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Abstract

Static and dynamic fracture parameter analyses of functionally graded ma-
terials (FGMs) are conducted by using the ordinary state based peridynamic
theory (OSPD). As a meshfree method, OSPD applies an integral equation
to describe the motion of objects, avoiding the geometrical singularity in con-
ventional fracture analysis measures. Domain integral method by introduc-
ing material gradient terms is employed in evaluating the static and dynamic
stress intensity factors (SIFs). Meanwhile, peridynamic differential operator
(PDDO) is also applied for the calculation of physical components deriva-
tives. Different FGM modeling schemes are also examined in the OSPD
framework. Cracked FGM structures with mode-I and mixed-mode crack
scenarios are under investigation and results are validated by reference so-
lutions. Accuracy and reliability of the proposed method will be examined
and discussed.
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Nomenclature

A Area enclosed by contours Γ0,
Γ and crack surfaces

a Crack length

A0 Area enclosed by contour Γ0

and crack surfaces

a1, b, d OSPD parameters

bi Body force density of material
point i

Cd Longitudinal wave speed

Cijkl(x) Spatially varied constitutive
tensor

E,E(x) Elastic modulus

E0 Elastic modulus on x=0

f(xi) Arbitrary physical function on
point i

gp1p22 2D PD function

h Plate thickness

Hx Horizon

J J-integral value

KI, KII Mode-I and -II SIFs

K∗I , K
∗
II Normalized mode-I and -II
SIFs

lI, lII Functions for analytical solu-
tions of crack tip displacement
field on mode-I and -II

m(xi,xi, t) Bond connection indica-
tor of point i

N Total number of material
points in PD model

n Total number of material
points in the horizon

n′j Unit normal vector on the J-
integral contour

Pavg Average material properties on
bond

Pi Material properties on point i

q, q,j q-function and its spatial
derivatives

R Remainder terms in Taylor Se-
ries

r Distance to crack tip

r′ Hole radius

rd Contour size of interaction in-
tegral

sij Bond stretch

sc Critical bond stretch

t Computing time

t∗ Normalized computing time

tij Force state of point i

ui Displacement vector of point i

üi Acceleration vector of point i

ui Displacement components

ui,j Partial derivatives of dis-
placement components over j-
coordinate

üi Derivatives of displacement
components over time

Vi Volume of point i
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Wi Strain energy density of point
i

x, y Global coordinates

x′, y′ Local coordinates

xi,xj Initial configuration of points i
and j

yi,yj Deformed configuration of
points i and j

Γ ,Γ0 Outer and inner J-integral
contours

β1, β2 Coefficients of material prop-
erty gradient

δ Horizon size

δij Kronecker delta

εij Strain components

∆x Grid spacing

θ Angle between horizontal axis
and bond

Θi Dilatation term of point i

λ, µ Lamé’s constants

ν Poisson’s ratio

ξ1, ξ2 x- and y-component of bond

ρi(x) Spatially varied mass density

ρ0 Mass density on x=0

σij Cauchy stress components

σt(x) Stress loading function

Φ(xi) Damage value of point i

φ Inclined angle in local coordi-
nate system

ψ Crack inclined angle

ωf Weight coefficient for FGM
modeling

ωij Weight function for PD

1. Introduction

With rapid development of modern industries, homogeneous materials
may not always satisfy the high requirements of engineering practices. There-
fore, a combination of multiple materials in solid state is invented by synthesis
technologies, which is known as composite materials. FGM, as a new class
of composite material, is composed of multi-phase material with pre-defined
fractions of constituents varying gradually throughout a structure. Hence, it
leads to continuous varying material properties in the structure. Due to this
unique characteristics, FGM has shown its promising potential in aerospace
[1], biomaterial [2], military defence [3] and electronics [4]. In many appli-
cations, such as, thermal barrier coating and nuclear fast breeder reactor,
structures with FGM are usually accompanied with extreme loadings during
operation. They have posed challenges for FGM in terms of stiffness, strength
and stability. As one kind of heterogeneous materials, the micro-structure
of FGM may be more complex than homogeneous materials. Therefore, the
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integrity and toughness of FGM under various type of loadings are of vital
importance.

Fracture analyses about FGM have been elaborately conducted during
past decades. Erdogan and Wu [5] had proposed an analytical method in
research of edge-cracked FGM strip. The relationships among SIF, loading
condition and material variation are discussed in detail. Zhong and Cheng [6]
applied the Fourier transform in the analysis of plane elasticity problem for
cracked strip with FGM. They found out that the graded variation of elastic
modulus can substantially improve the material fracture toughness. Based on
Fourier transform, Shodja and Ghahremaninejad [7] studied the performance
of FGM coating under mechanical and thermal stresses due to the Hertzian
surface pressure. Guo and Noda [8] investigated the relationship between
crack position and SIF for two-layer FGM structure with different material
properties in each layer. By using integral transform, they concluded that
once the crack tip lies on the interface of layers, SIF will reach extreme values
as compared with other cracked cases.

Analytical approaches, as shown above, usually provide highly accurate
solutions but complicated solution methods are necessary. For problems with
complex geometries and boundary conditions, it might be unrealistic to ob-
tain the analytical solutions. With rapid development of computing technolo-
gies, many numerical methods are applied in solution approximation. Yao et
al. [9] applied optical caustics method to experimentally investigate dynamic
fracture behaviour of FGM and the results were validated by finite element
method (FEM). They found out that the crack initiation and propagation
strongly depend on the elastic gradient around crack tip. Song and Paulino
[10] applied the domain integral method in calculating the dynamic stress
intensity factors (DSIFs) of structure with heterogeneous materials based on
FEM. The static domain integral equations were extended to incorporate the
dynamic effects and non-homogeneity with good accuracy. Anlas et al. [11]
evaluated the SIF of edge-cracked FGM plate by using J-integral based on
FEM. Kim and Paulino [12] used J-integral, modified crack closure integral
and displacement correlation methods to evaluate the mixed-mode SIFs on
FGM based on FEM. Zhang et al. [13] proposed a boundary integral equation
method (BIEM) in the dynamic analysis of infinite FGM domain with finite
crack. They pointed out that the DSIFs may be significantly influenced by
materials gradients. Dolbow and Gosz [14] revisited some benchmark frac-
ture problems by using interaction integral based on extend finite element
method (XFEM).
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The numerical simulation techniques mentioned above can be catego-
rized within the framework of classical continuum mechanics (CCM). In
CCM, structure or problem domains are assumed to be continuous which
allows the employment of partial differential equations (PDEs) in describ-
ing the motion. However, damage and fracture are discontinuous in their
nature and it will bring mathematical difficulties to the methods based on
CCM. For dynamic fracture behaviour, especially crack initiation and prop-
agation, geometrical singularity might have negative effects on the efficiency
and accuracy of these numerical simulation techniques. In consideration of
this situation, many meshfree methods are proposed in order to remedy and
overcome the limitations of CCM. Sladek et al. [15] proposed a meshfree
local BIEM in the dynamic fracture analysis of anti-plane crack on FGMs
and further implemented it in the in-plane fracture analysis [16]. Dai et al.
[17] employed the meshfree radial point interpolation method (X-RPIM) in
the numerical simulations of FGM plate. Bui et al. [18] further utilized the
X-RPIM along with the newly proposed meshfree Galerkin method based on
moving kriging interpolation in the fracture analysis of FGM structure. By
eliminating the correlation parameter effects, this method had shown good
accuracy in the calculation of DSIF in FGMs. Thai et al. [19] utilized this
method in the investigation of fracture behaviors of isotropic and sandwich
FGM plate. Imachi et al. [20] utilised the OSPD in the evaluation of mixed-
mode fracture analysis of 2D plate by employing the moving least-squares
approximation. Dai et al. [21-24] studied the in-plane and out-of-plane frac-
ture behaviors of shell structures by using OSPD. Furthermore, Ozdemir et
al. [25] applied the OSPD in the simulation of dynamic wave propagation
and crack propagation in FGM. Yang et al. [26] developed a peridynamic
(PD) formulation for higher order beam with FGM by using Euler-Lagrange
equation and Taylor’s expansion. The proposed method was validated by
several typical benchmark problems of beam and compared by FEM, which
shows a good accuracy.

Though PD is a newly emerged meshfree method during the past decade,
it is not fully exploited and understood in the fracture analysis of FGM.
Therefore, in this article, in-depth studies about fracture behaviors on FGM
by using OSPD is presented. Different from analytical and classic numerical
analyses, the fracture characteristics will be evaluated in a meshfree and non-
local perspective. Interaction integral by considering the material gradients
are utilised in SIFs calculations. In FGM modeling, different material average
schemes are introduced and the influence of these schemes on the accuracy of
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numerical simulations is discussed. Meanwhile, PDDO is employed in trans-
forming the physical derivatives into the corresponding spatial integration
form, which will suit well with OSPD framework. Results are compared with
the reference solutions provided in the literature. The paper is arranged as
follows. In the second section, fundamental knowledge of OSPD and PDDO
are introduced, and the formulations of interaction integral on FGM are pro-
vided in the third section. Then several numerical examples will be discussed
in the fourth section. Finally, the proposed method and results will be briefly
summarized in the last section.

2. Peridynamic theory

Initially introduced by Silling [27], PD, later named as BBPD, is regarded
as an extension of solid mechanics. Structures or problem domains are uni-
formly discretized by finite number of material points with certain volume in
this theory. Different from FEM, as a nonlocal theory, each material point
can build up interactions with surrounding points within certain distance.
The set of these points is called “horizon” (Hx) and the shape of horizon is,
usually, a disc and a sphere for 2D and 3D modeling, respectively. The radius
of the horizon is usually denoted as “δ”. The size of the horizon may have
some influence on numerical simulation [28-30], and when it shrinks to zero,
the CCM formulation will be derived [31]. Horizon size is selected as three
times of the grid space in consideration of accuracy and computing time.
The interaction between each pair material points is named as “bond”, and
pairwise force may occur due to the deformation of bond. However, BBPD
is oversimplified and it has many limitations in real applications. In BBPD,
pairwise forces are equal in magnitude but opposite in direction. In this man-
ner, there is a limitation on material properties, such as the Poisson’s ratio
has to be 1/3 in 2D and 1/4 in 3D analysis, respectively, for isotropic ma-
terials, which is not suitable for FGM fracture analysis. Hence, to overcome
this limitation, Silling et al. [32] further optimized the theory and proposed
OSPD by redefining material-dependent parameter and introducing the con-
cept of “state”.

2.1. Equation of motion

According to Silling et al. [32] and later Madenci and Oterkus [33], in
OSPD, the motion of a material point xi at time t can be numerically ex-
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Initial configuration Deformed configuration

Figure 1: Horizon and pairwise force in OSPD.

pressed as:

ρi(x)üi(xi, t) =
n∑
j=1

[tij(ui,uj,xi,xj, t)− tji(ui,uj,xi,xj, t)]Vj + bi(t), (1)

where ρi(x) is the mass density of points i. xi and xj are initial position of
points i and j, respectively. ui and uj are the displacement of points i and j,
respectively. tij and tji are force states of points i and j, respectively. Even
though tij has similar expression with tji, they may not be the same since
they are determined by material points within their own horizons, as shown
in Fig. 1. Vj is the volume of material point j and bi is body force density of
material point i. The force state is derived from strain energy density, Wi,
which is composed of dilatation and distortion terms for isotropic homoge-
neous material. For FGM, some special treatments on material properties
are necessary, which are illustrated in detail in Section 2.4. Strain energy
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density and force state can be numerically presented as:

Wi = a1Θ
2
i + b

n∑
j=1

ωij (|yj − yi| − |xj − xi|)2 Vj, (2a)

tij =
1

Vj

∂Wi

∂ (|yj − yi|)
yj − yi
|yj − yi|

, (2b)

where n is the number of material points in the horizon of material point i.
ωij is the weight function which characterize the strength of the interaction
between points i and j. yi and yj are new positions of points i and j,
respectively, after deformation. For 2D problem, the dilatation term Θi can
be expressed as:

Θi = d
n∑
j=1

ωijsij
yj − yi
|yj − yi|

· (xj − xi)Vj. (3)

The expression of weight function ωij and bond stretch, sij, can be shown
as:

ωij =
δ

|xj − xi|
, sij =

|yj − yi| − |xj − xi|
|xj − xi|

. (4)

PD parameters a1, b and d, in Eq. (2a) and Eq. (3) can be expressed as:

a1 =
λα− µ

2
, b =

6µ

πhδ4
, d =

2

πhδ3
, (5)

where h is plate thickness. Lamé’s constants, λ and µ, and coefficient α can
be presented as:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (6a)

α =

{
(1− 2ν)/(1− ν) for plane stress

1 for plane strain
. (6b)

2.2. Damage

Bond will either elongate or contract as the structure deforms under load-
ing, and it will irreversibly break once bond stretch exceeds a critical value,
sc, as shown in Fig. 2. A coefficient m(xi,xj, t) is applied to illustrate the
situation of bond connection. For unbroken bond, m(xi,xj, t) is equal to
1. For broken bond, m(xi,xj, t) is equal to 0. Therefore, the damage of
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material point, xi, is the percentage of broken bonds in its horizon, which
can be numerically presented as:

Φ(xi, t) = 1−
∫
Hx
m(xi,xj, t)dV∫

Hx
dV

. (7)

Before DamageBefore Damage After DamageAfter Damage

Figure 2: Damage evolution.

2.3. Peridynamic differential operator

PDEs, as a fundamental mathematical tool, have been frequently em-
ployed in the numerical modeling of various natural phenomena and engi-
neering applications. Due to the complexity in specific problems, analytical
methods might not always be utilized in solving the PDEs directly. There-
fore, many numerical techniques, such as FEM [34], FDM [35] and BEM
[36], have been developed in PDE approximation. However, the geometrical
discontinuity and singularity in fracture analysis may bring mathematical
difficulties for these methods. Therefore, based on the framework of PD,
Madenci et al. [37] proposed the PDDO to approximate the PDEs in a non-
local meshfree perspective. By using PDDO, the PDEs are reformulated by
spatial integral equations, which overcome the problems induced by damages
and failures. In this article, 2D formulations of PDDO will be illustrated.
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PDDO is derived from the Taylor Series. The 2D second order Taylor
Series can be expanded as:

f(xj) = f(xi) + ξ1
∂f(xi)

∂x
+ ξ2

∂f(xi)

∂y
+

1

2!
ξ21
∂2f(xi)

∂x2

+
1

2!
ξ22
∂2f(xi)

∂y2
+ ξ1ξ2

∂f(xi)

∂x∂y
+R,

(8)

where f(xi) and f(xj) are values of functions at material points i and j,
respectively. ξ1 and ξ2 are components of initial bond length ξ (ξ=xj-xi) in
x- and y-directions, respectively. R represents the remainder terms, which
is assumed small enough to be neglected in this research. Rearranging Eq.
(8) by moving the first term on the right-hand side to the left-hand side and
multiplying a 2D orthogonal PD function (gp1p22 (ξ)) for all the terms on both
sides, and then integrating through the horizon yield as:∫

Hx

(f(xj)− f(xi))g
p1p2
2 (ξ)dV =

∂f(xi)

∂x

∫
Hx

ξ1g
p1p2
2 (ξ)dV

+
∂f(xi)

∂y

∫
Hx

ξ2g
p1p2
2 (ξ)dV +

∂2f(xi)

∂x2

∫
Hx

1

2!
ξ21g

p1p2
2 (ξ)dV

+
∂2f(xi)

∂y2

∫
Hx

1

2!
ξ22g

p1p2
2 (ξ)dV +

∂2f(xi)

∂x∂y

∫
Hx

ξ1ξ2g
p1p2
2 (ξ)dV,

(9)

where p1, p2=0, 1, 2 except p1=p2=0. Recalling the orthogonal property of
PD function:

1

n1!n2!

∫
Hx

ξn1
1 ξ

n2
2 g

p1p2
2 (ξ)dV = δn1p1δn2p2 with n1, n2 = 0, 1, 2, (10)

where δnp is Kronecker delta. Substituting Eq. (10) into Eq. (9), the relation-
ship between PDEs and integral equation can be established correspondingly
within the PD framework as:

∂f(xi)
∂x

∂f(xi)
∂y

∂2f(xi)
∂x2

∂2f(xi)
∂y2

∂2f(xi)
∂x∂y


=

∫
Hx

(f(xj)− f(xi))


g102 (ξ)
g012 (ξ)
g202 (ξ)
g022 (ξ)
g112 (ξ)

 dV. (11)
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The PD functions are determined by the numerical configuration in PD
framework and detailed calculation processes of PD functions can be found
in many researches in the literature, such as [38,39]. For 2D analysis, the PD
functions can be expressed as:

g102 (ξ) =
2

πh|ξ|δ2
cos θ, (12a)

g012 (ξ) =
2

πh|ξ|δ2
sin θ, (12b)

g202 (ξ) =
9

πh|ξ|δ3
cos2 θ − 3

πh|ξ|δ3
sin2 θ, (12c)

g022 (ξ) = − 3

πh|ξ|δ3
cos2 θ +

9

πh|ξ|δ3
sin2 θ, (12d)

g112 (ξ) =
12

πh|ξ|δ3
cos θ sin θ, (12e)

where θ refers to the angle between bond and horizontal axis in initial config-
uration in Cartesian coordinate system as shown in Fig. 1. Substituting Eq.
(12) to Eq. (11), the 2D PDEs can be approximated. The expression of 1D
and 3D PD functions can be found in [40] and previous researches [41,42].

2.4. FGM modeling

Equations in Section 2.1 are only valid for homogeneous isotropic ma-
terials. For FGMs, extreme refined discretization scheme might be of vital
importance. In this way, the difference of material properties between ma-
terial points within the horizon is small, which can be regarded as homoge-
neous materials. Otherwise, it might cause errors if they are directly utilized.
Therefore, modifications on these equations are necessary.

Average schemes for material properties are commonly used in the litera-
ture in dealing with the nonhomogeneous problems. By assuming the struc-
tures as the homogeneous material locally, the averaged material properties
of each bond can be derived from those of the pairwise points associated with
this bond. Ozdemir et al. [25] calculated direct average for material prop-
erties of bonds in evaluating the crack propagation in structures with FGM.
Rahimi et al. [43] investigated the relationships of the material properties
among the points within the horizon, and proposed an arithmetic average
scheme by defining a coefficient, named dominancy rate. They found out
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it has a better accuracy in crack propagation prediction as compared with
traditional PD. Similar average schemes can be found in [44] and [45]. On
the other hand, Behera et al. [46] utilized a Heaviside function in bi-material
analysis by using non-ordinary state based PD. The material properties are
respectively assigned to the material points on bond, instead of taking the
average value. Nguyen et al. [47] applied a harmonic average scheme in
the researches of bi-material by using OSPD. Inspired by their approaches,
the harmonic average scheme is also introduced to the numerical simulation.
The direct average scheme, arithmetic average scheme and harmonic average
scheme can be expressed, respectively, as:

Pavg =
Pi + Pj

2
, (13a)

Pavg =
ωf ×min(Pi, Pj) + max(Pi, Pj)

ωf + 1
, (13b)

Pavg =
ωf + 1

ωf

min(Pi,Pj)
+ 1

max(Pi,Pj)

, (13c)

where Pavg refers to the averaged material properties of the bond as shown
in Fig. 3. ωf is the weight coefficient in defining the average material prop-
erties on bond. Pi and Pj are material properties of pairwise points i and j
respectively. The influence of these average schemes will be discussed in the
Section 4.

3. Calculation of stress intensity factors in FGMs

SIF, as an important parameter in fracture analysis, is usually employed
in describing the stress concentration at the vicinity of crack tips. For homo-
geneous materials, energy methods, such as J-integral method, are frequently
applied in the evaluation of SIFs and DSIFs [10,11,48-51]. For FGM, Chen
et al. [52] adopted the element-free Galerkin method (EFGM) in the calcu-
lation and evaluation of SIFs. They pointed out that the path independency,
by using conventional J-integral method, might not always be accomplished
in FGMs. Therefore, it is necessary to make modifications for J-integral
formulations by considering the material gradient variation effects. In this
article, J-integral method [10] is applied and the formulation of J-integral is
shown as:

J = lim
Γ0→0

∫
Γ0

(Wiδ1j − σijui,1)n′jdΓ , (14)
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Figure 3: Diagram of material average scheme for a bond.

where ui,1 with i=1, 2 refers to the partial derivatives of the displacements
over x-coordinate under local coordinate system. Eq. (14) is the J-integral
formulation in a contour form, where σij is the Cauchy’s stress component
and n′j refers to the unit normal vector to the contour as shown in Fig.
4(a). x′ and y′ are axes of local coordinate system located at the crack tip.
However, since the line integral is not convenient in numerical simulations,
it is transformed into domain integral based on equivalent domain integral
[53], which can be expressed as:

J =

∫
A

(σijui,1 −Wiδ1j)q,jdA+

∫
A

(σijui,1 −Wiδ1j),jqdA, (15)

where A is the area enclosed by Γ0, Γ and crack surface. q is a manually
defined weight function in the domain J-integral method. Frustum shape
q-function is selected in the numerical simulations. On the contour edges, q
is equal to 0. Within the region A0, q is equal to unity. q linearly varies from
0 to 1 within the region A. The layout of q-function is illustrated by Fig.
4(b) and the expression of q-function can be written as:

q(x′, y′) =


1 within A0

(0, 1) within A
0 outside A

. (16)
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(a) (b)

crack

Figure 4: Layouts of J-integral: (a) J-integral contour, (b) Distribution of q-function.

By superimposing the actual and auxiliary fields (denoted as superscript,
aux) of Eq. (15), the interaction integral formulation can be derived. The
superimposing J-integral formulation, J sup, is given as:

J sup =

∫
A

[(σij + σaux
ij )(ui,1 + uauxi,1 )− (Wi +W aux

i )δ1j]q,jdA

+

∫
A

[(σij + σaux
ij )(ui,1 + uauxi,1 )− (Wi +W aux

i )δ1j],jqdA.

(17)

By decomposing Eq. (17), the interaction integral (M -integral) can be
derived by actual field J and auxiliary field Jaux as:

M = J sup − J − Jaux, (18a)

M =

∫
A

[(σaux
ij ui,1 + σiju

aux
i,1 )− σaux

ik εikδ1j]q,jdA

+

∫
A

(−Cijkl,1εauxkl εij + σaux
ij,j ui,1 + ρüiu

aux
i,1 )qdA,

(18b)

where εij is elastic strain component and Cijkl is the constitutive tensor. The
auxiliary elastic strains are derived from displacement components, which can
be expressed as:

uauxi = Kaux
I lI(r, φ) +Kaux

II lII(r, φ), (19)

where r represents the distance to the crack tip and φ refers to the inclined
angle with respect to the horizontal axis in local coordinate system as shown
in Fig. 5. Kaux

I and Kaux
II are mode-I and -II SIFs, respectively. Since the

dynamic asymptotic fields for non-homogeneous materials has the similar
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behaviour to that for quasi-static homogeneous materials [10], the asymptotic
fields of Williams’ solutions [54] are selected as the auxiliary fields in the FGM
structure. The expression of lI and lII can be found in literature, such as [55].

Crack surface

Figure 5: Local coordinate system originated at the crack tip for auxiliary field.

According to [10], in non-homogeneous materials, equilibrium conditions
are not satisfied, and thus, the auxiliary stress components have to follow
the non-homogeneous constitutive relations. Therefore, the auxiliary strain
field and corresponding stress field can be expressed as:

εauxij =
1

2
(uauxi,j + uauxj,i ), (20a)

σaux
ij = Cijklε

aux
ij , (20b)

where Cijkl is the spatially varied constitutive tensor. For a better under-
standing of SIF in FGM, Eq. (18b) can be decomposed by six terms as:

Term 1 =

∫
A

σaux
ij ui,1q,jdA, (21a)

Term 2 =

∫
A

σiju
aux
i,1 q,jdA, (21b)

Term 3 = −
∫
A

σaux
ik εikδ1jq,jdA, (21c)

Term 4 = −
∫
A

Cijkl,1ε
aux
kl εijqdA, (21d)

Term 5 =

∫
A

σaux
ij,j ui,1qdA, (21e)

Term 6 =

∫
A

ρüiu
aux
i,1 qdA. (21f)
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In Eqs. (21a)-(21f), Terms 1, 2 and 3 refer to the static effects and
material homogeneity, while Terms 4 and 5 represent the material non-
homogeneity. Term 6 shows the dynamic effect of the interaction integral.
For static and homogeneous fracture analysis, Terms 4, 5 and 6 are equal
to zero. The partial derivatives in Eqs. (21a)-(21f) can be transformed into
spatial integral equations by using PDDO, which can be expressed as:

ui,1 =

∫
Hx

(u′i − ui)g102 (ξ)dV, (22a)

uauxi,1 =

∫
Hx

((uauxi )′ − uauxi )g102 (ξ)dV, (22b)

Cijkl,1 =

∫
Hx

(C ′ijkl − Cijkl)g102 (ξ)dV, (22c)

σaux
ij,1 =

∫
Hx

((σaux
ij )′ − σaux

ij )g102 (ξ)dV, (22d)

σaux
ij,2 =

∫
Hx

((σaux
ij )′ − σaux

ij )g012 (ξ)dV, (22e)

q,1 =

∫
Hx

(q′ − q)g102 (ξ)dV, (22f)

q,2 =

∫
Hx

(q′ − q)g012 (ξ)dV, (22g)

where ui with i=1, 2 represents the displacement component along x- or
y-coordinate. The superscript “′” in Eqs. (22a)-(22g) refers to the corre-
sponding value on the neighbour points within horizon. The contribution of
each term on the evaluation of SIFs and DSIFs will be demonstrated in the
following numerical studies.

4. Numerical examples

Several standard benchmark problems will be evaluated and discussed
for a better understanding of FGM fracture behaviors. In Section 4.1, static
fracture analysis on edge-cracked strip is presented. Meanwhile, the influence
of different material average schemes in FGM modeling on fracture analysis is
also compared. In Section 4.2, a central-cracked plate under tensile loading
is considered. The static mode-I SIF of FGM is also under investigation.
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In Sections 4.3, 4.4 and 4.5, dynamic fracture analyses on central cracked
structures with different material variation are conducted. DSIFs of these
cases are numerically evaluated respectively.

For a better understanding of SIFs and DSIFs, the normalized solutions
are provided in these numerical simulations, which are given as:

K∗i =
Ki

σt(x)
√
πa

(i = I, II), (23)

where σt(x) refer to the applied tensile loading. For static analysis, one of
the solutions is equating the ρi(x)üi(xi, t) in Eq. (1) to zero. By refor-
mulating the loading matrix and stiffness matrix, the displacement field in
static state can be derived. However, an excellent computing performance
is required in matrix calculation, especially for problems with refined dis-
cretization, complex geometries and sophisticated loading conditions. As an
alternative option, adaptive dynamic relaxation (ADR) method is introduced
into PD by Kilic and Madenci [56]. In ADR, a manually defined damping
factor is introduced into dynamic motion, which lead to a fast convergence
of solution. In this way, the static solutions can be derived by the dynamic
formulation and it is not sensitive to the time step size by employing the
explicit time integration. In the following simulations, ADR is utilized in the
static fracture analysis.

4.1. Edge-cracked strip under tensile loading

Fig. 6 shows a 2D strip with a crack of length, a. The strip is free of
constrain and uniform tensile loading, σt(x), is applied on the left and right
edges. The length and width of the strip is 1.0 m and 8.0 m, respectively.
The ratio of crack length on strip length varies from 0.4 to 0.6. Poisson’s ratio
remains to be 0.25. Elastic modulus function, E(x), varies along the x-axis,
and the ratio between elastic modulus on upper and lower edges, E2/E1, is
equal to 10. The exponential relation can be presented as:

E(x) = E1e
β1x, β1 =

ln(E2/E1)

Width
, (24)

where E1 and E2 are elastic modulus on upper and lower edges, respectively.
Coarse (∆x=0.02 m), intermediate (∆x=0.01 m) and refined (∆x=0.005 m)
discretization schemes are uniformly defined in OSPD framework. Plane
strain assumption is applied.
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Width

Length

Figure 6: Edge-cracked strip under tensile loading.

Fig. 7 shows the comparisons between four treatments of material prop-
erties on bond in different discretization schemes. The weighted coefficient
in Eq. (13b) and Eq. (13c) are selected as 100 based on [25]. Fig. 7(a)
shows comparison of the crack opening displacement between FEM solution
and OSPD solutions for coarse discretization. Results have reached good
agreements with each other. The difference between OSPD solutions and
analytical solutions by [5] with respect to normalized mode-I SIF is shown as
Fig. 7(b). As the grid spacing is decreasing, the OSPD solutions converged
to the reference solutions. For refined discretization scheme, the differences
can remain within 0.2%. The results provided by these average scheme do
not show obvious difference in the static mode-I SIF evaluations. The Heav-
iside and direct average schemes exhibit slightly higher accuracy in coarse
and intermediate discretizations, while the differences among these schemes
diminish in refined discretization due to the local homogenization of mate-
rial properties. The mode-I SIF calculated by OSPD with harmonic average
scheme has relatively large error (0.17%) as compared with other schemes in
refined discretization. By considering the accuracy of numerical simulations,
the refined discretization scheme is employed for the fracture analysis based
on current OSPD formulations.

For problems with material discontinuity, such as inclusion or layered
structure, there might be differences in displacement fields and SIFs calcu-
lation by using different average schemes in material properties [25]. Since
FGM is continuously varied, the material discontinuity does not exist in the
structure or solution domain. Difference average schemes might not have
obvious influence on numerical solutions. Therefore, the selection of the ma-
terial average scheme in FGM modeling can be relatively arbitrary in refined
discretization. Hence, the Heavisde scheme is utilised in all numerical cases.

Table 1 shows the OSPD solutions, analytical solutions [5], FEM solu-
tions [12] and EFGM solutions [52] in the mode-I SIF evaluations of the
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Figure 7: Convergence study of material average schemes: (a) Crack opening displacement,
(b) Difference with respect to reference solution in terms of SIF.
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Table 1: Comparison of K∗
I between OSPD and reference solutions for edge-cracked strip.

a/Length rd K∗I K∗I [5] K∗I [12] K∗I [52]
30∆x 1.5787

0.4 50∆x 1.5767 1.588 1.582 1.615
70∆x 1.5765
30∆x 2.1751

0.5 50∆x 2.1763 2.176 2.174 2.223
70∆x 2.1794
30∆x 3.2267

0.6 50∆x 3.2349 3.212 3.207 3.337
70∆x 3.2319

edge-cracked strip. Due to the symmetric loading and boundary conditions,
half plate model was established by 617 nodes in FEM. In EFGM, full plate
model was defined with 2,855 nodes. In order to maintain the accuracy,
200×1,600 material points are set up for the full plate model in OSPD. K∗I
is the normalized mode-I SIF. For different contour size, rd, as shown in Fig.
4(b), the OSPD solutions remain stable which restore the path independency
of interaction integral. Meanwhile, the difference between OSPD solutions
and the reference solutions from [5,12] is below 1% for all crack length sce-
nario, while there are relatively large differences with respect to the EFGM
solutions provided by Chen et al. [52]. As the crack length increases, the K∗I
also rises due to the increase of stain energy release rate. The comparison
has shown the good accuracy of the OSPD in mode-I SIF calculation.

4.2. Central-cracked plate under tensile loading

A 2D squared plate with horizontally oriented crack located in central
region is selected as the model in this case study, as shown in Fig. 8. Both of
the plate length and width are 20 m and crack to length ratio (2a/Length) is
defined as 0.1. Poisson’s ratio is fixed as 1/3. The bottom edge is constrained
in vertical direction, while an exponential tensile loading is subjected on the
top edge. The left and right edges are free of constrain. The variation of
elastic modulus and tensile loading on the plate can be expressed as:

E(x) = E0e
β1x, σt(x) = σ0e

β1x, (25)

where E0 and σ0 are elastic modulus and tensile loading on x=0, respectively.
β1 is the coefficient of material gradient. Two material gradients, β1a equals
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0.25 and 0.5, are investigated, respectively. The plate is uniformly discretized
by 400Ö400 (∆x=0.05 m) material points. Results will be validated by
reference solutions from [12,57]. Plane stress assumption is applied in this
case study. Due to the variation of elastic modulus and tensile loading as
shown in Eq. (24), uniform strain field can be derived for undamaged case.
For central-crack case, it will lead to a pure mode-I crack scenario.

Length

Figure 8: FGM plate with central crack under exponential tensile loading.

Table 2: Comparison of K∗
I between OSPD and reference solutions for central cracked

plate.

β1a rd K∗I (a) K∗I (−a) β1a rd K∗I (a) K∗I (−a)
12∆x 1.2097 0.8252 12∆x 1.4418 0.6679
15∆x 1.2107 0.8240 15∆x 1.4443 0.6662

0.25 18∆x 1.2101 0.8219 0.5 18∆x 1.4446 0.6639
[12] 1.221 0.827 [12] 1.458 0.664
[57] 1.196 0.825 [57] 1.424 0.674

Table 2 shows comparisons of OSPD solutions and reference solutions
provided by [12] and [57] for the central cracked plate. K∗I (a) and K∗I (−a)
represent the normalized mode-I SIFs on right and left crack tip regions,
respectively. In general, the value of K∗I at the left tip region is smaller than
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that at the right tip region due to the difference in elastic modulus. As the
material gradient increases, difference between left and right crack tips in
terms of mode-I SIF becomes larger. Results between OSPD solutions are in
good agreement with the references solution provided by [12], whose differ-
ences could be remained within 1%. Meanwhile, the path independency of
the mode-I SIFs is also accomplished, which matches with the characteristic
of interaction integral. Therefore, the accuracy and reliability of OSPD in
mode-I fracture analysis are validated.

4.3. Vertically graded central-cracked strip under tensile loading

A rectangular structure with 20 mm in length, 40 mm in width and 4.8
mm in crack length is selected, which is shown in Fig. 9. The variation of
material properties follows the relationships given follow:

E(x) = E0e
(β1x+β2y), ρ(x) = ρ0e

(β1x+β2y), (26)

where E0, ρ0 and ν are 199.992 GPa, 5,000 kg/m3 and 0.3, respectively.
Apart from uniform tensile loading, σt(x), applied on top and bottom edges,
the plate is free from constrain. Since the material is vertically graded, then
the coefficient β1 is equal to 0. Therefore, material properties on the left
and right crack tip regions are the same. Hence, only right crack tip region
is considered in this evaluation. Meanwhile, different β2 values, 0, 0.05 and
0.1, are discussed in this section. Plane strain assumption is applied. The
computing time t is normalized as:

t∗ = Cd ×
t

(0.5×Width)
, (27)

where Cd is longitudinal wave speed. Based on [10], it can be expressed as:

Cd =

√
E0(1− ν)

ρ0(1 + ν)(1− 2ν)
. (28)

According to Eqs. (21), the influence of each term on the mode-I DSIF
is shown in Figs. 10. For the case with β2=0, a homogeneous plate is re-
stored. Therefore, the influence of nonhomogeneous terms, Term 4 and Term
5, should theoretically vanish. However, due to the numerical errors occur
in the approximation of PDEs, Term 5 might have minor values. By refining
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Figure 9: Vertically graded FGM plate under tensile loading.

the numerical model, this value will approach to 0. For nonhomogeneous ma-
terial, due to the material of the plate is vertically graded, Term 4 remains
zero based on Eq. (21d). As the β2 increases, the influence of static terms
increases around the first peak, while decreases faster after the second peak
as shown in Fig. 10. The overall magnitude of static terms is larger than
nonhomogeneous terms and the dynamic term, while the changes of nonho-
mogeneous terms are not noticeable as the variation of material gradients.
The OSPD solution of mode-I DISF is also compared with the FEM solutions
by Song and Paulino [10], as shown in Fig. 11. For all of the material gradi-
ents, good agreements between OSPD and FEM solutions can be observed,
which prove the accuracy of OSPD in dynamic mode-I fracture analysis.

4.4. Horizontally graded slant cracked plate under tensile loading

A rectangular plate with a centrally located inclined crack is under inves-
tigation. As shown in Fig. 12, the length and width of the plate are 30 mm
and 60 mm, respectively. Moreover, the crack is 14.14 mm in length with
45◦ inclined angle with respect to horizontal axis. Uniform tensile loading,
σt(x), is applied on top and bottom edges, while the left and right edges
are free of constrain. The variation of material gradient follows the same
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Figure 10: Contribution of each term on total DSIF:(a) β2=0, (b) β2=0.05, (c) β2=0.1.
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Figure 11: Comparison between OSPD and FEM on DSIF for β1=0.

relationships as shown in Eq. (26). Since the material is horizontally graded,
then β2 is fixed as 0. Different material gradients, β1=0, 0.05, 0.1 and 0.15,
are tested and evaluated. Due to horizontally graded material, the material
properties on the left and right crack tip regions are different. Therefore, the
evolutions of mode-I DSIF over time at both left and right crack tip regions
are discussed. Plane strain assumption is applied.

Fig. 13 shows the variation of mode-I DSIF at both left and right crack tip
regions. As the material gradient, β1, increase, the DSIFs at the right crack
tip region increase. For the left crack tip region, the DSIFs decrease as the β1
increases until around 15 µs, after which the variation of DSIFs changes. The
DSIF solutions obtained by OSPD are also compared with FEM solutions
[10]. Agreements in mode-I DSIF calculation can be observed from Fig. 13,
which proves the reliability of OSPD in mode-I DSIF evaluation of FGMs.

4.5. Horizontally graded plate with hole under tensile loading

In this section, a rectangular plate with circular hole is presented in Fig.
14. Cracks with 30◦ inclined angle rise from the hole. The length and width
of the plate are 30 mm and 60 mm, respectively. The distance between two
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Figure 12: Slant cracked plate under tensile loading.
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Figure 13: Comparison between OSPD solutions and reference solutions: (a) K∗
I at left

crack tip region, (b) K∗
I at right crack tip.

crack tips is 15 mm and the radius of the hole, r′, is 3.75 mm. Uniform
tensile loading, σt(x), is applied on the top and bottom edges, while the left
and right edges are free of constrain. Poisson’s ratio, ν, is fixed as 0.3. Plane
strain assumption is applied. Material of the plate is horizontally varied,
which can be expressed as:

E(x) = 224x+ 7471 (MPa), (29a)

ρ(x) = 28.8x+ 1380 (kg/m3). (29b)

Fig. 15 shows the comparisons between OSPD solutions and FEM solu-
tions [10] in terms of mixed-mode DSIFs. Generally, the absolute value of
mode-I DSIF is larger than that of mode-II DISF due to the mode-I dom-
inated situation in this case study. The magnitude of DSIF at the right
crack tip region is larger than that at the left crack tip region, since the
material properties at the right region is larger than that at the left region.
Meanwhile, the DSIF initiation time at the left experiences slight delay as
compared with that at the right. This is because the difference of longitu-
dinal wave speed between left and right crack tip regions. By comparing
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Figure 14: FGM plate with hole under tensile loading.

with the FEM solutions, OSPD has shown good accuracy in mode-I DSIF
calculation. However, for mode-II DSIF evaluation, the accuracy is relatively
low as compared with mode-I analysis due to the limitation of current OSPD
formulation in capturing the shear deformation of structure.

5. Conclusion

In this study, a meshfree and nonlocal method, OSPD, is applied in the
fracture analysis of FGM structures. OSPD has employed spatial integral
equations in describing motion of structures, which avoids the limitation
caused by geometric singularity in fracture analysis. Interaction integral
methods by considering the material gradients of FGM is applied in the
evaluation of SIFs and DSIFs. Meanwhile, PDDO is utilized to convert the
local PDEs into nonlocal integral equations within the framework of PD.

Several numerical cases are implemented by using OSPD. First, the static
behaviors of FGM plate with edged and central cracks are simulated, respec-
tively. Different FGM modeling schemes and different discretization schemes
are tested. For current OSPD formulation, the refined discretization scheme
is necessary to maintain high accurate calculation. However, without con-
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Figure 15: Comparison of mixed-mode DSIFs.

sidering the crack propagation, the material average schemes do not have
obvious influence on mode-I SIF results. Then the dynamic behaviors of
FGM plates with horizontally oriented and slant cracks are discussed with
respect to different variation of material gradients. Finally, the mixed-mode
DSIFs on hole plate is numerically evaluated. The OSPD solutions in these
numerical studies are compared with reference solutions in the literature.
Good agreements can be obtained in the calculation of mode-I SIFs and
DISFs, which shows the accuracy and reliability of OSPD.

However, due to the limitation of current OSPD formulation, there is a
relatively low accuracy in mode-II fracture evaluation of FGM. Therefore,
in future studies, it is necessary to modify and optimize the OSPD to ac-
curately capture and simulate the shearing behaviour of local failure. The
proposed method in this article provides an alternative perspective in the
fracture analysis of FGM, which may have promising applications in com-
puting technologies and engineering designs.
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