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1 Using “Universal reversible Turing machine for RCMs.zip”
The file “Universal reversible Turing machine for RCMs.zip” contains a rule file and pattern files
for simulating a 98-state 10-symbol universal reversible Turing machine (URTM(98,10)), which are
executable on the general purpose cellular automaton (CA) simulator Golly [7]. Golly is an excellent
CA simulator developed by A. Trevorrow, T. Rokicki, T. Hutton et al. It can deal with very large
patterns of CAs, and its simulation speed is quite fast. By these features, it is also useful for simulating
various machines other than CAs (see e.g. [5]). Here, we use it for simulating RTMs and reversible
counter machines (RCMs). In particular, we visualize computing processes of the URTM(98,10) that
simulates RCMs. Readers can easily see them by the following procedure.

1. Download the Golly system from https://golly.sourceforge.io/

2. Install the system on your computer.

3. Put the file “Universal reversible Turing machine for RCMs.zip” in the “Patters” folder of Golly.

4. Start the Golly simulator.

5. Select the zip file in the “Patterns” folder from Golly, and access any pattern file (a file with .rle)
in the zip file.

Note that readers can know the usage of Golly by accessing its help menu.

Besides the above files for Golly, a simulator file for Turing machines that works on SWI-Prolog
(https://www.swi-prolog.org/) is included. Giving a description file of the URTM(98,10) to the
simulator, its computing process is observed.

2 Files in “Universal reversible Turing machine for RCMs.zip”
Various files are contained in the zip file. Files having .rle are pattern files for simulating RTMs and
RCMs. They describe initial configurations of them. The file “URTM.rule” is a rule file. It describes
rules for simulating arbitrary RTMs and RCMs. The rule file is automatically installed by Golly when
users have selected the zip file. The files “Prolog tm simulator.txt” and “Prolog urtm.txt” are the ones
for SWI-Prolog.
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The rule file “URTM.rule”
Using this rule file, any RTM (having at most 10 symbols) and any RCM can be constructed in Golly.
Therefore, users can also design new patterns for RTMs and RCMs.

Pattern files
There are seven pattern files for Golly. Short explanations for them are given below. Note that some
of these patterns require millions (or even billions) of steps to obtain results. Thus the simulation
speed of Golly must be accelerated by pressing the “+” key (slow-down is by the “−” key) several
times. When viewing full computing processes of the URTM(98,10), speed setting 85 – 87 will be
appropriate.

• 1 RCM examples.rle
It shows nine examples of RCMs. Some of them are simulated by the URTM(98,10) (see below).

• 2 RTM examples.rle
It shows two simple examples of RTMs. Though they are not URTMs, by these examples users
can know how to design RTMs using URTM.rule.

• 3 URTM that simulates RCM twice.rle
We consider the RCM(2) Mtwice that computes the function f (x) = 2x. Giving the description of
Mtwice on the tape, the URTM(98,10) simulates it.

• 4 URTM that simulates RCM exp.rle
We consider the RCM(3) Mexp that computes the function f (x) = 2x. Giving the description of
Mexp on the tape, the URTM(98,10) simulates it.

• 5 URTM that simulates RCM mult.rle
We consider the RCM(4) Mmult that performs multiplication. Giving the description of Mmult on
the tape, the URTM(98,10) simulates it.

• 6 URTM that simulates RCM divide.rle
We consider the RCM(4) Mdivide that performs division. Giving the description of Mdivide on the
tape, the URTM(98,10) simulates it.

• 7 URTM that simulates RCM prime.rle
We consider the RCM(5) Mprime that performs the primality test. Giving the description of Mprime
on the tape, the URTM(98,10) simulates it (but it takes a huge number of steps).

Files for SWI-Prolog
There are two files that are executed on SWI-Prolog (https://www.swi-prolog.org/).
• Prolog tm simulator.txt

It is a program of SWI-Prolog, which can simulate any one-tape TM by giving its description file.
It also tests if a given TM is deterministic and reversible. A detailed explanation on its usage
is found in this file as comments. Note that, to run this program on SWI-Prolog, the file name
“Prolog tm simulator.txt” should be renamed to “Prolog tm simulator.pl”.

• Prolog urtm.txt
The complete description of the URTM(98,10) and examples of initial tapes for it are given. It can
be read from the above program.
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3 Frameworks of RTMs and RCMs
In this section, we explain the frameworks of RTMs and RCMs. For more detailed explanations on
these models, see [4, 6].

3.1 Reversible Turing machines (RTMs)
A 1-tape Turing machine (TM) consists of a finite control, a read-write head, and a tape divided into
squares in which symbols are written. Here we assume the tape is one-way (rightward) infinite.

Definition 1 A 1-tape Turing machine (TM) is defined by

T = (Q,S,q0,F,s0,δ ),

where Q is a non-empty finite set of states, S is a non-empty finite set of tape symbols, q0 is an initial
state (q0 ∈ Q), F is a set of final states (F ⊆ Q), and s0 is a special blank symbol (s0 ∈ S). Here, δ is
a move relation, which is a subset of (Q×S×S×{L,N,R}×Q). The symbols L, N and R are shift
directions of the head, which stand for left-shift, no-shift, and right-shift, respectively. Each element
of δ is a quintuple of the form [p,s,s′,d,q], which is called a rule of T . It means if T reads the symbol
s in the state p, then write s′, shift the head to the direction d, and go to the state q. We assume each
state q f ∈ F is a halting state, i.e., there is no quintuple of the form [q f ,s,s′,d,q] in δ .

Determinism and reversibility of a TM is defined as below.

Definition 2 Let T = (Q,S,q0,F,s0,δ ) be a TM. We call T a deterministic TM, if the following holds
for any pair of distinct quintuples [p1,s1, t1,d1,q1] and [p2,s2, t2,d2,q2] in δ .

(p1 = p2) ⇒ (s1 6= s2)

It means that for any pair of distinct rules, if the present states are the same, the read symbols are
different.

In the following, we consider only deterministic TMs, and thus the term “deterministic” is omitted.

Definition 3 Let T = (Q,S,q0,F,s0,δ ) be a TM. We call T a reversible TM (RTM), if the following
holds for any pair of distinct quintuples [p1,s1, t1,d1,q1] and [p2,s2, t2,d2,q2] in δ .

(q1 = q2) ⇒ (d1 = d2 ∧ t1 6= t2)

It means that for any pair of distinct rules, if the next states are the same, the shift directions are the
same, and the written symbols are different. The above is called the reversibility condition for TMs.

An instantaneous description (ID) of a TM is an expression to describe its finite computational
configuration such that the non-blank part of its tape is finite.

Definition 4 Let T = (Q,S,q0,F,s0,δ ) be a TM. We assume Q∩S = /0. An instantaneous description
(ID) of T is a string of the form αqβ where q ∈ Q and α,β ∈ S∗. Let λ denote the empty string. The
ID αqβ describes the finite computational configuration of T where the content of the tape is αβ (the
remaining infinite part of the tape contains only blank symbols), and T is reading the leftmost symbol
of β (if β 6= λ ) or s0 (if β = λ ) in the state q. An ID αq0β is called an initial ID. An ID αqβ is called
a final ID if q ∈ F .
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The transition relation among IDs of T is denoted by |−−T . Let αqβ and α ′q′β ′ be two IDs. If
α ′q′β ′ is obtained from αqβ by applying a rule in δ of T , we write αqβ |−−T α ′q′β ′. For example,
if [q,s,s′,R,q′] ∈ δ and α,β ∈ S∗, then αqsβ |−−T αs′q′β . See Sect. 5.1.1.3 of [4] for the precise
definition of the transition relation.

Bennett [1] first showed that any (irreversible) TM can be simulated by a garbage-less RTM.
Hence, the class of RTMs is computationally universal. See [4] for computational universality of
some restricted classes of RTMs.

3.2 Reversible counter machines (RCMs)
Here, we choose RCMs as the target machines that a URTM simulates, since the class of RCMs is
known to be Turing universal, and their structures are very simple. Furthermore, using the framework
of RCMs in the program form (rather than the quadruple form), construction of a URTM is simplified.

A k-counter machine (CM(k)) is defined as a kind of multi-tape Turing machine as shown in
Fig. 1. The tapes are read-only ones, and one-way infinite. The leftmost square of a tape contains
the symbol Z, while all the other squares contain P. Therefore, if the machine reads the symbol Z (P,
respectively), then it knows the content of the counter is zero (positive). The increment and decrement
operations on a counter are performed by shifting the corresponding head.

Finite controlProgram

Counter 0

Counter 1

Counter k − 1

·
·
·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Figure 1: k-counter machine (CM(k)).

Note that, in [3, 4], a CM is defined in the quadruple form, but here, we use the program form
given in [6].

There are five kinds of instructions for a CM(k) shown below, where b0,b1,m0 and m1 are ad-
dresses of instructions, and i ∈ {0, . . . ,k−1}. Intuitive meanings of the instructions are as follows.
Ii Increment the i-th counter
Di Decrement the i-th counter
Bi(b0,b1) Branch on the contents of the i-th counter, i.e.,

if the i-th counter is 0, go to b0, else go to b1
Mi(m0,m1) Merge on the contents of the i-th counter, i.e.,

if the i-th counter is 0, merge from m0, else from m1
H Halt
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To define a program for a CM(k), we give the sets AL,AL
R,B

L
k and ML

k as follows, where L (> 0) is the
length of a program.

AL = {0,1, . . . ,L−1}
AL

R = {1, . . . ,L−1}∪{−1, . . . ,−L+1}
BL

k = {Bi(b0,b1) | b0,b1 ∈ AL
R∪{#}, i ∈ {0, . . . ,k−1}}

ML
k = {Mi(m0,m1) | m0,m1 ∈ AL

R∪{#}, i ∈ {0, . . . ,k−1}}

Here, AL is the set of addresses of instructions, where the 0th instruction has the address 0, and the last
has L−1. AL

R is the set of relative addresses, by which destination and source addresses of Bi and Mi
instructions are specified. The set BL

k (ML
k , respectively) contains all possible Bi(b0,b1) instructions

(Mi(m0,m1) instructions), where # means no address is specified. If bp ∈ AL
R (mp ∈ AL

R, respectively)
for p ∈ {0,1}, bp is called a destination address (source address) of port p of the instruction. The set
SL

k of instructions, which is for a program of length L of CM(k), is as follows.

SL
k = {Ii,Di | i ∈ {0, . . . ,k−1}}∪BL

k ∪ML
k ∪{H}

Note that, in [6] source and destination addresses are specified by absolute addresses, while they are
specified by relative ones here.

Definition 5 A well-formed program (WFP) P of length L for CM(k) is a mapping P : AL→ SL
k that

satisfies the following constraints.

(C1) The last instruction must be H or Bi instruction:

P(L−1) ∈ {H}∪BL
k

(C2) The 0th instruction must not be Mi instruction, and the instruction just before Mi must be H or
Bi instruction:

P(0) 6∈ML
k ∧ ∀a ∈ AL−{0}(P(a) ∈ML

k ⇒ P(a−1) ∈ {H}∪BL
k )

(C3) If the instruction of the address a is Bi, and its port p has a destination address bp(6= #), then
the instruction at the address a+bp must be Mi, and its port p has the source address −bp:

∀a ∈ AL, ∀p ∈ {0,1}, ∀i ∈ {0, . . . ,k−1},
∀b0,b1 ∈ AL

R∪{#}, ∃m0,m1 ∈ AL
R∪{#}

((P(a) = Bi(b0,b1) ∧ bp 6= #)
⇒ (P(a+bp) = Mi(m0,m1) ∧ mp =−bp))

(C4) If the instruction of the address a is Mi, and its port p has a source address mp(6= #), then the
instruction at the address a+mp must be Bi, and its port p has the destination address −mp:

∀a ∈ AL, ∀p ∈ {0,1}, ∀i ∈ {0, . . . ,k−1},
∀m0,m1 ∈ AL

R∪{#}, ∃b0,b1 ∈ AL
R∪{#}

((P(a) = Mi(m0,m1) ∧ mp 6= #)
⇒ (P(a+mp) = Bi(b0,b1) ∧ bp =−mp))

The constraint (C1) prevents the case of going to the address L. The constraint (C2) guarantees
that each Mi instruction is activated only by Bi instructions. The constraints (C3) and (C4) say that the
destination addresses of port p of Bi instructions, and the source addresses of port p of Mi instructions
have one-to-one correspondence for each p ∈ {0,1}.
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Example 1 Let Ptwice be the following sequence of instructions.

B1(1,#) M1(−1,6) B0(6,1) M0(#,−1) D0 I1 I1 B1(#,−6) M0(−6,#) H
0 1 2 3 4 5 6 7 8 9

It is easy to see that Ptwice satisfies the constraints (C1) – (C4) in Definition 5. Therefore, it is a
well-formed program (WFP) of a CM(2). We often draw a WFP in a graphical form as in Fig. 2.

0 1 2 3 4 5 6 7 8 9

B1 (• , •) M1(• , •) B0 (• , •) M0(• , •) D0 I1 I1 B1 (• , •) M0(• , •) H

Figure 2: Graphical representation of the WFP Ptwice.

We now define a CM M in the program form, which has a WFP.

Definition 6 A CM(k) in the program form is defined by

M = (P,k,AF),

where P is a WFP of length L, k is the number of counters, and AF is a set of final addresses that
satisfy the following: AF ⊆ {a | a ∈ AL∧P(a) = H}, where AL = {0, . . . ,L−1}.

Next, an instantaneous description (ID) of a CM in the program form, and a transition relation
among IDs are defined.

Definition 7 Let M = (P,k,AF) be a CM in the program form. Let L be the length of P. Thus the
set of addresses of P is AL = {0, . . . ,L−1}. An instantaneous description (ID) of M is an expression
(a,(n0,n1, . . . ,nk−1)) ∈ AL ×Nk, where N = {0,1, . . . }. It represents that the i-th counter keeps
ni (i ∈ {0, . . . ,k−1}), and the instruction P(a) is going to be executed.

Definition 8 Let M = (P,k,AF) be a CM in the program form, and L be the length of P. The tran-
sition relation |−−M over IDs of M is defined as follows. For every i ∈ {0, . . . ,k− 1}, a,a′ ∈ AL and
n0, . . . ,nk−1,n′i ∈ N,

(a,(n0, . . . ,ni−1,ni,ni+1, . . . ,nk−1))
|−−M (a′,(n0, . . . ,ni−1,n′i,ni+1, . . . ,nk−1))

holds if and only if one of the following conditions (1) – (5) is satisfied.
(1) P(a) = Ii ∧ n′i = ni +1 ∧ a′ = a+1

(2) P(a) = Di ∧ n′i = ni−1≥ 0 ∧ a′ = a+1

(3) P(a) = Bi(b0,b1) ∧ n′i = ni = 0 ∧ a′ = a+b0

(4) P(a) = Bi(b0,b1) ∧ n′i = ni > 0 ∧ a′ = a+b1

(5) P(a) = Mi(m0,m1) ∧ n′i = ni ∧ a′ = a+1

Reflexive and transitive closure of |−−M is denoted by |−−M
∗ , and n-step transition by |−−M

n (n = 0,1, . . .).

Let M = (P,k,AF) be a CM. An ID (a,(n1, . . . ,nk)) is called an initial ID of M, if a = 0. An ID
C is a halting ID, if there is no ID C′ such that C |−−M C′. An ID (a,(n1, . . . ,nk)) of M is called a final
ID, if a∈ AF . Every final ID (a,(n1, . . . ,nk)) is a halting ID, since P(a) = H. Let Ci (i∈ {0,1, . . . ,n})
be IDs. We say that C0 |−−M C1 |−−M · · · |−−M Cn (or C0 |−−M

∗ Cn) is a complete computing process of M,
if C0 is an initial ID, and Cn is a final ID.
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In [6], it is proved that any CM(k) in the program form can be expressed by an equivalent RCM(k)
in the quadruple form. By this, we can see that CMs in the program form are actually reversible CMs.
In fact, from Definitions 5 and 8, it is easy to see that any ID of a CM(k) in the program form has at
most one previous ID.

Proposition 1 Any CM(k) in the program form is reversible.

Example 2 Consider an RCM Mtwice = (Ptwice,2,{9}), where Ptwice is the WFP in Example 1. If we
start from the initial ID (0,(2,0)), we have the following complete computing process of Mtwice.

(0,(2,0)) |−−Mtwice
(1,(2,0)) |−−Mtwice

(2,(2,0)) |−−Mtwice

∗ (9,(0,4))

Generally, (0,(x,0)) |−−Mtwice

∗ (9,(0,2x)) holds for all x≥ 0, i.e., Mtwice computes the function f (x) = 2x,
and stores it in the counter 1.

Minsky [2] proved the following result that any (irreversible) TM can be simulated by an irre-
versible CM having only two counters. There, to reduce the number of counters, a technique of using
a Gödel number, which is for encoding several counters into one, is employed.

Proposition 2 For any TM, there is a CM(2) that simulates the TM.

In the case of RCMs, Morita [3] showed the following result.

Proposition 3 For any (irreversible) TM, there is an RCM(2) that simulates the TM.

Note that the RCM(2) that simulates the TM leaves no garbage information when it halts except
the input information initially given to the TM. In this sense, the class of RCM(2)’s is Turing universal.

In the following, we consider RCMs having any number of counters. By this, we can design
algorithms for RCMs more flexibly.

4 URTM(98,10) TU that simulates RCMs
We give a URTM TU that simulates any RCM(k) in the program form. Note that the objective of this
construction is not to minimize the numbers of states and tape symbols, but to give a URTM of a
reasonable size whose simulating processes of RCMs are easily understood. TU is defined as below.

TU = (Q,{0,1,∗,−,@, I,D,B,M,H},start,{halt(a),halt(r)},0,δ )

It has 98 states and 10 symbols, and the move relation δ is given in Figs. 3 and 4. A complete
description of TU is given in the file “Prolog urtm.txt”. Reversibility of TU is verified by the TM
simulator “Prolog tm simulator.txt” that runs on SWI-Prolog (see Sect 2). Although the set of final
states {halt(a),halt(b)} is specified as above, these states are not included in the 98 states, since TU
works as a URTM correctly even if these states are removed.

Also note that there are several pairs of states each of which can be merged into one state. By
this, we can reduce the number of states of TU. For example, the states i(2) and b(1) can be merged
without violating the reversibility condition. However, here, we do not do so, since i(2) and b(1)
belong different routines, and hence merging them spoils readability of the algorithm of TU.
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0 1 ∗ − @ I D B M H
start 0,R, start @,R, ca(1) ∗,L, ca(4) −,R, start I,R, start D,R, start B,R, start H,R, h(1)
h(1) 1,N, halt(r) ∗,N, halt(a)
ca(1) 1,R, ca(1) ∗,R, ca(1) −,R, ca(1) ∗,R, ca(2) I,R, ca(1) D,R, ca(1) B,R, ca(1) M,R, ca(1) H,R, ca(1)
ca(2) 1,R, ca(2) @,L, ca(3)
ca(3) 1,L, ca(3) ∗,L, ca(3) −,L, ca(3) 1,R, start I,L, ca(3) D,L, ca(3) B,L, ca(3) M,L, ca(3) H,L, ca(3)
ca(4) 1,L, ca(4) 0,R, i(1) 0,R, d(1) B,R, b(1)
cb(1) @,R, cb(2) ∗,L, cb(5)
cb(2) 1,R, cb(2) ∗,R, cb(2) −,R, cb(2) ∗,L, cb(3) I,R, cb(2) D,R, cb(2) B,R, cb(2) M,R, cb(2) H,R, cb(2)
cb(3) 1,L, cb(3) @,L, cb(4)
cb(4) 1,L, cb(4) ∗,L, cb(4) −,L, cb(4) 1,R, cb(1) I,L, cb(4) D,L, cb(4) B,L, cb(4) M,L, cb(4) H,L, cb(4)
cb(5) 1,L, cb(5) ∗,R, start −,L, cb(5) I,R, cb(6) D,R, cb(6) M,R, cb(6)
cb(6) 1,R, cb(6) ∗,R, cb(6) −,R, cb(6) I,L, cb(5) D,L, cb(5) B,L, cb(5) M,L, cb(5) H,L, cb(5)
i(1) 1,R, i(1) ∗,R, i(1) −,R, i(1) @,R, i(s1) I,R, i(1) D,R, i(1) B,R, i(1) M,R, i(1) H,R, i(1)
i(2) 0,L, i(3)
i(3) I,R, cb(1) 1,L, i(3) ∗,L, i(3) −,L, i(3) @,L, i(3) I,L, i(3) D,L, i(3) B,L, i(3) M,L, i(3) H,L, i(3)
i(s1) 1,R, i(s1) 1,R, i(ss)
i(ss) ∗,R, i(2) ∗,R, i(s1) ∗,R, i(ss)
d(1) 0,L, d(s0) 1,R, d(1) ∗,R, d(1) −,R, d(1) @,R, d(1) I,R, d(1) D,R, d(1) B,R, d(1) M,R, d(1) H,R, d(1)
d(2) D,R, cb(1) 1,L, d(2) ∗,L, d(2) −,L, d(2) I,L, d(2) D,L, d(2) B,L, d(2) M,L, d(2) H,L, d(2)
d(s0) 0,L, d(ss)
d(s1) 1,L, d(s1) 1,L, d(ss) @,L, d(2)
d(ss) ∗,L, d(s1) ∗,L, d(ss)
b(1) 1,R, b(1) @,R, b(2)
b(2) 1,R, b(2) ∗,R, b(2) −,R, b(2) 0,R, b(3) I,R, b(2) D,R, b(2) B,R, b(2) M,R, b(2) H,R, b(2)
b(3) 1,L, b(p1) ∗,L, b(4)
b(4) 0,L, b(5)
b(5) 1,L, b(5) ∗,L, b(5) −,L, b(5) ∗,R, b(6) I,L, b(5) D,L, b(5) B,L, b(5) M,L, b(5) H,L, b(5)
b(6) 0,R, b(r3) −,L, b(l1)
b(7) 0,R, b(8) 1,L, b(p6) ∗,L, b(9)
b(8) 0,R, b(7) 1,R, b(8) ∗,R, b(8) −,R, b(8) @,R, b(8) I,R, b(8) D,R, b(8) B,R, b(8) M,R, b(8) H,R, b(8)
b(9) 0,L, b(10)
b(10) ∗,L, b(11) 1,L, b(10) ∗,L, b(10) −,L, b(10) @,L, b(10) I,L, b(10) D,L, b(10) B,L, b(10) M,L, b(10) H,L, b(10)
b(11) 1,L, b(11) ∗,L, b(12) −,L, b(11)
b(12) 1,L, b(12) @,R, b(13) B,L, b(12)
b(13) 0,L, b(14) 1,R, b(13) ∗,R, b(13) −,R, b(13) −,R,m(1) I,R, b(13) D,R, b(13) B,R, b(13) M,R, b(13) H,R, b(13)
b(14) 0,R, b(13) 1,L, b(14) ∗,L, b(14) −,L, b(14) @,L, b(14) I,L, b(14) D,L, b(14) B,L, b(14) M,L, b(14) H,L, b(14)
b(p1) 0,L, b(p2)
b(p2) 1,L, b(p2) ∗,L, b(p2) −,L, b(p2) ∗,R, b(p3) I,L, b(p2) D,L, b(p2) B,L, b(p2) M,L, b(p2) H,L, b(p2)
b(p3) 1,R, b(p3) @,R, b(p4) −,R, b(p3)
b(p4) 0,R, b(p5) 1,R, b(p4) ∗,R, b(p4) −,R, b(p4) I,R, b(p4) D,R, b(p4) B,R, b(p4) M,R, b(p4) H,R, b(p4)
b(p5) 1,L, b(4)
b(p6) 0,L, b(p7)
b(p7) ∗,L, b(p8) 1,L, b(p7) ∗,L, b(p7) −,L, b(p7) @,L, b(p7) I,L, b(p7) D,L, b(p7) B,L, b(p7) M,L, b(p7) H,L, b(p7)
b(p8) 1,L, b(p8) 0,R, b(p9) −,L, b(p8)
b(p9) 0,R, b(p10) 1,R, b(p9) ∗,R, b(p9) −,R, b(p9) @,R, b(p9) I,R, b(p9) D,R, b(p9) B,R, b(p9) M,R, b(p9) H,R, b(p9)
b(p10) 1,L, b(9)
b(r1) 1,R, b(r1) ∗,R, b(r1) −,R, b(r1) −,R, b(r2) I,R, b(r1) D,R, b(r1) B,R, b(r1) M,R, b(r1) H,R, b(r1)
b(r2) 0,R, b(r1) 0,L, b(r4) I,R, b(r3) D,R, b(r3) B,R, b(r3) M,R, b(r3) H,R, b(r3)
b(r3) 1,R, b(r3) ∗,R, b(r3) −,R, b(r3) I,L, b(r4) D,L, b(r4) B,L, b(r4) M,L, b(r4) H,L, b(r4)
b(r4) 1,R, b(7) @,L, b(r5)
b(r5) 1,R, b(r2) 1,L, b(r5) ∗,L, b(r5) −,L, b(r5) I,L, b(r5) D,L, b(r5) B,L, b(r5) M,L, b(r5) H,L, b(r5)
b(l1) @,L, b(l2) @,R, b(l3)
b(l2) 1,L, b(l2) ∗,L, b(l2) −,L, b(l2) B,L, b(l1)
b(l3) 1,R, b(l3) ∗,R, b(l3) −,R, b(l3) ∗,R, b(l4) I,R, b(l3) D,R, b(l3) B,R, b(l3) M,R, b(l3) H,R, b(l3)
b(l4) 0,L, b(l10) 0,L, b(l5)
b(l5) 1,L, b(l5) ∗,L, b(l5) −,L, b(l5) −,R, b(l6) I,L, b(l5) D,L, b(l5) B,L, b(l5) M,L, b(l5) H,L, b(l5)
b(l6) I,L, b(l7) D,L, b(l7) B,L, b(l7) M,L, b(l7) H,L, b(l7)
b(l7) 1,L, b(l7) ∗,L, b(l7) −,L, b(l7) I,L, b(l8) D,L, b(l8) B,L, b(l8) M,L, b(l8) H,L, b(l8)
b(l8) @,R, b(l9)
b(l9) −,R, b(l4) 1,R, b(l9) ∗,R, b(l9) −,R, b(l9) I,R, b(l9) D,R, b(l9) B,R, b(l9) M,R, b(l9) H,R, b(l9)
b(l10) −,R, b(7)

Figure 3: Move table of URTM(98,10) TU (part 1).
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0 1 ∗ − @ I D B M H
m(1) 1,R,m(1) @,R,m(2) M,R,m(1)
m(2) 0,R,m(3) 1,R,m(2) ∗,R,m(2) −,R,m(2) 0,R,m(2) I,R,m(2) D,R,m(2) B,R,m(2) M,R,m(2) H,R,m(2)
m(3) 1,L,m(p1) ∗,L,m(4)
m(4) 0,L,m(5)
m(5) @,L,m(5) 1,L,m(5) ∗,L,m(5) −,L,m(5) ∗,R,m(6) I,L,m(5) D,L,m(5) B,L,m(5) M,L,m(5) H,L,m(5)
m(6) 0,R,m(r1) ∗,L,m(7) 0,L,m(l1)
m(7) −,R,m(8)
m(8) ∗,L,m(9)
m(9) 1,L,m(9) @,R,m(10) −,L,m(9)
m(10) @,R,m(11) 1,R,m(10) ∗,R,m(10) −,R,m(10) I,R,m(10) D,R,m(10) B,R,m(10) M,R,m(10) H,R,m(10)
m(11) 1,L,m(p6) ∗,L,m(12) M,R, cb(1)
m(12) @,L,m(13)
m(13) 1,L,m(13) ∗,L,m(13) −,L,m(13) ∗,L,m(14) I,L,m(13) D,L,m(13) B,L,m(13) M,L,m(13) H,L,m(13)
m(14) 1,L,m(14) −,R,m(11) M,L,m(14)
m(p1) 0,L,m(p2)
m(p2) @,L,m(p2) 1,L,m(p2) ∗,L,m(p2) −,L,m(p2) ∗,R,m(p3) I,L,m(p2) D,L,m(p2) B,L,m(p2) M,L,m(p2) H,L,m(p2)
m(p3) 1,R,m(p3) @,R,m(p4) −,R,m(p3)
m(p4) 0,R,m(p5) 1,R,m(p4) ∗,R,m(p4) −,R,m(p4) 0,R,m(p4) I,R,m(p4) D,R,m(p4) B,R,m(p4) M,R,m(p4) H,R,m(p4)
m(p5) 1,L,m(4)
m(p6) @,L,m(p7)
m(p7) 1,L,m(p7) ∗,L,m(p7) −,L,m(p7) ∗,L,m(p8) I,L,m(p7) D,L,m(p7) B,L,m(p7) M,L,m(p7) H,L,m(p7)
m(p8) 1,L,m(p8) @,R,m(p9) −,L,m(p8)
m(p9) 1,R,m(p9) ∗,R,m(p9) −,R,m(p9) @,R,m(p10) I,R,m(p9) D,R,m(p9) B,R,m(p9) M,R,m(p9) H,R,m(p9)
m(p10) 1,L,m(12)
m(r1) 1,R,m(r1) ∗,R,m(r1) −,R,m(r1) −,R,m(r2) I,R,m(r1) D,R,m(r1) B,R,m(r1) M,R,m(r1) H,R,m(r1)
m(r2) I,L,m(r3) D,L,m(r3) B,L,m(r3) M,L,m(r3) H,L,m(r3)
m(r3) 0,L,m(r6) 1,L,m(r3) ∗,L,m(r3) −,L,m(r3) I,L,m(r4) D,L,m(r4) B,L,m(r4) M,L,m(r4) H,L,m(r4)
m(r4) @,L,m(r5)
m(r5) 1,R,m(6) 1,L,m(r5) ∗,L,m(r5) −,L,m(r5) I,L,m(r5) D,L,m(r5) B,L,m(r5) M,L,m(r5) H,L,m(r5)
m(r6) 1,L,m(r6) ∗,L,m(r6) −,L,m(r6) M,L,m(r7)
m(r7) @,R,m(r8)
m(r8) 1,R,m(8) 1,R,m(r8) ∗,R,m(r8) −,R,m(r8) M,R,m(r8)
m(l1) 1,L,m(l1) ∗,L,m(l1) −,L,m(l1) −,R,m(l2) I,L,m(l1) D,L,m(l1) B,L,m(l1) M,L,m(l1) H,L,m(l1)
m(l2) I,R,m(l3) D,R,m(l3) B,R,m(l3) M,R,m(l3) H,R,m(l3)
m(l3) 1,R,m(l3) ∗,R,m(l3) −,R,m(l3) I,L,m(l4) D,L,m(l4) B,L,m(l4) M,L,m(l4) H,L,m(l4)
m(l4) @,R,m(l5)
m(l5) −,R,m(6) 1,R,m(l5) ∗,R,m(l5) −,R,m(l5) I,R,m(l5) D,R,m(l5) B,R,m(l5) M,R,m(l5) H,R,m(l5)

Figure 4: Move table of URTM(98,10) TU (part 2).

4.1 Representing a program of an RCM
Instructions of an RCM are encoded by symbol sequences of TU.

First, instructions Ii and Di are encoded as follows.

-I1i* and -D1i*

To encode Bi and Mi instructions, we define ϕ(x) for x ∈ AL
R∪{#}.

ϕ(x) =


1x if x ∈ {1, . . . ,L−1}
-x if x ∈ {−1, . . . ,−L+1}
λ if x = #

Here, λ is the empty string. Then, Bi(b0,b1) and Mi(m0,m1) are encoded as follows.

-B1i*ϕ(b0)*ϕ(b1)* and -M1i*ϕ(m0)*ϕ(m1)*

Finally, H instruction is encoded as follows.

-H* or -H1*
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The URTM TU halts in the state halt(a) (halt(r), respectively) if the encoding of H instruction is -H*
(-H1*). This feature is convenient when TU simulates an RCM acceptor.

The code (i.e., description) of a WFP P of an RCM is obtained by concatenating the codes of
instructions contained in P.

Numbers (n0,n1, . . . ,nk−1) stored in the k counters are encoded as follows. It is attached at the
right end of the program code.

@1n0*1n1* · · ·*1nk−1*

Example 3 Consider the WFP Ptwice in Example 1. Assume the numbers stored in the two counters
are (5,0). Then, the combined code of them is as follows.

-B1*1**-M1*-*111111*-B*111111*1*-M**-*-D*

-I1*-I1*-B1**------*-M*------**-H*@11111**

4.2 Simulating RCMs in the URTM(98,10) TU

There are eight kinds of states in TU as it is seen in Figs. 3 and 4. They are start, ca(·), cb(·), h(·),
i(·), d(·), b(·) and m(·). The states of the forms h(·), i(·), d(·), b(·) and m(·) are for processing H,
Ii, Di, Bi and Mi instructions, respectively. The state start is to start the processing of an instruction
other than Mi.

If the next instruction read by the state start is H, then TU goes to the state h(1), and halts in the
state halt(a) or halt(r). Otherwise, TU goes to the routine ca(·). It is for accessing the i-th counter
specified by Ii, Di or Bi. Namely, by the routine ca(·), the marker @ for the counters is shifted to the
position immediately left of the i-th counter.

If the next instruction symbol is I (or D, respectively), then TU goes to the routine i(·) (d(·)). By
this, the content of the i-th counter is incremented (decremented). This operation is easily performed
reversibly. After that, TU goes to the routine cb(·), which shifts the counter marker @ back to the 0th
position.

Figure 5 shows an example of the above process. Here, TU executes a WFP I2 H. It starts from
the state start at t = 0. At t = 4, TU goes to the routine ca(·). By this, the counter marker @ is shifted
to the position of the 2nd counter (t = 45). Then, by the routine i(·), the content of the 2nd counter is
incremented (t = 67). At t = 91 it executes the routine cb(·). By this, the counter marker is shifted
back to the 0th counter (t = 133). At t = 140, TU starts to execute the next instruction. Since it is H,
TU halts in the state halt(a) at t = 143.

t IDs of URTM(98,10) TU

0 start 0-I11*-H*@1*11*111*1111*00

4 0-I@ ca(1)1*-H*@1*11*111*1111*00

45 0-0 i(1)11*-H**1*11@111*1111*00

67 0-011*-H**1*11@1111*1111* i(2)0

91 0-I cb(1)11*-H**1*11@1111*1111*0

133 0-I cb(6)11*-H*@1*11*1111*1111*0

140 0-I11* start -H*@1*11*1111*1111*0

143 0-I11*-H halt(a)*@1*11*1111*1111*0

Figure 5: Execution process of a WFP I2 H by TU. The initial values of four counters are (1,2,3,4),
and their final values are (1,2,4,4).
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Execution of Bi and Mi instructions is more complex than the cases of Ii and Di, since the URTM
have to “jump” from Bi and Mi reversibly. We explain how it is done using a simple example. Figure 6
shows an example. TU executes a WFP B1(3,3) I0 H M1(−3,−3)H. It starts from the state start at
t = 0. At t = 4, TU goes to the routine ca(·) as in the case of I or D. By this, the counter marker @
is shifted to the position of the 1st counter (t = 75). From the state b(1), TU tests if the 1st counter
is 0 or positive. In this case it is positive, and thus TU goes to the state b(p1) at t = 111. Therefore,
TU accesses the second argument of B1(3,3), which has the branching address b1 = 3, at t = 149. It
means that TU must jump 3 instructions to the right. It is performed by shifting the position marker
@ to the right as shown at t = 216, 229 and 247 by the states b(r1) – b(r5). By this, finally, the next
instruction M(−3,−3) is marked by @ at t = 247. Note that when shifting the position marker @ to the
left, the states b(l1) – b(l10) are used. At t = 400 TU finishes the B1(3,3) operation, and at t = 401
it starts to simulate the M1(−3,−3) operation. Since the position marker @ is left at the left-side of
the B instruction (t = 401) as a garbage information, the routine m(·) reversibly erases it by referring
the second argument of M1(−3,−3), which has the merge address m1 =−3. Using the states m(l1) –
m(l5), TU shifts the position marker @ to the right as seen at t = 461, 502, 539 and 573. By this, the
garbage information on the previous address is reversibly erased. After that, TU executes the routine
cb(·) (t = 650), and the counter marker is shifted back to the 0th counter (t = 698). Finally it executes
the H instruction, and halts (t = 701).

In this way, any WFP is simulated by TU.

t IDs of URTM(98,10) TU

0 start 0-B1*111*111*-I*-H1*-M1*---*---*-H*@1*11*0

4 0-B@ ca(1)*111*111*-I*-H1*-M1*---*---*-H*@1*11*0

75 0-B b(1)1*111*111*-I*-H1*-M1*---*---*-H**1@11*0

111 0-B1@111*111*-I*-H1*-M1*---*---*-H**1 b(p1)011*0

149 0-B1*111@ b(p4)111*-I*-H1*-M1*---*---*-H**1011*0

216 0-B1*111*011 b(r5)*@I*-H1*-M1*---*---*-H**1011*0

229 0-B1*111*101*-I b(r5)*@H1*-M1*---*---*-H**1011*0

247 0-B1*111*110*-I*-H1 b(r5)*@M1*---*---*-H**1011*0

400 0@B1*111*111*-I*-H1* b(13)@M1*---*---*-H**1011*0

401 0@B1*111*111*-I*-H1*-m(1)M1*---*---*-H**1011*0

461 0@B1*111*111*-I*-H1*-M1*---m(l 1)*0--*-H**1011*0

502 0-B1*111*111*@m(l 5)I*-H1*-M1*---*0--*-H**1011*0

539 0-B1*111*111*-I*@m(l 5)H1*-M1*---*-0-*-H**1011*0

573 0-B1*111*111*-I*-H1*@m(l 5)M1*---*--0*-H**1011*0

650 0-B1*111*111*-I*-H1*-M cb(1)1*---*---*-H**1@11*0

698 0-B1*111*111*-I*-H1*-M1*---*---* start -H*@1*11*0

701 0-B1*111*111*-I*-H1*-M1*---*---*-H halt(a)*@1*11*0

Figure 6: Execution process of a WFP B1(3,3) I0 H M1(−3,−3)H simulated by TU. The initial
values of two counters are (1,2).

Acknowledgements: I express my gratitude to the developing and support teams of Golly [7].
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