for EMS response
187	Operations of the EMS were influenced by several social-related factors, particularly
188	during the pandemic [9]. We thus also examined socio-medical conditions concurrent

189	with the transportation of PWE by EMS, including total EMS call volume per month for
190	all causes (such as trauma, internal medical causes, and psychiatric causes) during the
191	same month, total number of newly confirmed COVID-19 cases per week per million
192	people on the same day, occupation rate of hospital beds on the same day, and
193	declaration of a state of emergency. Total EMS call volume per month was typically
194	around 4,500–5,500, and was categorized as decreasing for values \leq 5,000 and
195	increasing for values >5,000. In addition, we determined expansion of the pandemic
196	using indicators determined by the government office, i.e., total number of newly
197	confirmed patients with COVID-19 per week per million people >25 and occupation of
198	total hospital beds >50% [24].
199	
200	2.9. Data analyses
201	To identify factors associated with a change in emergency transporting time for PWE
202	during the COVID-19 pandemic, we performed a three-step analysis. First, we analyzed
203	the demographic characteristics, clinical characteristics, EMS on-scene time, and socio-
204	medical situations of each patient in the study period. We performed analysis of

- 205 variance (ANOVA) followed by Tukey's post-hoc test for categorical variables, and the
- 206 chi-square test adding to residual analysis for continuous variables to identify features

207 of each phase in the pandemic period.

208	Second, we performed linear regression modeling to identify factors associated
209	with changes in EMS on-scene time for patients with seizures during each period: the
210	whole period, 2016–2021 (Model 1); the pre-pandemic period, 2016–2019 (Model 2);
211	and the pandemic period, 2020–2021 (Model 3). Parameters for each model were:
212	Model 1, age per 1-year increase, impaired consciousness, transport during daytime,
213	total EMS call volume per month for all causes during the same month \leq 5,000, and
214	transport during the Pre, Early, or Middle phase of the pandemic. Model 2: age per 1-
215	year increase, impaired consciousness, transport during daytime, and total EMS call
216	volume per month for all causes during the same month \leq 5,000. Model 3: age per 1-
217	year increase, impaired consciousness, transport during daytime, total EMS call volume
218	per month for all causes during the same month \leq 5,000, total number of newly
219	confirmed COVID-19 cases per week per million people during the same day ≤ 25 ,
220	occupancy of total hospital beds during the same day \leq 50%, and being under a
221	declaration of a state of emergency [19, 25]. We conducted pairwise deletion for this
222	analysis.
223	Third, the rate of total EMS call volume per month for all causes was reverse-estimated
224	to maintain the same degree of on-scene time for PWE transported by EMS during the

225	non-expansion phase of the pandemic (total number of newly confirmed COVID-19
226	cases per week per million people ≤ 25 , and hospital bed occupancy $\leq 50\%$) or expansion
227	phase of the pandemic (total number of new confirmed COVID-19 cases per week per
228	million >25, and hospital bed occupancy >50%). In all analyses, values of p<0.05 were
229	considered significant. All statistical analyses were conducted using JMP Pro software
230	(version 16; SAS Institute, Cary, NC, USA).

231 **3. Results**

Among 12,320 cases with any seizures transported by EMS, 10,115 cases with < 16232 years of age, with acute symptomatic seizures, or psychiatric causes were excluded. 233 234 Thus, we reviewed the cases of 2,205 PWE transported by EMS (Table 1). Significant 235 differences in mean age and prevalence of impaired consciousness were seen between phases of pandemic period. During the Early phase, mean on-scene time for EMS was 236 19.6 \pm 8.2 min and mean total EMS call volume per month for all causes was 4,665.6 \pm 237 411.0, both of which were lower than those observed during the other phases of the 238 239 pandemic (p<0.001) (Table 1). Trends in mean on-scene time, number of PWE, and 240 mean total EMS call volume per month for all causes during each year and each period 241 are summarized in Figure 2. 242 Second, during the whole period, in addition to the demographic and clinical characteristics, total EMS call volume per month related to all causes during the same 243 month <5,000 (-0.55 min, 95% confidence interval [CI] -1.02 - -0.08, p=0.022), and 244 transport during the Early phase (-1.88 min, 95% CI -2.75 – -1.00, p<0.001) showed 245 decreased on-scene time, but patients transported during the Middle phase (1.58 min, 246 247 95%CI 0.70 – 2.46, p<0.001) showed increased on-scene time for PWE transported by EMS (Model 1). However, in the Pre period, total EMS call volume per month for all 248

249	causes during the same month did not affect on-scene time for PWE transported by
250	EMS (Model 2). During the pandemic period, in addition to demographic and clinical
251	characteristics, total EMS call volume per month for all causes during the same month
252	<5,000 (-1.21 min, 95%CI -2.19 – -0.23, p=0.016) decreased on-scene time for PWE
253	transported by EMS. However, the total number of newly confirmed COVID-19 cases,
254	occupancy of total hospital beds, and being under a declaration of a state of emergency
255	did not affect on-scene time for PWE transported by EMS (Model 3) (Table 2).
256	Third, the rate of total EMS call volume per month for all causes was 1.01
257	(95%CI $0.95 - 1.22)$ in the non-expansion phase of the pandemic, but was 0.81 $(95%$ CI
258	-0.04 - 1.07) in the expansion phase of the pandemic to maintain the same degree of on-
259	scene time for PWE transported by EMS (21.8 min; mean on-scene time for the whole
260	period) (Table 3).

262 **4. Discussion**

In the present study, on-scene time delays for PWE with seizures in emergencies were 263 observed in the Middle phase, despite the absence of any corresponding increase in 264 265 number of PWE cases transported by EMS. On-scene time for PWE was unaffected by total EMS call volume during the Pre phase, but was impacted by this factor during the 266 pandemic period, despite a lack of increase in call volume. The estimated rate of total 267 EMS call volume indicated a discrepancy between demand and supply of critical care 268 services in the healthcare system during the expansion phase of the pandemic in our 269 270 study area. These findings collectively suggest that when total EMS call volume 271 exceeds the availability of local medical resources, EMS on-scene time may occasionally be delayed in unusual circumstances, such as the COVID-19 pandemic, 272 273 particularly during the expansion phase. Given that prolonged epileptic seizures need to be treated immediately, effecting a transformative adaptation of emergency transport 274 systems in response to substantial alterations in social conditions is imperative. 275 276 We confirmed that on-scene time was dramatically affected during the phases of the pandemic. In the Early phase, overall call volumes decreased, similar to outcomes 277 278 reported in other regions [26]. In the Middle phase, government offices in Japan changed the policy for COVID-19 infections based on perceived immunity in the 279

280	population obtained from vaccination or natural infection [27]. The total call volume for
281	EMS in this area recovered to the same degree as seen in the Pre phase [20]. Our
282	findings confirm that demand-supply discrepancies in the critical care system were
283	negligible during the non-expansion phase of the pandemic, but substantial during the
284	expansion phase. The COVID-19 pandemic necessitated the redistribution of various
285	healthcare resources when demand exceeded supply [28]. These results imply that the
286	on-scene time for time-sensitive illnesses, such as epileptic seizures, may be influenced
287	by the availability of EMS resources in unusual circumstances.
288	Since the onset of the pandemic, despite the worldwide efforts of national and
289	local governments to maintain the quality of healthcare services at the same level as
290	before the pandemic, a decrease in the number of non-COVID-19 emergency cases has
291	been documented globally [9, 27, 29, 30]. In the present study, the incidence of seizures
292	that EMS transported declined during the pandemic. These seizures were associated
293	with higher patient age and a higher prevalence of altered consciousness compared to
294	the pre-pandemic period. During the pandemic period, some societies recommended
295	reducing in-person healthcare facility visits for PWE with stable seizures, which
296	decreased outpatient visits and admissions in epilepsy centers [31]. Our results might

298	calls to EMS, as in another study on stroke patients [32]. Thus, clinicians should
299	promote intensive follow-up by telemedicine in both new and follow-up patients,
300	especially during pandemics [30].
301	Certain facilities within stroke care units were found to exhibit no significant
302	delay in the interval between hospital arrival and initiation/intervention [32, 33]. These
303	observations suggested that patients in critical care settings can receive adequate
304	treatment even during a pandemic, if prompt transport to appropriate medical facilities
305	is achieved. Patients hospitalized for seizures are often readmitted due to modifiable
306	factors in the care process, such as seizure exacerbation or multiple medical
307	comorbidities [34]. Mitigating readmission rates could alleviate the demand-supply
308	discrepancy in EMS. Home-care support clinics can mitigate the likelihood of
309	rehospitalization in critical care settings, such as in cases of heart failure [35]. These
310	findings collectively suggest that cooperation between professionals in a
311	multidisciplinary team providing emergency care, recovery or chronic care, and
312	epilepsy experts may enhance seizure outcomes and overall health results for PWE.
313	Some limitations to the present study warrant notation. First, the present study
314	was performed using population-based data from a single region. Thus, there are
315	limitations in generalizing the results of this study. As the EMS system in Japan is

316	operated by local fire departments (733 fire departments in total), regional differences in
317	the EMS system and the distribution of medical facilities were not negligible [19, 36].
318	However, the EMS system in Japan is well designed. The median time between EMS
319	call to EMS arrival on the scene varies only by less than a minute across different
320	regions in Japan [19]. Hence, population-based data including multiple regions are
321	needed to confirm the significance and generalizability of the present results. Second, as
322	we were unable to follow-up PWE using EMS after arrival in the hospital, we could not
323	evaluate how the pandemic affected outcomes. Last, multiple potential factors could not
324	be added to our analysis. Total EMS call volume was influenced by health risk
325	messaging by the media and national authorities [30]. Reducing risk factors such as
326	road traffic accidents, falls and injuries, and air-borne infectious diseases could all affect
327	the total call volume to EMS [30]. Our present study could not analyze these multiple
328	potential factors.

331 5. Conclusions

In conclusion, on-scene time delays on PWE in critical care settings were noticed during 332 the expansion phase of the pandemic. During the non-expansion phase of the pandemic, 333 the impact of increasing total EMS call volume was inconsequential. However, during 334 pandemic expansion, the EMS system required proper resource allocation to effectively 335 manage time-sensitive illnesses such as epileptic seizures. Thus, our study underscores 336 the need for national and local governments to prepare and allocate resources and 337 funding for comparable public health crises, in order to ensure sufficient availability of 338 339 emergency medical services (EMS) and healthcare. Additionally, clinicians should also consider providing intensive follow-up through telemedicine to prevent occasional 340 seizure worsening for PWE during pandemics. Timely changes in the system are 341 342 essential to address significant societal shifts. 343

344 **Declarations**

345	Ethics	approval	and	consent	to	partici	pate:
-----	--------	----------	-----	---------	----	---------	-------

- 346 This was a population-based, observational study. Our study was performed with
- anonymous clinical data under close supervision following approval by the Ethics
- Committee of the Hiroshima University Hospital (E2021-2566-01). Informed consent
- 349 was obtained in the form of opt-out on the hospital website. All procedures involving
- human participants were performed in accordance with the 1964 Declaration of Helsinki
- and its later amendments or comparable ethical standards.

352 **Consent for publication:**

- 353 Informed consent was obtained in the form of opt-out on the hospital website. Those
- 354 who opted-out were to be excluded from analysis. In the present study, no patients opted

355 out.

356 Availability of data and materials:

357 The datasets used and/or analyzed during the current study are available from the

358 corresponding author upon reasonable request.

359 Acknowledgements:

- 360 The authors would like to express their appreciation to Dr. Hirofumi Wakaki, a
- 361 Professor at Hiroshima University, and Dr. Keisuke Fukui, an Associate Professor at

362	Hiroshima University, for lending their expertise on statistical data analysis.
363	We are grateful to Mr. Toru Nakata and Mr. Jun Iwai from the Hiroshima City Fire
364	Service Bureau, and Dr. Junki Ishii from the Department of Emergency and Critical
365	Care Medicine at Hiroshima University for providing access to the EMS database, and
366	to the multidisciplinary team members in emergency and critical care medical centers
367	providing EMS for PWE in Hiroshima city.
368	We also thank Dr. Megumi Toko, Dr. Hiroyuki Naito, Dr. Takamichi Sugimoto, Dr.
369	Masahiro Nakamori, and Dr. Tomohisa Nezu for their useful contributions.
370	
371	Declarations of interest:
372	None.
373	Funding:
374	None.
375	Authors' contributions:
376	• Hidetada Yamada and Shuichiro Neshige: designed and conceptualized the study;
377	analyzed the data; and drafted the manuscript for intellectual content
378	• Shiro Aoki and Yu Yamazaki: interpreted the data; and revised the manuscript for
379	intellectual content

- Megumi Nonaka, Yoshiko Takebayashi, Haruka Ishibashi, and Atsuko Motoda:
- 381 analyzed and interpreted the data
- Hirofumi Maruyama; revised the manuscript for intellectual content

References

384	[1]	Tanigawa K, Tanaka K. Emergency medical service systems in Japan: past, present, and future.
385		Resuscitation 2006;69(3):365–70.
386	[2]	Coute RA, Nathanson BH, Kurz MC, McNally B, Mader TJ; CARES Surveillance Group. The
387		association between scene time interval and neurologic outcome following adult bystander
388		witnessed out-of-hospital cardiac arrest. Am J Emerg Med 2021;46:628-33.
389	[3]	Shin SD, Kitamura T, Hwang SS, Kajino K, Song KJ, Ro YS, et al. Association between
390		resuscitation time interval at the scene and neurological outcome after out-of-hospital cardiac
391		arrest in two Asian cities. Resuscitation 2014;85(2):203-10.
392	[4]	Ordoobadi AJ, Peters GA, Westfal ML, Kelleher CM, Chang DC. Disparity in prehospital scene
393		time for geriatric trauma patients. Am J Surg 2022;223(6):1200-5.
394	[5]	Alarhayem AQ, Myers JG, Dent D, Liao L, Muir M, Mueller D, et al. Time is the enemy:
395		mortality in trauma patients with hemorrhage from torso injury occurs long before the "golden
396		hour". Am J Surg 2016;212(6):1101–5.
397	[6]	Gauss T, Ageron FX, Devaud ML, Debaty G, Travers S, Garrigue D, et al. Association of
398		prehospital time to in-hospital trauma mortality in a physician-staffed emergency medicine
399		system. JAMA Surg 2019;154(12):1117-24.
400	[7]	Trinka E, Kälviäinen R. 25 years of advances in the definition, classification and treatment of
401		status epilepticus. Seizure 2017;44:65-73.
402	[8]	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus
403		disease 2019 in China. N Engl J Med 2020;382(18):1708-20.
404	[9]	Al Amiry A, Maguire BJ. Emergency medical services (EMS) calls during COVID-19: early
405		lessons learned for systems planning (a narrative review). Open Access Emerg Med
406		2021;13:407–14.
407	[10]	Jaffe E, Strugo R, Bin E, Blustein O, Rosenblat I, Alpert EA, et al. The role of emergency
408		medical services in containing COVID-19. Am J Emerg Med 2020;38(7):1526-7.
409	[11]	Kim HS, Jang TC, Kim GM, Lee SH, Ko SH, Seo YW. Impact of the coronavirus disease 2019
410		outbreak on the transportation of patients requiring emergency care. Medicine (Baltimore)
411		2020;99(50):e23446
412	[12]	Zachrison KS, Nielsen VM, de la Ossa NP, Madsen TE, Cash RE, Crowe RP, et al. Prehospital
413		stroke care part 1: emergency medical services and the stroke systems of care. Stroke 2022;
414		Epub ahead of print.
415	[13]	Neshige S, Aoki S, Takebayashi Y, Shishido T, Yamazaki Y, Iida K, et al. A longitudinal seizure
416		outcome following the COVID-19 pandemic in 2020 and 2021: transient exacerbation or
417		sustainable mitigation. J Neurol Sci 2022;434:120100.

418	[14]	Fountain NB, Van Ness PC, Bennett A, Absher J, Patel AD, Sheth KN, et al. Quality
419		improvement in neurology: Epilepsy Update Quality Measurement Set. Neurology
420		2015;84(14):1483–7.
421	[15]	Morita T, Tsubokura M, Furutani T, Nomura S, Ochi S, Leppold C, et al. Impacts of the 2011
422		Fukushima nuclear accident on emergency medical service times in Soma District, Japan: a
423		retrospective observational study. BMJ Open 2016;6(9):e013205.
424	[16]	Summary of the Hiroshima City Fire Service Bureau. 2022 September 13, 2022; Available from:
425		https://www.city.hiroshima.lg.jp/site/shobo/12062.html. [accessed 10 January 2023]
426	[17]	Summary of the confirmed cases for a patient with COVID-19 in Hiroshima city. 2023 January
427		10, 2023; Available from: https://www.city.hiroshima.lg.jp/site/shobo/12062.html. [accessed 10
428		January 2023]
429	[18]	COVID-19 TRACKER in Japan. 2022 July 15, 2022; Available from:
430		https://graphics.reuters.com/world-coronavirus-tracker-and-maps/ja/countries-and-
431		territories/japan/. [accessed 10 January 2023]
432	[19]	Nakao S, Katayama Y, Kitamura T, Hirose T, Sado J, Ishida K, et al. Epidemiological profile of
433		emergency medical services in Japan: a population-based descriptive study in 2016. Acute Med
434		Surg 2020;7(1):e485.
435	[20]	Annual review Hiroshima City Fire Service Bureau. 2022 November 1, 2022; Available from:
436		https://www.city.hiroshima.lg.jp/site/shobo/list1809-3710.html. [accessed 10 January 2023]
437	[21]	Beghi E, Carpio A, Forsgren L, Hesdorffer D.C, Malmgren K, Sander J.W. et al.
438		Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010;51 (4): 671-5.
439	[22]	The 53rd meeting of Novel Coronavirus Response Headquarters. 2021; Available from:
440		https://www.kantei.go.jp/jp/singi/novel coronavirus/th siryou/sidai r030122.pdf. [accessed 10
441		January 2023]
442	[23]	Spaite DW, Valenzuela TD, Meislin HW, Criss EA, Hinsberg P. Prospective validation of a new
443		model for evaluating emergency medical services systems by in-field observation of specific
444		time intervals in prehospital care. Ann Emerg Med 1993;22(4):638-45.
445	[24]	The 2nd Meeting of Subcommittee on Novel Coronavirus Disease Control. 2021; Available
446		from:
447		https://www.cas.go.jp/jp/seisaku/ful/taisakusuisin/bunkakai/dai2/kansensaikakudaiboushi shihyo
448		<u>u teigen.pdf</u> . [accessed 10 January 2023]
449	[25]	The summary of the declaration of the state of emergency. 2023; Available from:
450		https://corona.go.jp/news/news_20200421_70.html. [accessed 10 January 2023]
451	[26]	Jasani G, Alemayehu T, Chizmar T, Wilson L. Changes in EMS utilization in the state of
452		Maryland during the first 6 months of the COVID-19 pandemic. Am J Disaster Med
453		2022;17(1):41-8.

454	[27]	The 103rd Meeting of the Advisory Board on Countermeasures to COVID-19 Infections. 2022;
455		Available from: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00395.html.
456		[accessed 10 January 2023]
457	[28]	Ehmann MR, Zink EK, Levin AB, Suarez JI, Belcher HME, Daugherty Biddison EL, et al.
458		Operational recommendations for scarce resource allocation in a public health crisis. Chest
459		2021;159(3):1076-83.
460	[29]	Tuczyńska M, Matthews-Kozanecka M, Baum E. Accessibility to non-COVID health services in
461		the world during the COVID-19 pandemic: review. Front Public Health 2021;9:760795.
462	[30]	Lastrucci V, Collini F, Forni S, D'Arienzo S, Di Fabrizio V, Buscemi P, et al. The indirect impact
463		of COVID-19 pandemic on the utilization of the emergency medical services during the first
464		pandemic wave: a system-wide study of Tuscany region, Italy. PLoS One 2022;17(7):e0264806.
465	[31]	Kuroda N, Kubota T, Horinouchi T, Ikegaya N, Kitazawa Y, Kodama S, et al. Impact of COVID-
466		19 pandemic on epilepsy care in Japan: a national-level multicenter retrospective cohort study.
467		Epilepsia Open 2022;7(3):431–41.
468	[32]	Siegler JE, Heslin ME, Thau L, Smith A, Jovin TG. Falling stroke rates during COVID-19
469		pandemic at a comprehensive stroke center. J Stroke Cerebrovasc Dis 2020;29(8):104953.
470	[33]	Mitsuhashi T, Tokugawa J, Mitsuhashi H. Long-term evaluation of the COVID-19 pandemic
471		impact on acute stroke management: an analysis of the 21-month data from a medical facility in
472		Tokyo. Acta Neurol Bell 2022:1–8. Epub ahead of print.
473	[34]	Blank LJ, Crispo JAG, Thibault DP, Davis KA, Litt B, Willis AW. Readmission after seizure
474		discharge in a nationally representative sample. Neurology 2018;92(5):e429-42.
475	[35]	Sun Y, Iwagami M, Komiyama J, Sugiyama T, Inokuchi R, Sakata N, et al. The effect of home
476		care support clinics on hospital readmission in heart failure patients in Japan. J Gen Intern Med
477		2023; Epub ahead of print.
478	[36]	Matsuyama T, Kitamura T, Katayama Y, Kiyohara K, Hayashida S, Kawamura T, et al. Factors
479		associated with the difficulty in hospital acceptance among elderly emergency patients: a
480		population-based study in Osaka City, Japan. Geriatrics Gerontol Int 2017;17(12):2441-8.

482 Figure captions

483 Figure 1. Geography and newly confirmed COVID-19 cases in Hiroshima

- 484 A) Geography of Hiroshima.
- B) The three observational periods and total number of newly confirmed COVID-19
- 486 cases per million people in Hiroshima. Striped meshing area indicated a 1-year phase
- 487 early in the COVID pandemic as "Early period". Dot meshing area indicated a 1-year
- 488 phase middle in the COVID pandemic as "Middle period". Half-tone dot meshing areas
- 489 indicate periods under a declaration of a state of emergency.

490

491 Figure 2. Annual summary of emergency medical services in this study

- 492 Annual trends in mean monthly total emergency medical services (EMS) call volume
- 493 for all causes in this area, mean monthly number of patients with epilepsy (PWE)
- transported by EMS, and mean on-scene time for PWE transported by EMS are
- 495 summarized. Striped meshing area indicated "Early period". Dot meshing area indicated

496 "Middle period".

497 EMS, emergency medical services; PWE, patients with epilepsy.

Table 1. Characteristics of patients with epilepsy transported by emergency medical services per phase of the COVID-19

pandemic

	Total	Pre phase	Early phase	Middle phase		
	(n = 2,205)	(n = 2,205) $(n = 1,546)$ $(n = 1,546)$		(n = 324)	р	
Age, years, mean (SD)	48.2±23.4	47.1±23.2	50.0±23.5	51.6±23.5**	0.002	
Female, n (%)	883 (40.0)	618 (40.0)	132 (39.4)	133 (41.1)	0.906	
Fever (>37.5°C), n (%)	209 (13.5)	127 (13.9)	38 (11.8)	44 (14.4)	0.569	
Impaired	1702 (00.1)	1004 (70.2)	201 (04.1)	270 (05.0)	0.007	
consciousness, n (%)	1783 (80.1)	1224 (79.3)	281 (84.1)	278 (85.8)	0.007	
Daytime (08:00–19:59),					0.510	
n (%)	1510(68.5)	1066 (69.0)	228 (68.1)	216 (66.7)	0.712	

On-scene time, mean	21.8±10.8	22.0±10.7	19.6±8.2***	23.2±13.1	< 0.001
(SD)			1710-012		
Total EMS call volume					
per months for all	4,951.9±424	5,012.6±414.4	4,665.6±411.0***	4,957.7±358.5	<0.001
causes during same	.1	<i>5,012.0</i> ±414.4	4,005.0±411.0	4,9 <i>31.1</i> ±336.3	<0.001
month, mean (SD)					
*p<0.05; **p<0.01; ***p<	0.001.				

COVID-19, coronavirus disease 2019; SD, standard deviation; EMS, emergency medical services.

Table 2. Factors associated with on-scene time of patients with epilepsy transported by emergency medical services per phase of

	Model 1 (whole period) Model 2 (Pre p		ph aga)	Model 3 (pandemic		
Variable			wodel 2 (Pre phase)		phases)	
Variable	On-scene time		On-scene time		On-scene time	
	(95%CI)	р	(95%CI)	р	(95%CI)	р
	-0.05 (-0.07 –	0.001	-0.06 (-0.08 –	0.001	-0.04 (-0.08 -	0.001
Age (per 1-year increase)	-0.03)	< 0.001	-0.03)	<0.001	-0.01)	0.021
	0.93 (0.36 –	/	0.94 (0.28 –		0.90 (-0.26 –	
Impaired consciousness	1.50)	0.001	1.59)	0.005	2.06)	0.127

	-1.24 (-1.72 –		-0.88 (-1.45 -		-2.02 (-2.91 –	
Daytime (08:00–19:59)		< 0.001		0.003		< 0.001
	-0.76)		-031)		-1.13)	
Total EMS call volume per month for all causes during	-0.55 (-1.02 –	0.022	-0.40 (-0.95 –	0.15	-1.21 (-2.19 –	0.016
same month (<5,000/month)	-0.08)	0.022	0.14)		-0.23)	
Phase (Early phase)	-1.88 (-2.75 –	< 0.001				
T hase (Larry phase)	-1.00)					
	1.58 (0.70 –	0.001	.001			
Phase (Middle phase)	2.46)	<0.001				
Total number of newly confirmed COVID-19 cases per						
week per million people during same day (<25/million					-1.39 (-3.15 –	0.121
week per minion people during suite duy (<25/minion					0.37)	0.121
people)						

Occupation of total hospital beds during same day	-0.40 (-1.79 –
	0.568
(<50%)	0.99)
	0.07 (-1.08 –
Under declaration of state of emergency	0.908
	1.21)

Model 1: age per 1-year increase, impaired consciousness, transported during daytime, total EMS call volume per month for all causes during same month \leq 5,000, transported during Pre, Early, or Middle phase

Model 2: age per 1-year increase, impaired consciousness, transported during daytime, total EMS call volume per month for all causes

during same month \leq 5,000

Model 3: age per 1-year increase, impaired consciousness, transported during daytime, total EMS call volume per month for all causes

during same month \leq 5,000, total number of newly confirmed COVID-19 cases per week per million people during same day \leq 25,

occupancy of total hospital beds during same day ≤50%, under declaration of state of emergency

COVID-19, coronavirus disease 2019; EMS, emergency medical services; CI, confidence interval

Table 3. Estimated rate of total EMS call volume per month for all causes during same month to maintain the same degree of on-

scene time for PWE transported by EMS in the pandemic period

	Variable		
-			Estimated rate of total EMS call volume
On-scene	Total number of newly confirmed COVID-19	Hospital bed	per month for all causes during same
time (min)	cases per week per million people during same	occupancy during same	month (95%CI)
	day (/ million people)	day (%)	
21.8	≤25	≤50	1.01 (0.95 – 1.22)
21.8	≤25	>50	0.98 (0.65 – 1.16)
21.8	>25	≤50	0.85 (0.35 – 1.05)
21.8	>25	>50	0.81 (-0.04 – 1.07)

EMS, emergency medical services; PWE, people with epilepsy; COVID-19, coronavirus disease 2019; CI, confidence interval.

1 Declarations

2	Ethics approval and consent to participate:
3	This was a population-based, observational study. Our study was performed with
4	anonymous clinical data under close supervision following approval by the Ethics
5	Committee of the Hiroshima University Hospital (E2021-2566-01). Informed consent
6	was obtained in the form of opt-out on the hospital website. All procedures involving
7	human participants were performed in accordance with the 1964 Declaration of Helsinki
8	and its later amendments or comparable ethical standards.
9	Consent for publication:
10	Informed consent was obtained in the form of opt-out on the hospital website. Those
11	who opted-out were to be excluded from analysis. In the present study, no patients opted
12	out.
13	Availability of data and materials:
14	The datasets used and/or analyzed during the current study are available from the
15	corresponding author upon reasonable request.
16	Acknowledgements:
17	The authors would like to express their appreciation to Dr. Hirofumi Wakaki, a
18	Professor at Hiroshima University, and Dr. Keisuke Fukui, an Associate Professor at

19	Hiroshima University, for lending their expertise on statistical data analysis.
20	We are grateful to Mr. Toru Nakata and Mr. Jun Iwai from the Hiroshima City Fire
21	Service Bureau, and Dr. Junki Ishii from the Department of Emergency and Critical
22	Care Medicine at Hiroshima University for providing access to the EMS database, and
23	to the multidisciplinary team members in emergency and critical care medical centers
24	providing EMS for PWE in Hiroshima city.
25	We also thank Dr. Megumi Toko, Dr. Hiroyuki Naito, Dr. Takamichi Sugimoto, Dr.
26	Masahiro Nakamori, and Dr. Tomohisa Nezu for their useful contributions.
27	
28	Declarations of interest:
29	None.
30	Funding:
31	None.
32	Authors' contributions:
33	• Hidetada Yamada and Shuichiro Neshige: designed and conceptualized the study;
34	analyzed the data; and drafted the manuscript for intellectual content
35	• Shiro Aoki and Yu Yamazaki: interpreted the data; and revised the manuscript for
36	intellectual content

- Megumi Nonaka, Yoshiko Takebayashi, Haruka Ishibashi, and Atsuko Motoda:
- 38 analyzed and interpreted the data
- ³⁹ Hirofumi Maruyama; revised the manuscript for intellectual content