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Abstract
The accuracy of material extrusion-based 3D printers is greatly affected by the high temperature in the chamber due to the 
thermal-induced deformation of components. However, most existing measurement equipment cannot be applied to high-
temperature environments, which hinders the corresponding error measurement. To address this issue, a geometric error 
detection system and identification algorithm based on binocular vision are proposed. Firstly, a corner detection algorithm 
and a ray-intersection binocular model are used to identify the three-dimensional displacement of the target. Secondly, an 
error separation and identification algorithm is proposed to identify 21 position-dependent geometric errors. Error measure-
ment experiments are conducted on a 3D printer at room temperature and high temperature, respectively. The experimental 
results at room temperature are verified using a double-ball bar. Finally, an error compensation experiment is conducted 
to verify the effectiveness of error identification, which also shows the contribution of error motions of linear axes on the 
printing accuracy.

Keywords  Vision measurement · High-temperature measurement · Position-dependent geometric errors · 3D printer · 
Geometric error identification

1  Introduction

Additive manufacturing plays an important role in prototype 
manufacturing and non-metallic processing. As the main 
equipment for additive manufacturing, the machining accu-
racy of 3D printers directly affects the quality of the final 
workpiece. Geometric errors have a significant effect on the 
accuracy of 3D printers [1]. And error measurement is the 
precondition and foundation of error compensation. Unlike 
conventional machine tools, material extrusion-based 3D 
printers work under high-temperature conditions (90 ~ 320 
℃), which contributes greatly to the geometric error of 
the device and makes geometric error measurement quite 
difficult [2]. Therefore, fast and accurate measurement of 

geometric errors in a 3D printer is already an urgent research 
issue to be solved.

Error modeling is important for the measurement and 
compensation of geometric errors, and there are numer-
ous relevant research results, including multi-body system 
theory, screw theory [3], and exponential product method 
[4]. Among them, the multi-body system theory has been 
broadly accepted. In this theory, the device is modeled as a 
multi-body topological system [5]. According to their cor-
relation with the position, geometric errors could be catego-
rized into position-dependent geometric errors (PDGEs) and 
position-independent geometric errors (PIGEs) [6]. A great 
deal of research has been carried out on geometric error 
measurement, and many related instruments and methods 
have been produced.

In the application scenarios of geometric error meas-
urement, the most commonly used instruments currently 
include laser interferometer [7], laser tracker [8], and dou-
ble-ball bar (DBB) [9]. The measurement based on a laser 
interferometer is a classical method to identify the geometric 
errors of machine tools. Paweł et al. used a laser interferom-
eter to quantify the displacement during the uninterrupted 
movement of the axis, enabling a dynamic assessment of the 
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positioning precision and repeatability of the machine tool 
[10]. The laser tracker features high measurement precision 
and a wide measurement range [11], but due to its complex 
measurement steps and high price, it is mostly used for error 
calibration of large machine tools [12]. Keaveney et al. took 
inspiration from high-precision CNC machining systems and 
used DBB to calibrate 3D printers at a relatively low cost 
[13]. However, the dimensions of information measured with 
DBB are relatively limited. The devices mentioned above 
can effectively perform the error measurement of ordinary 
CNC machine tools. Nonetheless, their application scenarios 
are limited to room temperature, so they cannot be used for 
the error measurement of 3D printers at high temperatures.

At present, the research on geometric error identifica-
tion for 3D printers is not sufficient. Quantitative analysis of 
geometric errors of 3D printers is even less, which is largely 
caused by the bottleneck of the measurement instrument. 
From the perspective of the use cost of measurement instru-
ments, most of the current options are either quite costly 
(such as laser trackers and DBB) or cumbersome to operate 
(such as laser interferometers). More importantly, the above 
equipment cannot work in high-temperature environments. 
The above reasons make it quite difficult to accurately meas-
ure the geometric errors of 3D printers at high temperatures, 
but vision measurement, as an economical and remote meas-
urement method, becomes a new option.

In recent years, with the advantages of low cost, easy 
operation, high measurement efficiency, and wide applica-
tion scenarios, vision measurement is playing an increas-
ingly important role in the industry [14]. At the same time, 
there are more and more attempts to apply vision meas-
urement to machine tool error measurement. Ibaraki et al. 
[15] applied monocular vision to the measurement of two-
dimensional errors in the machine tool plane. However, due
to the lack of depth information, this method is not suitable
for three-dimensional application scenarios. Chen et al.
[16] applied visual measurement to PDGE calibration of
five‑axis machine tools. However, the longitudinal measure-
ment range of this method is relatively limited. Liu et al. [17]
applied binocular vision to five-axis machine tools to realize
dynamic detection and recognition of PIGEs. However, the
research on vision measurement of geometric errors in 3D
printers is relatively insufficient, and there are still the fol-
lowing issues that need to be considered. Although vision
measurement has been applied to many industrial measure-
ment scenarios, to achieve high-accuracy three-dimensional
error measurement is still quite difficult. Vision measure-
ment will introduce additional error factors such as camera
distortion, which need to be considered and corrected. And
the layout of the measurement system affects the precision
and reliability of measurement data. In addition, to meas-
ure the geometric error of a 3D printer, interference factors
in the actual environment such as space constraints, high

temperature, and lighting conditions need to be considered 
[18]. To achieve geometric error measurement of a 3D 
printer at high temperatures, a binocular vision measurement 
system and a rapid error identification algorithm are pro-
posed in this research. Through measurement experiments, 
it has been proven that the method proposed in this paper is 
effective and can fill the gap of conventional measurement 
instruments in high-temperature environments. In addition, 
the contribution of linear axis error motions on the geo-
metric accuracy of printed workpieces is proven by printing 
experiments.

The remainder of this paper is organized as follows. In 
Section 2, the definition of the geometric errors of a three-
axis 3D printer is explained. Section 3 explains the recogni-
tion process of feature points and the specific principle of 
binocular vision measurement. In Section 4, the rapid identi-
fication algorithm for 21 geometric errors is derived. In Sec-
tion 5, geometric error measurement is performed on a 3D 
printer using the proposed method. In addition, a compara-
tive experiment at room temperature is conducted between 
DBB and the proposed vision measurement system, and an 
error compensation experiment is conducted to validate the 
effectiveness of the system. Finally, Section 6 summarizes 
the contributions of this research.

2 � Geometric errors of 3D printer

2.1 � Configuration of 3D printer

A large-sized industrial 3D printer produced by INTAMSYS 
is used in the study, as shown in Fig. 1. It can be regarded as 
a ZFXY-type machine tool composed of three translational 
axes (X-, Y-, and Z-axes). The kinematic chain from the 
workpiece coordinate system to the tool (printhead) coordi-
nate system is as follows: workpiece—Z axis—machine—X 
axis—Y axis—tool.

2.2 � Definition of geometric errors of translational 
axes

The single-axis movement of a three-axis CNC machine tool 
can produce six geometric errors: one positioning error, two 
straightness errors, and three rotary errors. The definition 
of geometric error in this paper refers to the international 
standard ISO 230–1:2012. For the X-axis, δxx represents the 
X axial deviation, δyx and δzx represent the components of the 
spatial positioning error along the Y-axis and Z-axis direc-
tions, respectively; εxx, εyx, and εzx represent the angle at 
which the worktable rotates about three translational axes, 
respectively.

Each translational axis of the 3D printer has 6 geometric 
errors, and there are 18 items in total for the three axes. In 



addition, the deviation of the angles of each two axes relative 
to 90° is a squareness error, namely Sxy, Sxz, and Syz. There-
fore, a three-axis 3D printer possesses 21 geometric errors. 
Table 1 illustrates symbolic representations of geometric 
errors, which refers to [19].

3 � Three‑dimensional position measurement 
based on binocular vision

Binocular vision is utilized to obtain the three-dimensional 
position of an object. And it can be abstracted into two 
stages: First, the pixel coordinates of the feature points in 
the left and right camera images are acquired through image 
recognition. Then, using the pixel coordinates obtained in 
the first stage, the coordinate values of these points in the 
world coordinate system are solved.

3.1 � Obtain pixel coordinates using cooperative 
targets

The ArUco code shown in Fig. 2 is used as the cooperative 
target to provide identifiable feature points. The pattern can 
be quickly obtained from the OpenCV library via a cod-
ing matrix. The pattern is printed on the aluminum plate as 
the target and captured by the binocular camera. Using the 
appropriate recognition algorithm, the pixel coordinates in 
acquired images of four corner points around the pattern 
can be obtained. Specifically, the acquired images will go 
through the steps of image processing, candidate contour 
search and target recognition successively, so as to accu-
rately identify the peripheral boundary of the target pattern 
and the four corner points on the boundary, and finally out-
put the pixel coordinates of the four corner points, as shown 
in Fig. 2.

3.2 � Calculate world coordinates based on pixel 
coordinates

A binocular system with a non-parallel alignment configu-
ration is used in this paper, and its measurement principle 
is illustrated in Fig. 3. Let the left camera coordinate sys-
tem and the world coordinate system coincide, and the 
transformation matrices between left and right cameras be 

X

Y

Z

Printhead

Worktable

Machine

Fig. 1   3D printer configuration

Table 1   Definition of 21 geometric errors

Type Geometric error

X-axis δxx, δyx, δzx, εxx, εyx, εzx
Y-axis δxy, δyy, δzy, εxy, εyy, εzy
Z-axis δxz, δyz, δzz, εxz, εyz, εzz
Squareness error Sxy, Sxz, Syz

Fig. 2   ArUco code
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matrices of left and right cameras be K1 and K2, respec-
tively. Let the world coordinates of any spatial point P be 
(x, y, z) and the pixel coordinates of point P in the left and 
right camera images be p1(u1, v1) and p2(u2, v2), respec-
tively. The transformation matrices from pixel coordinates 
of image points to world coordinates are

where M1 =
[
K10

]
3×4

 , M2 = K2[RT]3×4 , zc1 and zc2 are
the depth values of point P in the Z direction of the left and 
right camera coordinate systems, respectively.

According to Eqs. (1) and (2), the following equation 
can be obtained:
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These equations contain three unknown numbers (x, y, z) 
and four equations, which belong to the overdetermined equa-
tion. Considering the calibration error and corner extraction 
error, the least squares solution is used to calculate Eq. (4), 
which can be represented by

The relevant camera parameter matrices in the above 
equations can be obtained by binocular camera calibration. 
In addition, the distortion coefficients of the camera are also 
determined by the camera calibration and are used to correct 
the pixel coordinates of the corner points, so as to obtain 
the pixel coordinates without distortion. In this research, 
the binocular vision system is calibrated with high accuracy 
using a high-precision calibration plate with known geomet-
ric dimensions based on Zhang’s method [20].

4 � Calculation of geometric errors

4.1 � Comprehensive error model of machine tools

In this section, geometric errors are considered in establishing 
the kinematics model of the machine tool. Taking the worktable 
moving x along the X-axis as an example, let the three translational 
errors of the X-axis be δxx, δyx, and δzx, and the three rotary errors 
be εxx, εyx, and εzx. The homogeneous transformation matrix from 
the reference coordinate system to the X-axis coordinate system is

Similarly, the transformation matrices corresponding to the 
Y-axis and Z-axis, namely, YXT

e and RZT
e , can be obtained.

When the machine tool undergoes a displacement of x, y, and
z along the X, Y, and Z axes, respectively, the transformation
relationship between the workpiece coordinate system W and
the tool coordinate system T can be expressed as

where ZWT
e and TYT

e are regarded as identity matrices.
By substituting the transformation matrix of each axis 

into the above equation, the comprehensive error model of 
the ZFXY-type machine tool can be obtained as follows:
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Fig. 3   Ray binocular model



4.2 � Abbe principle

Abbe principle is an important theorem in precision measure-
ment, which explicitly stipulates that if the actual functional 
axis is inconsistent with the measurement axis, the measure-
ment value of translational error should be rectified using the 
product of the relevant angular error and the offset between 
the measurement point and the actual functional point [21]. 
It should be noted that the angular errors remain constant for 
different points on the same rigid body, while the translational 
errors vary with position.

Next, the application of the Abbe principle in geomet-
ric error measurement of three-axis machine tools will be 
explained by taking the measurement of worktable B mov-
ing along the X-axis in the reference coordinate system as an 
example. The measurement system is installed separately at 
two points connected to worktable B for measurement. The 
measured values of the angular error remain unchanged, and 
the measured values of the translational error will be different 
because the translational error is affected by the angular error 
and the position offset.

During worktable movement along the X-axis, the effect 
of the yaw angle of the worktable around the Z-axis on the 
positioning error is as follows:

where xi is the nominal position, yi is the offset of the meas-
urement point relative to the reference axis, and �

(
xi
)
 is the

angular error about the Z-axis at xi. The specific geometric
relationship is shown in Fig. 4, where Δx

(
xi
)
 refers to Δ�

(
xi
)
 

in Eq. (9).
Similar to Eq. (9), the effect of the pitch angle of the work-

table around the Y-axis on the positioning error is

(9)Δ�
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= tg�
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)
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(
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yi

(10)Δ�

(
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(
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)
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where xi is the nominal position, zi is the offset of the meas-
urement point relative to the reference axis, and �

(
xi
)
 is the

angular error about the Y-axis at xi.
The above two-dimensional results are generalized to 

three-dimensional space as follows. The measurement sys-
tems are installed at selected points b0 and b1 on worktable 
B. Reference coordinate system R and coordinate system B
are established with point b0 as the origin, where R is fixed
and B is movable. The coordinates of point b1 in coordi-
nate system B are (x1, y1, z1). The coordinate systems B1
and B2 are established with point b1 as the origin, where
B1 is fixed and B2 is movable. In the initial position, R
and B coincide, and B1 and B2 coincide. The coordinate
transformation relation of B1 to R and B to B2 is given by
the following two equations:

When the worktable is displaced by x along the X-axis, 
the relative relationships of coordinate systems R, B1, B, 
and B2 are shown in Fig. 5.

The positioning error �xx and the straightness error �yx , 
�zx of X-axis movement are measured at point b0. Position-
ing error �′

xx
 and straightness error �′

yx
 , �′

zx
 of X-axis move-

ment are measured at point b1. According to Eq. (6), the 
coordinate transformation relation of B to R and B2 to B1 
is given by the following two equations:
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Fig. 5   Relative relation of coordinate systems



According to the homogeneous transformation method, 
there are

Substitute the four transformation matrices into Eq. (15), 
and from the equivalence of the corresponding elements of the 
matrices on both sides of the equation, it can be obtained that

From the above equation, it can be obtained that the dif-
ference in translational error measured at two measurement 
points on the same rigid body is equal to the linear combina-
tion of the product of the offset and the rotary error between 
the two measurement points.

4.3 � Geometric error identification

In the quick identification method for geometric errors 
presented in this paper, two targets are connected at regu-
lar intervals using a fixture, and the fixture is fixed on 
the printhead or Z-axis platform of the 3D printer. Then, 
each axis is controlled to move in a fixed step, as shown 
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in Fig. 6. At the same time, a binocular vision system 
is used to collect real-time images of the targets. The 
obtained image data are divided into 9 groups and named 
as lines 1 to 9, as shown in Fig. 6. In order to prevent 
the high temperature in the chamber from affecting the 
measurement accuracy of the camera, the measurement 
process has been optimized so that the time of a single 
measurement is relatively short.

During experimental data processing, the coordinate 
values of each measurement point in lines 1 to 9 under 
the camera coordinate system are calculated based on the 
camera calibration results and the pixel coordinates of the 
target corner points identified. The least-square fitting of 
three-dimensional scatter points on each line is carried out 
respectively, and the positioning error ΔL of each point 
in the direction of the fitting line is calculated according 
to Fig. 7.

According to the positioning error data of lines 1, 2, and 
3, calculate the positioning errors of the translational axis 
according to the following equations:

X
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Fig. 6   Distribution of measurement lines
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Fig. 7   Calculation method of positioning error



Using the conclusions of Section 4.2, yaw errors and 
pitch errors of the translation axis are calculated according 
to the following equations based on the positioning error 
data of lines 4 to 9:

According to the rotary errors mentioned above, the 
straightness errors are calculated according to the follow-
ing equations, which refer to [19]

where Puv is the integral of εwv, and Luv is the least squares 
fitting line of Puv.

For the squareness errors Sxy, Syz, and Sxz, they are cal-
culated by fitting the coordinate values of the measure-
ment points and using the included angle between the fit-
ting lines. Taking Sxz as an example, the three-dimensional 
coordinates of the measurement points calculated from the 
measurement data of line 1 and line 3 are based on the 
same world coordinate system (that is, the binocular cam-
era system remains stationary during the measurement pro-
cess). Therefore, the least squares fitting is performed on the 
measurement points of line 1 and line 3, respectively, and 
the included angle between the two fitting lines is calculated 
as � . Then, Sxz = � − 90

◦.
Using the above method, 18 of the 21 geometric errors 

are identified, with the remaining 3 roll errors εxx, εyy, 
εzz. Identifying these three geometric errors requires the 
use of the machine tool comprehensive error model in 
Section 4.1. The following takes εxx as an example for 
explanation.

When the measurement target is installed on the printhead 
and only the X-axis moves, the error vector is

(17)
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(19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�yx = ∫ �zxdx − Lyx = Pyx − Lyx
�zx = ∫ �yxdx − Lzx = Pzx − Lzx
�xy = ∫ �zydx − Lxy = Pxy − Lxy
�zy = ∫ �xydx − Lzy = Pzy − Lzy
�xz = ∫ �yzdx − Lxz = Pxz − Lxz
�yz = ∫ �xzdx − Lyz = Pyz − Lyz

where 
[
lxlylz1

]T is the coordinate of the measurement point
in the X-axis coordinate system.

From Eq. (20), it can be seen that εxx is only reflected in the 
y and z components of the error vector, while based on bin-
ocular vision measurement data, only errors along the X-axis 
and perpendicular to the X-axis can be obtained. The error 
perpendicular to the X-axis is

If an X-axis coordinate system is established with the 
first measurement point as the origin (that is, the data of δxx, 
δyx, and δzx is measured at the first measurement point), then 
lx = ly = 0 . The error perpendicular to the X-axis can be sim-
plified as

where lz, δyx, and δzx are known quantities, so εxx can be 
solved.

5 � Experiments and results

5.1 � Experimental setup

The binocular vision measurement system built in this 
paper is shown in Fig. 8. The parameters of the binocu-
lar vision system listed in Table 2 are optimized so that 
the uncertainty of measurement matches the accuracy 
requirements of the 3D printer. And the cooperative tar-
get used in this paper is a 70 mm × 70 mm aluminum 
oxide plate.

5.2 � Identification of geometric errors at high 
temperatures based on binocular vision

The method presented in Section 4.3 is applied to measure 
the geometric error of a 3D printer at a high temperature (120 
℃). The offsets of lines 4, 6, 8, and 9, namely x0, y0, and z0 
in Eq. (18), are all 200 mm, while the offsets of lines 5 and 7 
are 150 mm. Based on the measurement data, the positioning 

(20)

E =

⎡
⎢⎢⎢⎣

1 −�zx �yx x + �xx
�zx 1 −�xx �yx
−�yx �xx 1 �zx
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

lx
ly
lz
1

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

1 0 0 x

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

lx
ly
lz
1

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

−�zxly + �yxlz + �xx
�zxlx − �xxlz + �yx
−�yxlx + �xxly + �zx

0

⎤
⎥⎥⎥⎦

(21)
E
⟂X =

√(
�zxlx − �xxlz + �yx

)2
+
(
−�yxlx + �xxly + �zx

)2

(22)E
⟂X =

√(
−�xxlz + �yx

)2
+ �zx

2



errors ΔL of 9 lines can be directly obtained, as shown in 
Fig. 9. Then, pitch errors, yaw errors, and straightness errors 
are calculated in sequence based on the above positioning 
errors, as shown in Fig. 10.

As shown in Table 3 and Fig. 11, the squareness errors and 
the rolling errors of each axis are further calculated based on 
the above results.

5.3 � Identification accuracy verification at room 
temperature using DBB

After measuring the geometric errors at room temperature using 
the proposed method, the identification accuracy is verified by 
using the Renishaw QC20 double-ball bar system. Specifically, 
we fix the base of DBB on the Z-axis platform, fix the mov-
ing end on the printhead, as shown in Fig. 12, and control the 
printhead to make a circumferential motion in the XOY plane.

Export the test file from the DBB system, and draw a 
result graph, as shown in Fig. 13. The measured circular 
deviation of the error trace is 0.2058 mm.

Then, geometric errors of X- and Y-axes of the 3D printer 
are measured at room temperature using the proposed meas-
urement system and method. On the basis of the comprehen-
sive error model in Section 4.1, when only X/Y axis motion 
is considered, the actual coordinates are calculated using the 
following equation:

where x, y are nominal coordinates, and x′,y′ are actual 
coordinates.

Using the measurement results based on binocular vision, 
calculate the actual coordinate values for each point on 
a circle with a semidiameter of 100 mm and a center of 

(212 mm, 270 mm) under the reference coordinate system, 

(23)
[
x
�

y
�

]
=

[
x + �xx + �xy − y�zx

y + �yx + �yy

]

Fig. 8   Binocular vision measurement system

Table 2   Specification of the binocular vision system

Parameter Value

Resolution 2448 (H) × 2048 (V)
Pixel size 3.45 μm × 3.45 μm
Focal length 8 mm
Frame rate 36 fps
Operating temperature 0 ~ 45 ℃

(a) (b) (c)

X-axis travel (mm) Y-axis travel (mm) Z-axis travel (mm)
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Fig. 9   Measured positioning errors of 9 lines



taking geometric errors into account. Calculate the differ-
ence between 100 mm and the actual distance from each 
point on the above circle to the center, and draw the error 
trace using the same method as Fig. 13. The result graph is 
shown in Fig. 14. The calculated circular deviation of the 
error trace is 0.1963 mm.

From the above experimental results, the error trace gener-
ated based on the geometric error measurement results is in 
good agreement with the result measured by DBB. Also, the 
circular deviation calculated based on geometric error is very 
close to the circular deviation measured by DBB. Therefore, 
the proposed error measurement method is feasible.

Fig. 10   Calculated rotary errors and straightness errors

Table 3   Calculated squareness 
errors

Squareness 
error

Error value (rad)

Sxy − 5.05 × 10−3

Sxz 1.24 × 10−3

Syz 3.84 × 10−3

Fig. 11   Calculated roll errors



5.4 � Error compensation experiment

In this section, an error compensation experiment is 
conducted through actual printing processing. The pat-
tern shown in Fig. 15 is used for printing, and the error 
compensation is carried out based on the geometric error 
measurement results in Section 5.2. Two-dimensional pat-
terns before and after compensation are printed respec-
tively and measured to evaluate the accuracy before and 
after compensation.

A basic compensation algorithm for CNC machining 
[22] is used in this section. First, reverse post-processing
is performed to get the expressions of tool point (x, y, z)
about NC code (X, Y, Z) and geometric error quantities:

Calculate the partial differential of the above equa-
tion, and use the Jacobi matrix to express the differential 
relationship:

(24)

⎧⎪⎨⎪⎩

x = F
�

x
(X, Y , Z)

y = F
�

y
(X, Y , Z)

z = F
�

z
(X, Y , Z)

Fig. 12   DBB measurement experiment

Fig. 13   Experiment result of DBB

Fig. 14   Calculation results based on geometric error
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Fig. 15   Patterns for compensation experiments



Transform the above equation to obtain

Let (x, y, z) be the ideal tool position, (X, Y, Z) be the 
NC code obtained based on the ideal post-processing, (x', 
y', z') be the actual tool position considering geometric 
errors, and (X*, Y*, Z*) be the compensated NC code. The 
error compensation equation is

(25)
⎡⎢⎢⎣

dx

dy

dz

⎤
⎥⎥⎦
= J(X, Y , Z)

⎡⎢⎢⎣

dX

dY

dZ

⎤⎥⎥⎦

(26)
⎡⎢⎢⎣

dX

dY

dZ

⎤⎥⎥⎦
= J−1(X, Y , Z)

⎡⎢⎢⎣

dx

dy

dz

⎤⎥⎥⎦

The workpiece of the error compensation experiment is 
shown in Fig. 16.

As shown in Fig. 17, using an image measuring instru-
ment to measure the workpiece, printing errors of meas-
urement points before and after error compensation is 
obtained. The positioning error of the measurement point 
relative to the starting point of the long line in which 
it is located is taken as the relative positioning error. 
The measurement points are divided into horizontal and 
vertical groups, denoted in blue and red, respectively, 
in Fig. 15. Root mean square error (RMSE) is used to 
evaluate the overall error level of each group. The rela-
tive positioning errors before and after compensation 
are shown in Table 4. According to the experimental 
data, the effect of error compensation on the reduction 
of the overall error level in additive manufacturing is 
considerable.

It should be noted that in addition to geometric errors 
of the 3D printer, other relevant factors can also affect the 
accuracy of material extrusion-based additive manufac-
turing of plastic materials, such as the unevenness of the 
extruded semi-molten material, material shrinkage and 
distortions in the solidification of the fused polymer, the 

(27)
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Fig. 16  Workpiece in error 
compensation experiment

CCD camera

Image measuring 
instrument

Workpiece

Fig. 17   Workpiece measurement based on image measuring instru-
ment

Table 4   Relative positioning errors before and after compensation

Group RMSE (m)

Horizontal group, before compensation 2.15 × 10−3

Vertical group, before compensation 2.53 × 10−3

Horizontal group, after compensation 1.96 × 10−3

Vertical group, after compensation 2.17 × 10−3



deformation of the printhead, and the uncertainty of vis-
ual measurement. Therefore, considering the complexity 
of the manufacturing process, the above error compensa-
tion results are acceptable.

6 � Conclusion

This paper proposes a binocular vision measurement sys-
tem suitable for high-temperature conditions in 3D print-
ers and proposes an identification method to calculate 
geometric errors. The system collects images of targets 
fixed to the translational axis and ultimately calculates the 
geometric errors. The performance of the vision system is 
verified by the comparison test with DBB and the actual 
processing test. The measurement results of the vision 
system can be used to compensate for geometric errors 
in the translational axes of the 3D printer. The possible 
uncertainty factors in error measurement and compensa-
tion experiments are discussed.

To sum up, a feasible and fast measurement method is 
proposed for 3D printer geometric errors under high-tem-
perature conditions. In the future, we will use the error 
measurement results to perform error compensation for the 
processing of complex workpieces and use a laser interfer-
ometer to further validate and optimize the proposed error 
measurement method. More research will be conducted to 
improve the accuracy and reliability of the vision meas-
urement system. Although current vision devices are not 
mature enough, with the optimization of device measure-
ment parameters and visual recognition algorithms, they 
will show increasing potential in the actual manufacturing 
process of 3D printers.
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