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Abstract 

Objective: This study evaluated the prognostic impact of the quality of dose distribution using dosiomics 

in patients with prostate cancer, stratified by pretreatment prostate-specific antigen (PSA) levels and 

Gleason grade group (GG). 

Methods: A total of 721 patients (Cohort A [anonymized]: N = 489 and Cohort B [anonymized]: N = 

232) with localized prostate cancer treated by intensity-modulated radiation therapy were enrolled. Two 

predictive dosiomic features for biochemical recurrence (BCR) were selected, and patients were divided 

into certain groups stratified by pretreatment PSA levels and GG. Freedom from biochemical failure 

(FFBF) was estimated using the Kaplan–Meier method based on each dosiomic feature, and univariate 

discrimination was evaluated using the log-rank test. As an exploratory analysis, a dosiomics hazard 

(DH) score was developed, and its prognostic power for BCR was examined. 

Results: The dosiomic feature extracted from planning target volume (PTV) significantly distinguished 

the high- and low-risk groups in patients with PSA levels >10 ng/ml (7-year FFBF: 86.7% vs. 76.1%, p 

< 0.01), GG 4 (92.2% vs. 76.9%, p < 0.01), and GG 5 (83.1% vs. 77.8%, p = 0.04). The DH score 

showed significant association with BCR (hazard score: 2.04; 95% confidence interval: 1.38–3.01; p < 

0.001). 

Conclusion: The quality of planned dose distribution on PTV may affect the prognosis of patients with 

poor prognostic factors, such as PSA levels >10 ng/ml and higher GGs.  

Advances in knowledge: The effects of planned dose distribution on prognosis differ depending on the 

patient’s clinical background. 

 

INTRODUCTION 

 

External beam radiation therapy (EBRT), along with surgery and brachytherapy, is an effective treatment 

option for patients with localized prostate cancer. However, approximately 15% of the patients develop 

a biochemical recurrence (BCR) after EBRT.1 Baseline prostate-specific antigen (PSA) level and 

Gleason score are considered significant predictors for BCR after radiotherapy.2,3 

 Dosiomics is a method inspired by radiomics wherein numerous spatial features are extracted 

from dose-distribution images. Dosiomic features are expected to function as new potential metrics for 

evaluating the treatment plan, instead of conventional dose indices; this is because of the ability of 

dosiomics to detect the small differences in the dose distributions with and without recurrence or 

complications.4–11 Our previous study demonstrated that the dosiomic features extracted from clinical 

target volume (CTV) and planning target volume (PTV) significantly correlated with BCR after 
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radiotherapy.11 However, which patients with specific clinical backgrounds are significantly affected by 

planned dose distribution is still unclear. The sensitivity of prognostic prediction from the dose 

distribution may differ according to the patient’s background. Previous clinical trials have revealed that 

dose-escalation improves freedom from biochemical failure (FFBF) with the largest benefit observed in 

patients with PSA ≥10 ng/ml.1,12 Zelefsky et al. reported that dose escalation was associated with 

improved PSA relapse-free survival in unfavorable risk cases.13 Thus, this study hypothesized that the 

quality of dose distribution may significantly affect the prognoses in patients with such clinical 

backgrounds, similar to those in dose escalation trials. 

 This study evaluated the prognostic impact of the quality of dose distribution using dosiomics 

in patients with prostate cancer, stratified by pretreatment PSA levels and Gleason grade group (GG). 

Moreover, as an exploratory analysis, a new evaluation metric for treatment planning was developed, 

and its prognostic power for BCR was examined. 

 

METHODS AND MATERIALS 

 

Patients 

This is a retrospective, observational study. Flowchart of patient selection is presented in Figure 1. Four 

hundred and eighty-nine of the 712 patients who received intensity-modulated radiation therapy (IMRT) 

between May 2007 and September 2018 at Institution A (Cohort A) and 232 of 405 patients who received 

IMRT between June 2008 and June 2018 at Institution B (Cohort B) were included. All patients in both 

cohorts had adenocarcinoma of prostate and were prescribed a dose of 78 Gy/ 39 fractions to the PTV 

using static field IMRT. Patients with a follow-up time of ≤5 years14 and pretreatment PSA level of 

≥200 ng/mL15 were excluded. If the patient had not relapsed at the last follow-up, it was considered as 

No-BCR. Finally, an integrated cohort that combined the Cohort A and Cohort B (N = 721) was created, 

and the patients were divided into certain groups stratified by pretreatment PSA levels and GG. Phoenix 

definition was used to define the BCR.16 The study was approved by the ethics committee of the authors’ 

institution (XXX-XXX). 
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Figure 1. Flowchart of patient selection. BCR, biochemical recurrence; PSA, prostate-specific antigen; 

RT, radiation therapy; VMAT, volumetric-modulated arc therapy; HIFU, high-intensity focused 

ultrasound; GG, Gleason grade group. 

 

Treatment planning for Cohort A 

The details of delineation and treatment at Cohort A are described previously.11,17 Five-field IMRT was 

used for all cases with the same beam angles (255, 315, 45, 105, and 180). All treatment plans were 

created by Eclipse treatment planning system (TPS) ver. 8.6 or 10.0 (Varian Medical Systems, Palo Alto, 

CA, USA). D95% = 100% to PTV was used for planning normalization. The treatment beams were 10-

MV photon beams from Clinac 21EX accelerator (Varian Medical Systems). An analytical anisotropic 

algorithm (AAA) with a 2.5-mm dose grid was adopted for dose calculation. The preset dose constraints 

for IMRT are summarized in Table S1.  

 

Treatment planning for Cohort B 

Most patients (77.2%) were treated with seven-field IMRT (215, 260, 305, 0, 55, 100, and 145), whereas 

the remaining patients (22.8%) were treated with five-field IMRT (255, 315, 45, 105, and 180). D95% 

= 100% to PTV was used for nearly all patients (97.4%), while other normalization values were applied 
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for certain patients (2.6%). Delineation of the target and organs-at-risk (OARs) was the same as those 

in the Cohort A, while certain CTVs (33.2%) and PTVs (8.2%) were slightly adjusted according to the 

clinical judgement of the radiation oncologist. The TPS was the Eclipse software version 8.1 or 11.0, 

and the treatment beams were 10-MV photon beams from Clinac iX accelerator (Varian Medical 

Systems). Dose distribution was calculated using AAA with a 2.5-mm dose grid. The preset dose 

constraints are summarized in Table S2. 

 

Feature extraction for Dosiomics 

Dose distributions were resampled to have isotropic voxels (1, 1, 1 mm) using B-spline interpolation.10,11 

Thereafter, dosiomic features for CTV and PTV were calculated from the discretized 3D dose voxel 

dimensions with fixed bin widths of 1 Gy.11 In total, 1,650 features including 210 (105 × 2) original 

features and 1,440 (720 × 2) wavelet features were extracted using PyRadiomics version 3.0.18 The 

wavelet filter computed eight decompositions for each level. Summary of dosiomic features used in this 

study is shown in Table S3. Spearman’s correlation coefficient (SCC) was calculated between the 

features of all possible two combinations, and then the features with SCC of ≥0.80 were eliminated.11,19 

 

Dosiomics hazard score 

Z-score normalization was used to standardize each feature. Then, certain prognostic dosiomic features 

for BCR were selected via five-fold cross-validation using the univariate Cox proportional hazard (CPH) 

regression. The cross-validation was performed 20 times (100 loops), with randomization of the inner 

dataset in each loop. Subsequently, C-index was computed for each random validation dataset, and the 

top three features with a higher mean C-index were chosen for both CTV and PTV. The C-index is an 

indicator to evaluate the goodness of fit measure for created model; C-index = 0.5 and 1 imply random 

and perfect predictions, respectively. Six prognostic features were selected as candidate features for 

constructing the multivariate CPH regression model. Prior to building the model, a variance inflation 

factor (VIF)20 was computed between the features of all possible two combinations. The features with 

VIF >10 were excluded to avoid collinearity between the features.7 Finally, the dosiomics hazard (DH) 

score was calculated as: 

 

𝐷𝑜𝑠𝑖𝑜𝑚𝑖𝑐𝑠	ℎ𝑎𝑧𝑎𝑟𝑑	𝑠𝑐𝑜𝑟𝑒 = 	𝜔!𝑥! +𝜔"𝑥" +⋯𝜔#𝑥#        (1) 

 

Where 𝜔 is the estimated relative hazard risk of BCR in the multivariate model, and 𝑥 corresponds to 

the value of the dosiomic feature. The DH score was inspired by the radiomics score,21 which estimates 



  

 

6 

the individual risk of BCR from the whole dose distribution including the CTV and PTV. 

 

Evaluation 

The two predictive dosiomic features (CTV_wavelet-HHH_glrlm_HighGrayLevelRunEmphasis 

[HGLRE] and PTV_wavelet-HHH_firstorder_Entropy) and DH score were selected as candidate 

features for the Kaplan–Meier analyses. The two dosiomic features were selected based on the previous 

results11 to examine the generalizability of the dosiomic features with a larger cohort. BCR time was 

calculated from the date of IMRT completion to the detection of BCR, while No-BCR time was 

calculated from the date of IMRT completion to the date of last visit (censored). Kaplan–Meier analysis 

was applied to all patient groups stratified by pretreatment PSA levels of 10 ng/ml1,12 and GGs 1–5. The 

GG has a five-grade group based on the original Gleason score.22 The high- and low-risk groups were 

split using the median feature value of the dataset in each stratified group. To examine the feasibility of 

DH score, a univariate CPH regression model was built using seven clinical factors, one dose-volume 

histogram (DVH) parameter, and three dosiomic features including the DH score. Following the 

calculations for the VIF, the variable with p-value < 0.05 in the univariate model was further applied to 

the multivariate model.  

 

Statistics 

Differences in patient characteristics between with and without BCR were assessed using the Mann–

Whitney U- and Fisher’s tests for continuous and categorical variables. 7-year FFBF rates were 

estimated using the Kaplan–Meier method, and the log-rank test was used to assess differences in FFBF 

between the high- and low-risk groups. Kaplan–Meier curves were estimated using the Python package 

lifelines version 0.25.4 (https://doi.org/10.5281/zenodo.4002777), and the p-values were computed 

using the log-rank test. Statistical analyses were conducted using the R software version 3.6.3 

(https://cran.r-project.org/bin/macosx/). All p-values were two-sided and all tests were performed using 

a 5% significance level. 

 

RESULTS 

 

Patient characteristics 

The patient characteristics of the integrated cohort are presented in Table 1. The median follow-up times 

were 100.2 (range: 60.3–153.7) and 82.6 (range: 60.3–126.4) months in Cohorts A and B, respectively, 

except for two patients who had developed BCR. These two patients with a median follow-up time of 
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47.9 and 55.8 months, respectively, were included in this analysis owing to the limited number of 

patients with BCR in the Cohort B (N = 21). The median times to BCR were 55.2 (range: 9.7–149.3) 

and 46.8 (range: 4.8–100.7) months in Cohorts A and B, respectively. The FFBF rates at 3 and 5 years 

were 94.7 and 89.0% in Cohort A (Figure S1) and 96.1 and 93.5% in Cohort B (Figure S2), respectively. 

Patient characteristics of the Cohorts A and B are presented in Tables S4 and S5, respectively. 

 

Dosiomics hazard score 

After assessing the SCC, the 1,650 dosiomic features were reduced to 150 and 143 robust features for 

the CTV (Table S6) and PTV (Table S7), respectively. Consequently, a multivariate model was created 

using the top three features for the CTV and PTV (Table S8), and the DH score for BCR was calculated. 

Forest plots of the hazard ratios for FFBF in the multivariate CPH regression model using these six 

prognostic features are shown in Figure S3. 

 

Kaplan–Meier estimates for patient groups 

FFBF curves separated by CTV_wavelet-HHH_glrlm_HGLRE, PTV_wavelet-HHH_firstorder_Entropy 

and DH scores were obtained from the patient groups according to the pretreatment PSA levels and GG 

(Figures 2–5). Significant differences in the survival curves were observed between the high- and low-

risk groups in patients with pretreatment PSA levels >10 ng/ml for PTV_wavelet-

HHH_firstorder_Entropy (7-year FFBF: 86.7% vs. 76.1%, p < 0.01) and DH score (7-year FFBF: 86.0% 

vs. 76.8%, p < 0.01), respectively. Regarding GG, the CTV_wavelet-HHH_glrlm_HGLRE significantly 

distinguished the high- and low-risk groups in patients with GG 4 (7-year FFBF: 89.6% vs. 79.3%, p = 

0.04). Further, PTV_wavelet-HHH_firstorder_Entropy significantly discriminated between high- and 

low-risk groups in patients with GG 4 (7-year FFBF: 92.2% vs. 76.9%, p < 0.01) and GG 5 (7-year 

FFBF: 83.1% vs. 77.8%, p = 0.04), respectively. Furthermore, the DH score significantly distinguished 

the high- and low-risk groups in patients with GG 5 (7-year FFBF: 88.5% vs. 72.9%, p < 0.001). 
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Figure 2. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by two 

predictive dosiomic features and DH score. (A) Patient group with pretreatment PSA level ≤ 10 ng/ml, 

(B) Patient group with pretreatment PSA level >10 ng/ml. 

 

 

Figure 3. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by CTV-

derived dosiomic feature, according to GG. 
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Figure 4. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by PTV-

derived dosiomic feature, according to GG. 

 

 
Figure 5. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by DH score, 

according to GG. 

 

Efficacy of the dosiomics hazard score 

Univariate and multivariate CPH regression analyses results are summarised in Table 2, and Figure S4 
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PSA (HR: 1.61, 95% CI: 1.06–2.46, p = 0.02), GG (HR: 1.25, 95% CI: 1.07–1.47, p < 0.01), positive 

biopsy core rate (PBCR) (HR: 1.55, 95% CI: 1.04–2.32, p = 0.03), and DH score (HR: 2.04, 95% CI: 

1.38–3.01, p < 0.001) were significantly correlated with BCR. Notably, the NCCN risk group was 

excluded from the multivariate model because the calculated VIF between the NCCN risk group and 

GG was >10. 

 

DISCUSSION 

 

This study evaluated the prognostic impact of the planned dose distribution quality using dosiomics in 

patients with prostate cancer stratified by pretreatment PSA levels and GG. Consequently, it was 

demonstrated that the dosiomic feature extracted from PTV can significantly discriminate between the 

high- and low-risk BCR groups with PSA levels >10 ng/ml and GG of 4 and 5. However, no statistically 

significant differences were observed in any patient group, except for patients with GG 4, when the 

CTV-derived dosiomic feature was used. Thus, the sensitivity of prognostic prediction from dose 

distribution differed according to the patient’s background and the type of dosiomic features used. 

Although dosiomics can capture differences in dose distributions in the CTV,11 it can be assumed that 

the quality of dose distributions in the PTV had a greater influence on the value of the dosiomic features. 

This was because the dose of 5% of the PTV volume was not considered in treatment planning (i.e., 

D95% = 100% was used in both institutions). The observed larger differences in the FFBF curves for 

the PTV compared with those for the CTV are consistent with a previous report.11 

 PTV_wavelet-HHH_firstorder_Entropy specifies the uncertainty and randomness of the dose 

distribution after wavelet transformation with high-pass filtering in the x-, y-, and z-dimensions. Feature 

maps of high- and low-risk patients using PTV_wavelet-HHH_firstorder_Entropy are shown in Figure 

S5. The feature maps of low-risk patients tended to be more homogeneous than those of high-risk 

patients. Considering that smaller feature values in the voxels indicate a higher risk of BCR, the feature 

map could aid a treatment planner in assessing whether the dose distribution quality is appropriate, in 

addition to information from conventional DVH parameters. Interestingly, despite exhibiting the lowest 

feature value in the high-risk group, the patient in the upper-left panel with a PSA level of 5.4 ng/ml did 

not experience BCR. This indicates that patients with favourable clinical backgrounds may be more 

tolerant to inferior dose distributions in treatment planning. Our future research aims to elucidate the 

physiological and biological mechanisms underlying the relationship between spatial dose distribution, 

feature maps, and the occurrence of BCR. 

 No significant differences were observed in the survival curves of patients with PSA levels 
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≤10 ng/ml and GGs of 1–3. This indicates that the dose distribution quality does not influence the 

prognosis of patients with good prognostic factors, provided that the predetermined dose constraints 

satisfy the clinical criteria. Therefore, a treatment planner could prioritise sparing the OARs to prevent 

gastrointestinal or genitourinary complications in these patients. In addition, these patients are good 

candidates for rapid planning,23,24 which is essential for efficient treatment planning and allows 

clinicians to focus on more challenging cases. 

 However, the current TPS does not support dosiomics-based treatment planning. Thus, a 

retrospective evaluation using in-house software after calculating the final dose distribution is essential 

to assess the quality of the dose distribution using dosiomics. As this process is very time-consuming, 

identifying the patient groups to be used for dosiomics-based evaluation is important. Our findings may 

aid decision-making in clinical practice. The optimal solution is to incorporate dosiomics into the 

iterative dose optimisation process for IMRT in treatment planning.  

 To date, the relationships between dosimetric factors related to treatment planning and BCR 

remain unclear. A previous study demonstrated that certain dosiomic features are associated with BCR, 

and their predictive performance for BCR outperformed that of DVH parameters.11 The present study 

observed that PTV-derived feature can significantly distinguish the high- and low-risk groups in patients 

with poor prognostic factors in a two-institution integrated cohort. However, the best dosiomic feature 

for PTV in this study was not identical to that previously reported (i.e., PTV_wavelet-

LHH_glszm_SizeZoneNonUniformity [SZNU] vs. PTV_wavelet-HHH_firstorder_Entropy). This 

implies that several dosiomic features may be related to BCR. Interestingly, PTV_wavelet-

LHH_glszm_SZNU significantly discriminated between the high- and low-risk groups across all PSA 

levels and in patients with GGs of 4 and 5 (Figures S6 and S7). If several dosimetric factors for BCR 

are present, several dosiomic features can be considered for prognostic prediction similar to the case of 

the DH score. The prognostic power using DVH parameters was limited in prostate cancer (Figures S8 

and S9), highlighting the importance of dosiomic analysis for dose distribution. 

 Previous studies reported that the prognosis differed between Gleason scores of 3 + 4 (i.e., 

GG 2) and 4 + 3 (i.e., GG 3).22,25 Therefore, GG was used as a stratification factor rather than the Gleason 

score for the Kaplan–Meier analysis. Unexpectedly, no statistically significant differences were 

observed in the survival curves of these groups, although there were moderate differences in patients 

with GG 3 based on the DH score.  

The DH score, inspired by the concept of the Rad score,21 was developed to evaluate whole 

dose distributions, including the CTV and PTV. Interestingly, certain differences in the survival curves 

were observed early following the completion of treatment, and an elevated DH score increased the risk 



  

 

12 

of BCR. The DH score may provide valuable information to a treatment planner regarding whether 

whole dose distributions, including the CTV and PTV, are appropriate in terms of individual risk of BCR 

after radiotherapy. However, this indicator may be further improved because there were no statistically 

significant differences in survival curves of certain groups, such as GGs of 3 and 4. For example, 

determining the optimal number of dosiomic features for calculating the DH score could potentially 

enhance the prognostic power. 

Our findings should be interpreted with caution. Although we merged cohorts from the two 

sites, the small number of patients with BCR in each group may have reduced the statistical power when 

comparing the FFBF curves between the high- and low-risk groups. In particular, uncertainty exists in 

the analysis stratified by the GGs. Therefore, a future multi-institutional study is warranted to identify 

the patient groups that are truly affected by the dose distribution quality. 

In general, a prognostic feature is aggregated from a training cohort, and generalisability is 

tested using an independent validation cohort. This study combined the two cohorts because the number 

of patients with BCR in Cohort B was too small for Kaplan–Meier analysis (N=21). If the two dosiomic 

features used in this study did not work in Cohort B, the separation of the FFBF curves would be 

underestimated in the integrated cohort. The generalisability of these features should be tested in an 

independent cohort in future studies. 

 Previous efforts related to dosiomics have included patients with highly diverse clinical 

backgrounds, including different clinical stages, histology, treatment modalities, and prescribed doses, 

to examine the prognostic power of certain dosiomic features.4–11, 26–28 Consequently, the patient groups 

that were significantly affected by the dose distribution quality remained unclear. To the best of our 

knowledge, this is the first study to demonstrate that the effects of dose distribution on prognosis differ 

depending on patient’s background. This highlights the importance of stratified analysis in dosiomics 

research, even for specific cancer types. In other words, dosiomics may not be useful for all patients; 

however, it can be considered a novel metric for treatment planning in specific populations. 

 This study has several limitations. First, the limited number of patients with BCR in each 

patient group may have affected the results of the Kaplan–Meier analysis. For example, there were no 

statistically significant differences in patients with GGs of 3 and 4 when using the DH score, although 

the FFBF curves appeared to differ in those groups. Second, the usefulness of the DH score was not 

examined in an independent validation cohort. Therefore, it remains unclear whether this is a strong 

prognostic marker in other institutional cohorts. Stratified analysis renders performing external 

validation challenging. Third, androgen deprivation therapy status was not considered in the Kaplan–

Meier analysis. Finally, the robustness of dosiomic features was not considered in this study. Recent 
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studies suggested that dosiomic features can be sensitive to changes in dose calculation algorithms, dose 

grid sizes, and dose cube pixel spacing.29–32 However, the robustness of filtered dosiomic features such 

as wavelets for treatment plans in patients with prostate cancer remains unclear and should be clarified 

in future studies. 

 

 CONCLUSION 

 

The dosiomic feature extracted from PTV significantly distinguished high- and low-risk groups in 

patients with PSA levels >10 ng/ml and GGs of 4 and 5. This indicates that the quality of the planned 

dose distribution on the PTV may affect the prognosis of patients with poor prognostic factors. 
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Figure legends 

 

Figure 1. Flowchart of patient selection. BCR, biochemical recurrence; PSA, prostate-specific antigen; 

RT, radiation therapy; VMAT, volumetric-modulated arc therapy; HIFU, high-intensity focused 

ultrasound; GG, Gleason grade group. 

 

Figure 2. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by two 

predictive dosiomic features and DH score. (A) Patient group with pretreatment PSA level ≤ 10 ng/ml, 

(B) Patient group with pretreatment PSA level >10 ng/ml.  

 

Figure 3. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by CTV-

derived dosiomic feature, according to GG. 

 

Figure 4. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by PTV-

derived dosiomic feature, according to GG. 

 

Figure 5. Kaplan–Meier estimates of FFBF for high- and low-risk BCR groups separated by DH score, 

according to GG. 
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Table 1 Patient characteristics 

BCR, biochemical recurrence; PSA, prostate specific antigen; HTx, hormone therapy; PBCR, positive biopsy core 

rate 

 

 

 

 

 

Characteristics Integrated cohort (N=721) 

 BCR (n=117) No-BCR (n=604) p value 

Age [years]   0.033 

≥	70 55 (47.0) 349 (57.8)  

< 70 62 (53.0) 255 (42.2)  

T-stage [No. (%)]   < 0.000001 

T1a-T2a 40 (34.2) 326 (54.0)  

T2b-T2c 17 (14.5) 121 (20.0)  

≥	T3a 60 (51.3) 157 (26.0)  

Pretreatment PSA [No. (%)]    < 0.0001 

≤	10 ng/ml 34 (29.1) 299 (49.5)  

> 10 ng/ml 83 (70.9) 305 (50.5)  

Gleason grade group [No. (%)]   0.007 

1 3 (2.6) 40 (6.6)  

2 21 (17.9) 188 (31.1)  

3 25 (21.4) 122 (20.2)  

4 22 (18.8) 118 (19.6)  

5 46 (39.3) 136 (22.5)  

NCCN risk group [No. (%)]   0.001 

Low 0 (0.0) 2 (0.3)  

Intermediate 32 (27.4) 268 (44.4)  

High 85 (72.6) 334 (55.3)  

Status of HTx [No/Yes (%)] 37 (31.6) / 80 (68.4) 
181 (30.0) / 423 

(70.0) 
0.742 

PBCR [%, Median (Range)] 41.7 (0.06–100.0) 25.0 (0.00–100.0) < 0.00001 
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Table 2. Univariate and multivariate Cox proportional hazard regression analysis 

PSA, prostate specific antigen; HTx, hormone therapy; PBCR, positive biopsy core rate; PTVandRECT, PTV ∩ 

Rectum; glrlm, gray-level run length matrix; HGLRE, HighGrayLevelRunEmphasis; DH, Dosiomics hazard; HR, 

hazard ratio; CI, confidence interval. 

 

 Univariate Multivariate 

Feature or variable HR (95% CI) p value HR (95% CI) p value 

Age (≥70 vs. <70) 0.70 (0.49-1.01) 0.058   

T-stage (≥T3a vs. <T3a) 2.53 (1.76-3.64) 
< 

0.000001 
1.53 (1.01-2.34) 0.045 

Pretreatment PSA (>10 ng/ml vs. ≤10 

ng/ml) 
2.24 (1.50-3.34) < 0.0001 1.61 (1.06-2.46) 0.027 

Gleason grade group (vs. among Tier1–5) 1.37 (1.18-1.59) < 0.0001 1.25 (1.07-1.47) 0.005 

NCCN risk group (low vs. int vs. high) 2.04 (1.36-3.06) < 0.001   

Status of HTx (yes vs. no) 1.00 (0.68-1.48) 0.990   

PBCR (≥50% vs. <50%) 2.24 (1.56-3.22) < 0.0001 1.55 (1.04-2.32) 0.030 

PTVandRECT_D95 [Gy] 

(>Median vs. ≤Median) 
1.14 (0.79-1.65) 0.470   

CTV_wavelet-HHH_glrlm_HGLRE  

(>Median vs. ≤Median) 
0.71 (0.49-1.03) 0.073   

PTV_wavelet-HHH_firstorder_Entropy 

(>Median vs. ≤Median) 
0.57 (0.39-0.83) 0.004 0.68 (0.46-1.01) 0.053 

DH score (>Median vs. ≤Median) 1.87 (1.27-2.75) 0.002 2.04 (1.38-3.01) < 0.001 


