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Chapter 1

General introduction

1.1 Evolutionary significance of insect in adapting to complex envi-
ronments

Living organisms have been evolving, reproducing, and going extinct for billions of years since their creation.
Organisms that fail to adapt to rapid environmental changes often end up on the brink of extinction. Thus, to
avoid extinction, organisms must continue to adapt to complex environments or move to better environments.
To make these possible, organisms have optimized their morphology and locomotor abilities through natural
selection.

Insects are considered to be the first organisms to take to the air in the history of the Earth [1]. They were
able to extend their range of movement and enable a variety of survival strategies by making full use of their
wings and flying. Thus, they reproduced all over the world and evolved into a variety of forms.

This doctoral thesis focuses on a dragonfly. Dragonflies are present on all continents except Antarctica,
where they have a long evolutionary history [2]. Some dragonflies migrate between continents and perform
complex predatory flights. Therefore, dragonflies have an optimal morphology that enables them to adapt to
environmental changes and carry out survival strategies.

The above assertion implies that the exploration of insect morphology, encompassing dragonflies, holds
significance not just within the realm of biology but also within the context of engineering. Researchers
can study insect morphology to inform the design and optimization of technology inspired by biology. This
spans from efficient robotic engineering to innovative aerospace systems. In recent years, there has been a
demand for the development of robots capable of adapting to complex environments. Therefore, learning
from organisms thriving in intricate environments is exceptionally crucial.

However, faithfully reproducing complex environments and the morphology of living organisms is a
challenging task. Additionally, when creating robots for specific purposes, a faithful reproduction of an
organism’s complete morphology may not be necessary. Therefore, research focused on extracting crucial
elements from biological organisms and understanding their characteristics is equally important. This fun-
damental study offers valuable insights into the development of advanced engineering solutions that imitate
prominent features observed in the morphological study of insects.
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1.2 Understanding the fluid dynamics of insect flight
This section is based on Ref. [3].

1.2.1 Fluid characteristics of insect flight
The aerodynamic characteristics of flying vehicles and organisms show a considerable amount of variety.
Among this variety, flow characteristics are explained by the Reynolds number (𝑅𝑒). The Reynolds number
is the ratio of inertial forces to viscous forces. It is defined as 𝑅𝑒 = 𝑑 |𝑼 |

𝜈 , where 𝜈 is the kinematic viscosity,
𝑑 is the characteristic length, and |𝑼 | is the flow speed. The Reynolds number based on the wing chord as
characteristic length during forward flight ranges from O(100) (e.g., thrips) to O(106) (e.g., passenger planes)
[4]. Therefore, there is a diversity of flight characteristics. Insects’ flight characteristics that differ from those
of airplanes could be applied to various technologies, including small flying robots and drones, particularly
in the low-Reynolds number regime, O

(
102) − O

(
104) [5, 6, 7, 8, 9].

1.2.2 Aerodynamic insights into flapping motion and unsteady lift in insect flight
This study aims to investigate the aerodynamic benefits of insect flight in the low-Reynolds number regime.
Insect flight is characterized by a flapping motion, which is not present in conventional airplanes. When an
insect flaps its wings, a vortex known as a leading-edge vortex (LEV) is generated above the wings [10]. The
generation of LEV is important for insects, in particular, to generate lift by flapping their wings and to fly
against gravity [4, 10, 11, 12, 13, 14, 15].

The flapping motion is an important but quite complex movement. Therefore, it is often separated
into multiple motion elements, including translational and rotational motion. In addition, several additional
techniques for enhancing unsteady lift in insects are documented, such as delayed (or absence of) stall, wake
capture, and the clap-and-fling mechanism [10, 12, 14, 16, 17]. In these mechanisms, the unsteady generation
of vortices due to flapping and their interaction with the wing play pivotal roles. However, it is important
to note that previous research into unsteady lift enhancement mechanisms has typically presumed a smooth
wing surface.
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1.2.3 Insect wing structure

Figure 1: Illustration of dragonfly wing and a corrugated wing model.

This subsection discusses the structure of insect wings. Insects like dragonflies, cicadas, and bees have wings
with non-smooth surfaces (Fig. 1). The wings are composed of nerves and membranes, which form cross-
sectional shapes defined by vertices (nerves) and line segments (membranes). The wing’s overall geometry
can be visualized as a linkage of objects that create V shapes or other configurations. Scientists commonly
refer to this specific wing type as a corrugated wing [18].

Although the corrugated wing structure is complex, dragonflies’ wings share some common features. The
wing section exhibits an uneven structure with deeper depth on the leading edge side (in the direction of
travel), while the trailing edge side has an uneven structure with less deep depth. The corrugated structure
of insect wings becomes more pronounced towards the base and gradually decreases towards the wingtip.
Additionally, the V-shape direction at the leading edge is reversed around the middle of the wing [2]. This
structure is generally considered to support the wing shape during flapping motion [2, 19, 20] and may also
be effective in generating lift.

1.2.4 Experimental and numerical investigations on corrugated wing aerodynamics
When analyzing the aerodynamic characteristics of a wing, it is necessary to determine the angle of attack
(AoA), that angle at which the wind meets the wing. Many previous studies of aerodynamic performance
on corrugated wings have mainly focused on stationary wings operating in uniform flow conditions at AoAs
smaller than 20◦, a context associated with gliding flight [2, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The following
three paragraphs explain these analysis results.
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The lift enhancement mechanism resulting from the corrugated structure was investigated by Newman et
al. [30] in a range 𝑅𝑒 = O(104), a relatively high Reynolds number within this regime of insect flight. Their
experimental setup comprised a model wing with two segments: a corrugated section on the leading edge
side and a smoothly curved section on the trailing edge side. The authors suggest that the V-shaped designs
in the corrugated wings act as turbulators, causing an early transition to turbulent flow and thus decreasing
the separation bubble’s size. This flow pattern is recognized for creating increased lift forces [31].

Similarly, Levy et al. [25] used the model from Ref. [30] to conduct two-dimensional numerical
simulations at Reynolds numbers, 2000 ≤ 𝑅𝑒 ≤ 8000. The study aimed to identify vortex separations
resulting from corrugations and their subsequent reattachment, which led to observations of reduced drag and
enhanced flight performance.

Vargas et al. [28] conducted a two-dimensional numerical simulation using a corrugated model extracted
from a dragonfly (referred to as “Profile 2” in Ref. [32]) in a uniform flow at smaller AoAs in the range
[0◦, 10◦], considering Reynolds numbers 𝑅𝑒 < 10000. The results of their analysis highlighted that the
aerodynamic performance of the corrugated wing model was comparable to, if not better than, that of the
wing that encapsulates the corrugated structure (profiled wing). The study observed that vortices were
entrapped within the valleys of the V-shaped corrugations, resulting in a flow pattern similar to that around
profiled wings. Other experimental studies [33, 34] and two- and three-dimensional numerical simulations
[2, 21] have also documented similar observations of vortex traps.

The investigations outlined below relate to a corrugated wing model subjected to uniform flow with varying
AoAs. In measuring the lift coefficient (𝐶𝐿) and drag coefficient (𝐶𝐷) for Reynolds numbers 𝑅𝑒 = 450, 800
and 900 across an AoA range from −22◦ to 50◦, Rees [34] used a corrugated wing model inspired by the
hoverfly. The findings indicate that the corrugated wing has a higher 𝐶𝐿 than the profiled wing at 𝑅𝑒 = 800.
Furthermore, it was observed that the flow characteristics around the corrugated wing were reminiscent of
those expected from a wing with an envelope profile.

Similarly, Kesel [32] utilized corrugated wing models inspired by dragonfly wing cross-sections, inves-
tigating Reynolds numbers 𝑅𝑒 = 7800 and 10000 across AoAs ranging from −25◦ to 40◦. The findings
indicated that, for certain AoAs, the lift coefficient (𝐶𝐿) of the corrugated wing model exceeded that of a flat
plate.

1.2.5 Characteristics of wing performance in unsteady motion
It has been observed that wings in unsteady motion can generate increased lift at higher AoAs. Dickinson
et al. [13] analyzed impulsively started flat wings and found lift heightened over time, with maximum lift at
AoA = 45◦. The dynamics of the LEV perform an important function [10]. When flat wings are joined by
translational motion, an LEV is created [4]. The LEV expands due to its interaction with the vortex sheet
that separates from the leading edge [35, 36]. As this occurs, a stagnation point on the upper surface of the
wing, caused by the flow directed towards the wing surface by the LEV, gradually moves towards the trailing
edge as the LEV advances. Concurrently, the flow on the wing’s surface is reversed towards the leading edge
between the stagnation point and the leading edge, creating a secondary vortex with the opposite sign to the
LEV. In this paper, this secondary vortex is referenced as a “lambda vortex” due to its resemblance to the
Greek character “𝜆” [4, 37]. The LEV separation from the wing takes place when the stagnation point reaches
its trailing edge. The expansion of the lambda vortex results in the detachment of the LEV from the wing
during eruptions [36, 38]. Following the release of the LEV, the next LEV is then generated.

In the case of corrugated wings, some investigations have focused on their dynamic performance. Luo
and Sun [39] carried out three-dimensional numerical simulations with revolving corrugated wing models.
Their results showed that the corrugated and flat wings had nearly identical performance. Bomphrey et al. [2]
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also performed three-dimensional numerical simulations of a flapping wing. Lower pressure was observed in
the V-shaped region of the corrugated wing. This finding leads to the conclusion that vortex formation occurs
within the V-shaped region and results in a negative pressure area being distributed more widely across the
corrugated wing. However, a holistic investigation into the dynamics of the vortices arising from corrugation
is currently absent. There is a lack of studies investigating how the interactions between vortices separated
from the corrugation structures, the LEV, and the trailing-edge vortex impact lift and drag generation.

In natural situations, dragonflies exhibit wing flapping with high AoAs during most flapping periods
[40]. Therefore, the vortex dynamics, including the LEV and other vortices, are crucial for determining
aerodynamic performance. However, in the context of corrugated wings, determining whether the vortex
motion is caused by the wing structure or the wing motion itself is a significant challenge. Therefore, it is
crucial to first understand the flow characteristics around uneven structures.

1.3 Objective of this study
Based on the above considerations, this study initiates an investigation into the flow properties of the uneven
structure. Subsequently, the flow characteristics of an unsteady, moving corrugated wing are analyzed. In this
specific context, it is necessary to simplify the wing’s motion to clarify the dynamic factors that contribute to
enhancing the performance of the corrugated wing.

The main objective of this study was to clarify the correlation between the structure of a corrugated wing
and the vortex dynamics. A two-dimensional corrugated wing model was used to achieve this objective.
Furthermore, the wing motion was simplified and the focus was placed on the generation of unsteady lift
resulting from translational motion from a state of rest. Translational motion, along with pitching and rotation,
is a crucial aspect of wing motion [4, 41]. This study furthers the comprehension of non stationary mechanisms
utilized by insects during dragonfly flight [13]. Although this assumption may omit certain aspects of three-
dimensionality and the complex nature of actual flapping motion, they proficiently capture crucial vortex
dynamics linked to corrugation. These dynamics involve the generation of vortices from sharp corrugation
edges, the leading edge, and the trailing edge, which has not been fully addressed in prior research. The
vortex interactions and lift generation outlined in this paper offer valuable insights into investigating particular
aspects of the dragonfly wing structure and flapping motion. A similar method was used to analyze flat wings
[13, 42, 43, 44], but this was not widely implemented for corrugated wings.

1.4 Outline of this thesis
The structure of this paper is as follows. In Chapter 2, a portion of a corrugated structure with the bottom
surface is considered to investigate the characteristics of the flow around the concave-convex structure. In
Chapter 3, the flow around a corrugated wing model was analyzed based on real-life dragonfly data. We
explored the period focusing on the growth of vortices until their detachment and engagement in mutual
interaction. It pays special attention to the influence of the lambda vortex. In Chapter 4, corrugated wing
models of different geometries and Reynolds numbers have also been considered. The universality of the
relationship between the lift generation mechanism and vortex dynamics in a corrugated wing has been
confirmed. The results are summarized in Chapter 5.
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Chapter 2

Flow around triangular models

This chapter is based on Ref. [45].

2.1 Introduction
As introduced in Chapter 1, many insects which fly in the low-Reynolds number range of O(102)-O(104)
have corrugated wing surfaces. Because the corrugated structure is quite complex, it is crucial to understand
the flow characteristics around uneven structures as a first step. This chapter examines the flow characteristics
around an uneven structure, using a triangular model as a simple example.

Although the triangle model is a simple shape, flow characters can be complex including the formation
of a separation region. The separation region exhibits universal characteristics. The flow speed remains
nearly constant in a region close to the separation point between the solid boundary (wall) and the dividing
streamline of the separation. This area is commonly known as the dead-water region, which is observed
in the backwards-facing step flow [46] or other situations. It is important to note that at high Reynolds
numbers (𝑅𝑒 = 2.8×104), the mean flow in the downstream region of a triangular object remains significantly
reduced [47]. This alteration in flow characteristics has resulted in diverse flow patterns observed between
two cylinders under uniform flow conditions [48].

Based on the above considerations, this chapter investigates two cases. First, the Reynolds number
dependency of the flow around one triangular model is investigated. In particular, the flow characters are
focused on the Reynolds number region which can be observed in flying insects, 𝑅𝑒 ' O(102)-O(104).
Second, the structure dependency of the flow around two triangular models is investigated.
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2.2 Method

2.2.1 Triangular model
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Figure 2: The triangular models.

This analysis is carried out in a two-dimensional space using one or two triangular model(s) illustrated in Fig.
2. A single triangular model has an ℎ peak height. The baseline length, 𝐿𝑏, was divided at the base of the
perpendicular from the peak: 𝐿𝑏,1 and 𝐿𝑏,2. The bottom lengths were defined as 𝐿𝑏,1 = 4ℎ and 𝐿𝑏,2 = 2ℎ,
resulting in an aspect ratio of ℎ/𝐿𝑏 = 1/6. The model will subsequently be referred to as the triangular model.

The following cases were investigated. (1) A single triangular model case. Flow transitions around the
single triangular model were focused on at various Reynolds numbers. (2) Two triangular models case. In this
case, two identical triangular models are positioned. Two triangular models are considered with a horizontal
peak-to-peak distance, 𝐷 (6 ≤ 𝐷 ≤ 12) for a single Reynolds number.

2.2.2 Numerical Simulation
The dimensionless, two-dimensional incompressible Navier-Stokes equations are expressed as:

𝜕u
𝜕𝑡

+ (u · ∇)u =
1
𝜌
∇𝑝 + 𝜈Δu, ∇ · u = 0. (1)

Here, u = (𝑢, 𝑣) represents the velocity, 𝑝 is pressure, and 𝜌 is the air density. The spectral element method
is utilized to perform the numerical calculations [49], where the computational domain was divided into
quadrilateral elements with physical quantities represented by polynomial functions, ensuring (𝐶0) continuity
across element boundaries [50]. This approach combines the exponential (spectral) convergence of errors
linked with global collocation practices with the geometrical flexibility of usual low-order finite element
techniques [51]. To solve Eq. (1), the open-source computational software Semtex [51] was utilized. The size
of the rectangular computational region was 𝑊 × 𝐻, excluding the triangular models where ℎ = 1, 𝐻/ℎ = 5
and 𝑊/ℎ = 50. The computational area was divided into 𝑁𝑣 × 𝑁ℎ elements fitted to the boundaries of the
surface of the ground, triangular model(s), and computational domain. In this study, (𝑁𝑣 , 𝑁ℎ) = (100, 10)
was utilized. The number of Lagrange knot points, 𝑁𝑝 , assigned along the side of each element, was 9. The
total number of meshes within an element is of the order of 𝑁2

𝑝 .
Uniform flow was assumed as U = (U, 0) = (1, 0). The boundary conditions were solid boundaries for the

ground, u = U on the left and top boundary conditions, and outflow conditions applied to the right boundary.
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The right side applied reliable outflow conditions recommended in Ref. [52] with a smoothness parameter
of 0.1. In this Chapter, the definition of the Reynolds number is based on 𝐿𝑏 to correspond with subsequent
chapters, i.e., 𝑅𝑒 = 𝐿𝑏 |U|/𝜈. In the case of a single triangular model, the Reynolds number ranges are from
600 to 12000. In the case of two triangular models, the Reynolds number is 𝑅𝑒 = 6000. In all calculations,
the simulation time was 400 units, and the time step, Δ𝑡, was set to 1.0×10−3. The computations were carried
out within the range 0 ≤ 𝑡∗ ≤ 66.67, where 𝑡∗ represents the dimensionless time, i.e., 𝑡∗ = |U|𝑡/𝐿𝑏.

Their relationship with the flow field, specifically vorticity, and flow speed fields has been investigated.
The vorticity field is defined as 𝜔𝑧 = 𝜕𝑣/𝜕𝑥 − 𝜕𝑢/𝜕𝑦, where u = (𝑢, 𝑣).

2.3 Result and discussion

2.3.1 Single triangular model case

!!

!" # $%&&

!" # '(&&

!" # (&&&

!" # $)&&&

Figure 3: Reynolds number dependence on the vorticity field around the single triangular model (colored
orange). Curves are streamlines. Reprinted from Ref. [45], however, Reynolds number is modified because
of redefining the typical length.
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The flow structures around a single triangular model were analyzed and Reynolds number dependency was
examined. In Fig. 3, the flow fields around this model at Reynolds numbers of 1800, 3900, 9000 and 12000
are illustrated. Streamlines are exhibited through curves, while the vorticity field is indicated through colors.

In the Reynolds number regime where 𝑅𝑒 < 1800, a stable flow dominated and transient separation
vortex formation was not observed. The speed of the flow downstream of the triangular model was very slow,
suggesting a dead-water region.

For Reynolds numbers within the range of 1800 ≤ 𝑅𝑒 < 3900, an asymptotic steady flow was observed.
Nevertheless, due to separation, coherent vortices were generated transiently. The time interval in which
coherent vortices are observed until they reach the asymptotic state (equivalent to the transient time) depends on
the Reynolds number. As Reynolds number approaches the critical value 𝑅𝑒𝑐, within the range (3600, 3900),
transient time becomes very long.

In the range of 3900 ≤ 𝑅𝑒 < 10200, a periodic flow was observed. The flow generated coherent vortices
regularly, resulting in an oscillatory flow. The generation of successive coherent vortices led to a backward
flow. The amplitude of oscillation was greater than the characteristic flow speed when 𝑅𝑒 ≤ 𝑅𝑒𝑐. Finally, in
the range of 10200 ≤ 𝑅𝑒 < 12000, the flow displayed non-periodic behavior.

The purpose of this study is to investigate the dynamic characteristics of the corrugated wing. The above
results are based on a range of 𝑡∗ < 66. ¤6 but it is enough to focus on a range of 𝑡∗ < 10 for this study (c.f.
Section 3.1). Although the transition time depends on the Reynolds number, vortex motion is observed around
the convex structure for a range of 𝑡∗ < 10 in the range of 𝑅𝑒 = 𝑂 (103).

2.3.2 Two triangular models

!! "

!

"

#

Figure 4: Distance dependence of flow characteristics for two triangular models (𝑅𝑒 = 6000). Typical flow
patterns are displayed; 𝐷 = 12, 7, 6. Reprinted from Ref. [45]

The flow around two triangular models at 𝑅𝑒 = 6000 can be classified into three different patterns, as
demonstrated in Fig. 4. The first pattern is the independent case (9 ≤ 𝐷), in which the flow around
the models presents minimal interference when 𝐷 is sufficiently large. The second is the dead-water case
(6.8 ≤ 𝐷 ≤ 7.8), where the asymptotic flow is stable and a dead-water area appears between the triangular
models and downstream of the triangular model at the downstream side. The third is the interference case
(6 < 𝐷 < 6.8 or 7.8 < 𝐷 < 9). Coherent vortices emanate from the peaks of the two triangular models.
The vortex generated at the top of the triangular model upstream interferes with the flow on the slope of the
triangular model downstream.

Thus, when two triangular models are placed, the flow patterns are more varied than in the case of a
single model. The flow pattern depends on the distance between the two models, 𝐷, especially the flow
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pattern depends on 𝐷. The flow structure near the uneven structure of the corrugated wing should be carefully
observed.

2.4 Summary
This chapter investigated the flow around triangular models in two-dimensional space, representing the
simplest examples of corrugated wing structures.

Two distinct critical Reynolds numbers emerge in the Reynolds number regime of 𝑅𝑒 = 𝑂 (103), corre-
sponding to transient and steady vortex generation. As many insects exhibit flight in this Reynolds number
range, it is expected that vortex motion is induced by the uneven structure of corrugated wings.

In the case of two objects, a dead-water region becomes apparent between them. Such a classification
of flow structures remains applicable even at higher Reynolds numbers, where the presence of a dead-water
region has also been observed [47]. Since the corrugated wing has many uneven structures, it is necessary to
investigate the dependency of its structure.

In the case of two models, the flow becomes more complex, depending on the distance of these. Although
vortex dynamics are observed in the case of a single triangular model at 𝑅𝑒 = 6000, a dead-water region
is observed between the models, suppressing the formation of vortices from the top of the model. The
classification of flow structures based on 𝐷 is applicable even at higher Reynolds numbers, where dead
water regions are also observed [47]. This highlights the flow around concave-convex structure has a strong
parameter dependency and the need for investigating models closer to real dragonflies to understand their
flight. Additionally, since corrugated wings possess numerous undulations, it is evident that the dependence
of corrugated wing structures also needs examination.
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Chapter 3

Vortex-corrugation interaction in
dynamic lift enhancement mechanism of
dragonfly wing

This chapter is based on Ref. [3].

3.1 Introduction
This chapter analyzes the flow around a corrugated wing model, which is based on real-life dragonfly data.
Real-life dragonflies fly at low Reynolds numbers (𝑅𝑒 = 𝑂 (103)), and corrugated wing structures show
diversity depending on the individual and where they are sectioned. Therefore, it is difficult to examine all of
the variations of corrugated wings. In this chapter, we focus on a single Reynolds number and a single wing
model.

Here, the primary interest is to investigate how wing corrugation contributes to enhancing unsteady lift.
We investigate the fundamental mechanism due to unsteady wing motion during translational motion from
the rest state. This study examines the stage of vortex interaction, which is characterized by the substantial
growth of vortices leading to detachment and mutual interaction. Special attentions are paid to exploring the
impact of the lambda vortex with the sign opposite to that of LEV.
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3.2 Method

3.2.1 Corrugated wing model
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Figure 5: Wing model descriptions. (a) Vertices (𝑥𝑘 , 𝑦𝑘) (𝑘 = 1, · · · , 𝑁 + 1), neighboring displacement
vectors L𝑘 , and angles between L𝑘 and L𝑘−1, 𝜃𝑘 . (b) Line segments, wing model thickness 𝑤 and the shape
of the end. (c) Flat wing model (𝛼 = 0). (d) Corrugated wing model (𝛼 = 1). (e) Spectral elements around
the corrugated wing model (𝜙 = 35◦). Reprinted from Ref. [3].

A two-dimensional model of a corrugated wing was constructed with reference to the real-life dragonfly wing
(Aeshna cyanea) (Ref. [32], Profile 1). The wing model was constructed using a cross-section with a place
vertical to the line between the wing base and wing tip. The position was roughly 30% from the wing base.
The leading-edge side exhibits deeper corrugated structures, while the trailing-edge side has less deep (flatter)
structures, which is consistent with the corrugated wings of flying insects in nature.

The wing model was generated by adding thickness to 𝑁-line segments. The positions of the endpoints
were defined as 𝐴 = {(𝑥𝑘 , 𝑦𝑘) | 𝑘 = 1, · · · , 𝑁 + 1} (see Fig. 5 (a)) and a set of displacement vectors
𝐵 = {L𝑘 | L𝑘 = (𝑥𝑘+1 − 𝑥𝑘 , 𝑦𝑘+1 − 𝑦𝑘); 𝑘 = 1, · · · , 𝑁}. The core shape of the corrugated wing model
was determined using set 𝐶, which includes line segment lengths and angles between adjacent displacement
vectors: 𝐶 = {𝐿𝑘 | 𝐿𝑘 = |L𝑘 |; 𝑘 = 1, · · · , 𝑁}∩{𝜃𝑘+1 | 𝜃𝑘+1 = cos−1 [〈L𝑘 ,L𝑘+1〉/(L𝑘L𝑘+1)] ; 𝑘 = 1, · · · , 𝑁−
1} where 〈a, b〉 is the inner product of vectors a and b. 𝜃1 is defined as the angle between the 𝑥-axis and L1
(Fig. 5 (a)).
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Once the set𝐶 is determined a family of corrugated wing shapes are characterized, by introducing a shape
parameter 𝛼. This is achieved by replacing 𝜃𝑘 with 𝛼𝜃𝑘 in set 𝐶. This chapter analyzes two cases, 𝛼 = 0 and
𝛼 = 1, correspond to a flat wing (see Fig. 5 (c)), a corrugated wing defined respectively [32] (see Fig. 5 (d)).

The core shape of the corrugated wing model was isotropically rescaled so that the wing chord length, 𝑐,
is 2, where 𝑐 = |L𝑎𝑙𝑙 |, and L𝑎𝑙𝑙 =

∑𝑁
𝑘=1 L𝑘 . The wing’s relative thickness of 𝑤/𝑐 was 0.04, where 𝑤 is the

wing’s thickness (Fig. 5 (b)). The wing core had semicircular ends at 𝑘 = 1, 𝑁 + 1 (refer to Fig. 5 (b)). The
angle between L𝑎𝑙𝑙 and the 𝑥-axis is considered as the AoA, denoted by 𝜙.

The study also included an analysis of how pressure and vorticity distributions change over time in a
particular region near the upper surface of the wing model. This region is characterized by a distribution that
follows a line segment with a shifted vector of L𝑎𝑙𝑙 by 𝜉 in which 𝜉 ⊥ L𝑎𝑙𝑙 (as shown in Figs. 5 (c) and (d)).
The line segment’s position is determined by 𝑠, where 0 ≤ 𝑠 ≤ 2. When 𝜉 = (0, 0), 𝑠 = 0 and 2 correspond to
the leading and trailing edges, respectively. The amount of shift |𝜉 | and 𝑠 are normalized by the chord length
of the wing, that is, 𝜉∗ = | 𝜉 |

𝑐 , 𝑠∗ = 𝑠
𝑐 .

3.2.2 Numerical Simulation
The analysis employed the dimensionless, two-dimensional incompressible Navier-Stokes equations, as pre-
sented in Eq. (1). To solve Eq. (1), the computational software Semtex [51] was utilized. The computational
domain was established as [−30, 30] × [−30, 30], with the wing model centred at (0, 0) (Fig. 5 (e)).

The outer edges of the computational domain, except for the right-hand side (𝑥 = 30,−30 ≤ 𝑦 ≤ 30),
were designated as inflow boundaries, with u = U (𝑡∗), where U (𝑡∗) = (0, 0) for (𝑡∗ < 0) and U (𝑡∗) = (1, 0)
for (𝑡∗ > 0). It is worth noting that the flow acceleration becomes infinite when 𝑡∗ = 0. The values of 𝜈 was
5 × 10−4, resulting in Reynolds numbers 𝑅𝑒 = 4000, based on the chord length 𝑐. The time step Δ𝑡 was fixed
at 4.0 × 10−5, and the computations were carried out within the range 0 ≤ 𝑡∗ ≤ 4, where 𝑡∗ represents the
dimensionless time, i.e., 𝑡∗ = |U|𝑡/𝑐.

Figure 5 (e) shows the spectral elements surrounding the corrugated wing model at an AoA of 𝜙 = 35◦.
The total number of spectral elements was 𝑁 = 2960, with the discretization of each spectral element by
𝑁𝑝 × 𝑁𝑝 = 19 × 19 meshes [51]. Therefore, 𝑁𝑝 is the number of points along the edge of each element. To
verify the calculation condition, please refer to Ref. [3].

Aerodynamic wing performance was evaluated using the lift coefficient 𝐶𝐿 (𝛼, 𝜙, 𝑡∗) = 𝐿/[(1/2) 𝜌𝑐 |U|2]
and drag coefficient 𝐶𝐷 (𝛼, 𝜙, 𝑡∗) = 𝐷/[(1/2) 𝜌𝑐 |U|2], whereby 𝐿 represents the lift, and 𝐷 represents the
drag. The maximum and mean lift coefficients within the time interval [𝑎, 𝑏], denoted as 𝐶𝐿,max (𝛼, 𝜙) and
𝐶𝐿,mean (𝛼, 𝜙), respectively, are defined as follows:

𝐶𝐿,max (𝛼, 𝜙) = max
𝑎≤𝑡∗≤𝑏

𝐶𝐿 (𝛼, 𝜙; 𝑡∗), 𝐶𝐿,mean (𝛼, 𝜙) =
1

𝑏 − 𝑎

∫ 𝑏

𝑎
𝐶𝐿 (𝛼, 𝜙; 𝑡∗)𝑑𝑡∗, (2)

with similar definitions for 𝐶𝐷,mean. In particular, the lift is compared between the corrugated wing and the
flat wing. The relative difference in 𝐶𝐿,max between the corrugated wing (𝛼 = 1) and the flat wing (𝛼 = 0),
Δmax, is defined as follows:

Δmax (𝜙) =
𝐶𝐿,max (1, 𝜙) − 𝐶𝐿,max (0, 𝜙)

𝐶𝐿,max (0, 𝜙)
, (3)

and similar definition for Δmean (𝜙).
These values are used to characterize the aerodynamic wing performance, and the relationship between

pressure fields and vorticity fields was investigated. The pressure was assessed using the pressure coefficient
𝐶𝑝 = 𝑝−𝑝∞

(1/2)𝜌𝑐 |U |2 , where 𝑝 is the pressure. The inflow pressure at positions 𝑥 = −30 was 𝑝∞. The vorticity
has been normalized as 𝜔∗

𝑧 =
𝜔𝑧𝑐
|U | . The flow speed was normalized by a uniform flow same as Chapter 2.
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3.3 Result and discussion
This analysis focuses on translational motions from the rest state. However, it is unclear how long period of
time is appropriate for this analysis. To answer this question, it is crucial to identify the relevant time scales.
The dragonflies under study have a wing chord length of 5-10 mm and flap their wings at a frequency of 36
Hz [40]. Therefore, a single flapping motion takes 1/36s. Dragonflies fly at a speed of 5-10 meters per second
[40]. Thus, the time taken for one round of a single flapping motion is at most 𝑡∗ < 55. As this study focuses
only on translational motion, an even shorter time is sufficient. This time range (0 < 𝑡∗ < 4) for the simulation
represents approximately 10% to 20% of the time for one period of the flapping motion and is considered to
correspond to upstroke and downstroke.

The following subsections concentrate on the vortex interaction range (0.50 < 𝑡∗ < 3.25; see Fig. 8 (a)).
This range represents the development of the LEV generated on the upper surface of the wing, culminating in
the vortices generated close to the wing. Additional information can be referred from Ref. [3].
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3.3.1 Wing performance

Figure 6: (a) 𝐶𝐿,max during 0.5 < 𝑡∗ < 3.25 for the flat wing (blue; 𝛼 = 0) and the corrugated wing (red;
𝛼 = 1). (b) 𝐶𝐿,mean during 0.5 < 𝑡∗ < 3.25 for the flat wing (blue; 𝛼 = 0) and the corrugated wing (red;
𝛼 = 1). (c) Δmax and Δmean during 0.5 < 𝑡∗ < 3.25. The vertical axis is in percentage form. The dashed lines
indicate 0% and 5%. (d) 𝐶𝐷,mean during 0.5 < 𝑡∗ < 3.25 for the flat wing (blue; 𝛼 = 0) and the corrugated
wing (red; 𝛼 = 1). Reprinted from Ref. [3].

Figures 6 (a) and (b) demonstrate that the values of 𝐶𝐿,max and 𝐶𝐿,mean for the corrugated wing are smaller
than those of the flat wing when 𝜙 < 30◦. Nonetheless, the values of 𝐶𝐿,max and 𝐶𝐿,mean for the corrugated
wing surpass those of the flat wing when 𝜙 > 30◦. These graphs imply a crucial transition in lift coefficients
between the corrugated wing and flat wing at approximately 𝜙 ' 30◦. The performance of the corrugated
wing improves significantly within the AoA range of 30◦ < 𝜙 (≤ 45◦). During this range, the mean value of
Δmax is 0.14, and the mean value of Δmean is 0.05. In contrast, the deteriorated case (20◦ ≤) 𝜙 < 30◦ had a
mean value of Δmean of −0.14.

In Fig. 6 (d), the graph displays 𝐶𝐷,mean against 𝜙. No clear shifts in values are observed. For 𝜙 > 35◦,
the values of 𝐶𝐷,mean are almost identical for both the corrugated wing and the flat wing. However, 𝐶𝐷,mean
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for the corrugated wing is smaller than that for the flat wing at 𝜙 < 35◦. As a result, the lift-to-drag ratio 𝐿/𝐷
follows the same qualitative trend as 𝐶𝐿 . From this point forward, the focus will be on using 𝐶𝐿 as a measure
of wing performance.
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Figure 7: Spatial and temporal distributions of the pressure field are presented with 𝜉∗ = 0.15. The 𝑠∗-axis
represents the horizontal axis, while the 𝑡∗-axis represents the vertical axis. Reprinted from Ref. [3].
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The pressure fields above the wing can be correlated with the signs of Δmax and Δmean, as detailed below.
Figure 7 depicts pressure’s spatiotemporal distributions on (𝑡∗, 𝑠∗), (0 ≤ 𝑡∗ ≤ 4, 0 ≤ 𝑠∗ ≤ 1) for 𝜉∗ = 0.15.
The parameter 𝜉∗ = 0.15 was chosen to provide a clear result without interfering with the model for observing
the vortex motion. The pressure distributions for flat wing cases at 𝜙 = 20◦, 25◦, 30◦, 35◦ and 40◦ are displayed
in the leftmost column. The five columns on the right display the distributions for the indented wing within
the range of 20◦ to 44◦.

When the wing performance is improved (30◦ ≤ 𝜙; see Fig. 7), low-pressure regions appear near the
leading-edge side periodically (0.0 < 𝑠∗ < 0.2, 0.0 < 𝑡∗ < 2.0). Such periodic regions are not present in
the flat wing (𝛼 = 0) or the corrugated wing without improved performance (𝛼 = 1, 𝜙 < 30◦). Additionally,
low-pressure regions appear on the trailing-edge side (0.5 ≤ 𝑠∗) during 2 < 𝑡∗ < 3.25. This pattern was
insensitive to 𝜉∗ [3].

3.3.2 Instantaneous pressure field analysis for lift enhancement

Figure 8: (a) The time series of the lift coefficient is depicted, with the flat wing (𝛼 = 0) in blue and the
corrugated wing (𝛼 = 1) in red, considering in 𝜙 = 35◦. (b) Snapshots of the pressure field around the
corrugated wing are at 𝑡∗ = 𝑡∗max. Reprinted from Ref. [3].

The case of 𝜙 = 35◦ was selected as the representative condition to enhance wing performance of the
corrugated wing since the values of 𝐶𝐿,max and 𝐶𝐿,mean are similar for 33◦ ≤ 𝜙 ≤ 43◦ (refer to Figs. 6 (a)
and (b)). Thus, the vortex dynamics discussed below may be considered a typical mechanism for improving
dynamic lift.

Figure 8 (a) shows lift coefficients 𝐶𝐿 (𝛼, 35◦; 𝑡∗) for the flat wing (𝛼 = 0) and the corrugated wing
(𝛼 = 1). For the flat wing, a singular peak occurs at 𝑡∗ ' 1.89, whereas for the corrugated wing, multiple
peaks are observed due to oscillations around the 𝐶𝐿 (0, 35◦; 𝑡∗) curve (Fig. 8 (a)). Hence, 𝐶𝐿 (1, 35◦; 𝑡∗)
demonstrating oscillatory behavior, highlights intricate interactions between the wing and the vortices. In
subsequent analysis, three main peaks were identified, labelled as A, B, and C, for𝐶𝐿 (1, 35◦; 𝑡∗). 𝑡∗max denotes
the time that corresponds to the highest value of 𝐶𝐿 (𝛼, 35◦; 𝑡∗). For the flat wing (𝛼 = 0), 𝑡∗max is 1.89,
whereas for the corrugated wing (𝛼 = 1, corresponding to peak B), 𝑡∗max is 2.21.

Figure 8 (b) illustrates the pressure fields at 𝑡∗ = 𝑡∗max, where pressure fields are indicated by the pressure
coefficient, 𝐶𝑝 (Sec. 3.2.2). On the upper wing surface, the low-pressure regions of the corrugated wing are
distributed over a larger range in comparison to those of the flat wing. Areas where 𝐶𝑝 ≤ − 24

11 are designated
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by thick black lines. On the lower surface of the wing, the corrugated design displays a more extensive
high-pressure region than the flat wing. At maxima A and C, equivalent pressure distributions were observed
(data not shown).
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3.3.3 The role of lambda vortex in vortex dynamics for lift generation
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Figure 9: Snapshots of the normalized vorticity fields (𝜙 = 35◦) are presented for (a) the flat wing at 𝑡∗ = 1.00,
𝑡∗ = 1.70, and 𝑡∗ = 𝑡∗max, and (b) the corrugated wing at 𝑡∗ = 1.00, 𝑡∗ = 1.70, and 𝑡∗ = 𝑡∗max. Reprinted from
Ref. [3].

The essential vortex dynamics contributing to the enhancement of wing performance are outlined below.
Figure 9 (a) depicts the vorticity fields present around a flat wing (𝛼 = 0). Two snapshots were selected at
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𝑡∗ = 1.00 and 1.70 to illustrate the vortex dynamics that occurred before 𝑡∗ = 𝑡∗max. At 𝑡∗ = 1.00, two negative
vortices emerged from the leading edge and were labelled 1 and 2, while a positive secondary vortex appeared
in between them, as indicated by the arrow. This secondary vortex is known as a lambda vortex in previous
study [4, 13, 36].

Vortex 1 grows continuously by absorbing a vorticity-containing mass [36], while the lift coefficient 𝐶𝐿

increases until it reaches its maximum. During this phase, the three vortices keep their relative configurations,
causing the centre of Vortex 1 to move away from the wing. At the same time, the point of stagnation resulting
from the flow that impinges on the wing’s surface shifts downstream, arriving roughly at the trailing edge.
This result is in line with the results of previous studies (Ref. [4, 36]). Regarding the pressure distribution, the
low-pressure region at the centre of vortex 1 relocates away from the wing. Consequently, the lift generation
process becomes monotonous, and the (local) maximum is observed only once within the vortex interaction
range.

The uneven structure of the corrugated wing results in significant differences in the behavior of the
lambda vortex in comparison with that on the flat wing. The vortex collapses, fragments into several smaller
vortices, and becomes entrapped within the V-shaped regions of the wing (see Fig. 9 (b), 𝑡∗ = 1.70, indicated
by arrows). As a consequence, the lambda vortex’s behavior brings a new element to the unstable vortex
dynamics linked with insect flight mechanisms, as explained below.

Figure 9 (b) illustrates the vorticity field around the corrugated wing (𝛼 = 1). At 𝑡∗ = 1.00, two vortices
with negative signs form near the leading edge, labelled 1 and 2. These vortices initially separate from the
leading edge, similar to the scenario observed in the flat wing (𝛼 = 0). Notably, vortex 1 detaches from
the vortex sheet connected to the leading edge, followed by vortex 2 shortly after 𝑡∗ = 1.70. Consequently,
vortices 1 and 2 function as independent entities, marking a significant departure from the behavior observed
in the case of the flat wing. As a result, the relative positions of the vortices at 𝑡∗ = 𝑡max differ considerably
from those in the flat wing case (Fig. 9 (b)).

As a result, vortex 2, being the closest to vortex 1, transports vortex 1 downward toward the wing surface.
In contrast to the flat wing case, the collapse of the lambda vortex prevents it from influencing the motion of
vortex 1. The proximity of vortex 1 leads to an expanded low-pressure region at 𝑡∗ = 𝑡∗max (maximum B) (Fig.
9 (b); compare with Fig. 8 (b) for the pressure field).
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Figure 10: Representative snapshots of the normalized vorticity fields surrounding the corrugated wing
(𝛼 = 1, 𝜙 = 20◦). (a) 𝑡∗ = 2.15. (b) 𝑡∗ = 2.45. (c) 𝑡∗ = 2.81 = 𝑡∗max. Reprinted from Ref. [3].

The case of 𝜙 = 20◦ was selected as a typical example of the unimproved performance of the corrugated
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wing, due to the similarity in the Δmean values between 20◦ and 28◦ (refer to Fig. 6 (c)). Snapshots portraying
the vorticity field of this situation are compared with those representing 𝜙 = 35◦ (refer to Fig. 9), which
exhibits increased wing performance. The lambda vortex appears on the upper surface of the wing (refer
to Fig. 10 (a)) when the wing performance is not increased (𝜙 ≤ 30◦). Subsequently, the elongation of
the lambda vortex interferes with the larger LEV and prevents it from being entrained towards the wing, as
illustrated in Figs. 10 (b) and (c).
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Figure 11: Spatial and temporal distributions of the vorticity field are depicted with 𝜉∗ = 0.15. The 𝑠∗-axis
represents the horizontal axis, and the 𝑡∗-axis represents the vertical axis. Reprinted from Ref. [3].
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In both scenarios, whether there was an enhancement in the wing performance of the corrugated wing or
not, the aforementioned vortex dynamics remained consistent. The spatiotemporal distribution of vorticity
on (𝑡∗, 𝑠∗), where 0 ≤ 𝑡∗ ≤ 4 and 0 ≤ 𝑠∗ ≤ 1, with 𝜉∗ = 0.15, is illustrated in Fig. 11. The leftmost column
displays the distributions for the flat wing cases at 𝜙 = 20◦, 25◦, 30◦, 35◦ and 40◦, while the subsequent five
columns depict the same for the corrugated wing within the range of 20◦ ≤ 𝜙 ≤ 44◦.

Figure 12: Identification of lambda vortex eruptions. (a) The corrugated wing (𝛼 = 1, 𝜙 = 20◦). (b) The
corrugated wing (𝛼 = 1, 𝜙 = 35◦). (c) Outcomes of linear regression for the lambda vortex distribution.
Phase diagram illustrating the relationship between slope and MSE. Reprinted from Ref. [3].

The appearance of the lambda vortex is signaled by a positive-signed vortex detected at 𝑡∗ = 2, 𝑠∗ = 0.25
(indicated by the arrow in 𝜙 = 20◦ in Fig. 11). This eruption subsequently drives the vortex towards the
trailing edge over time (compare with Fig. 10). As a result, the lambda vortex enlarges along the 𝑠∗-axis from
a particular moment, as demonstrated by the recording of positive-signed vorticity. Moreover, the positive-
signed vorticity translates in a positive direction on the 𝑠∗-axis as time progresses, due to the underlying flow.
To measure the vortex eruption, a vorticity field is isolated for linear fitting using the least-squares method,
meeting the requirement 𝑠∗ > 0.25, 1.5 < 𝑡∗ < 2.5, 𝜔∗

𝑧 ≥ 20. For example, Figs. 12 (a) and (b) demonstrate
the extracted areas (magenta) and fitted lines for the corrugated wing at 𝜙 = 20◦ and 35◦, respectively. This
method enabled the detection of elongated vortices. Figure 12 illustrates the plotted mean squared error
(MSE) of the fit and the gradient of the regression line.

When there is no improvement in wing performance (Fig. 12 (c); red circle), the slope tends to be around
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1, and the MSE is confined and small. This implies that the positively-signed vortex moves towards the
trailing edge, which indicates the lambda vortex eruption. In contrast, when there is an improvement in wing
performance (Fig. 12 (c); green circles), the slope is either small or shows substantial variation, with the
results depending on 𝜙. Under these circumstances, no distinct lambda-vortex eruption can be observed.

In the context of the flat wing (Fig. 12 (c); blue cross), the slope is concentrated within a range greater
than 1. This observation suggests the movement of a vortex with a positive sign toward the trailing edge in
the specified region, corresponding to the manifestation of a lambda vortex eruption.

In corrugated wings with 30◦ ≤ 𝜙, vortices displaying negative signs are periodically generated on the
leading-edge side, as depicted in Fig. 11. This observation aligns with the pressure-field outcomes illustrated
in Fig. 7. This pattern was insensitive to 𝜉∗ [3].
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3.3.4 Mean behavior
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Figure 13: Mean pressure fields around (a) the flat wing (𝛼 = 0, 𝜙 = 35◦) and (b) the corrugated wing
(𝛼 = 1, 𝜙 = 35◦), along with the delineation of the region around the corrugated wing model to comprehend
flow characteristics. Mean normalized vorticity fields around (c) the flat wing (𝛼 = 0, 𝜙 = 35◦) and (d) the
corrugated wing (𝛼 = 1, 𝜙 = 35◦). Reprinted from Ref. [3].
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Figure 14: Mean pressure fields around (a) the flat wing (𝛼 = 0, 𝜙 = 20◦) and (b) the corrugated wing
(𝛼 = 1, 𝜙 = 20◦), along with the delineation of the region around the corrugated wing model to comprehend
flow characteristics. Mean normalized vorticity fields around (c) the flat wing (𝛼 = 0, 𝜙 = 20◦) and (d) the
corrugated wing (𝛼 = 1, 𝜙 = 20◦). Reprinted from Ref. [3].

In this section, our attention is devoted to examining the mean flow behavior of the corrugated wing within
the vortex interaction range (0.50 < 𝑡∗ < 3.25). The aim is to shed light on the mechanism behind lift
enhancement. A comparison is made between two scenarios: 𝜙 = 35◦, where lift enhancement is observed,
and 𝜙 = 20◦, where it is not. The mean pressure and vortex fields are displayed in Fig. 13 (case 𝜙 = 35◦) and
Fig. 14 (case 𝜙 = 20◦). Additionally, two distinct regions are delineated: Region 1, which is the upper side
near the leading edge, and Region 2, which is the remaining portion of the wing. These regions are depicted
in the insets of Figs. 13 (b) and 14 (b). Region 1 includes two V-shaped spaces, with the boundary marked
by (𝑥5, 𝑦5).

The behaviors in Regions 1 and 2 are analyzed separately. On the corrugated wing in Region 1, there was
a negative pressure area that had a larger width compared to the flat wing when 𝜙 = 35◦ (see Figs. 13 (a) and
(b), particularly where 𝐶𝑝 ≤ − 24

11 ). This negative pressure area was linked to a vortex region of positive sign
that was restricted within the V-shaped area (Fig. 13 (d)), resulting from the lambda vortex collapse. Further
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details are provided in Section 3.3.5.
In contrast, for the case of 𝜙 = 20◦, both wings displayed similar negative pressure distributions in this

area (refer to Figs. 14 (a) and (b)). The region of higher negative pressure (where 𝐶𝑝 ≤ − 24
11 ) did not expand

beyond the wing surface (Fig. 14 (b)) attributable to the smaller size of the rounded vortex (Fig. 14 (d);
indicated by the arrow).

In Region 2, both wings had similar pressure distributions at 𝜙 = 35◦. Figures 13 (a) and (b) illustrate
this observation. A circular configuration of vorticity distribution was observed on the corrugated wing, with
the LEV persisting over a specific time interval (Fig. 13 (d)). In contrast, the vorticity region for the flat wing
experienced elongation because of comparable LEV development (Fig. 13 (c)).

At 𝜙 = 20◦, the negative pressure region on the flat wing surpassed that on the corrugated wing (see
Figs. 14 (a) and (b)), which is in line with the negative value of Δmean (see Fig. 6 (c)). Conversely, for
the corrugated wing, the circular vorticity region identified in the 𝜙 = 35◦ instance transitioned towards the
leading-edge side. No discernible vorticity region was evident in this region (Fig. 14 (d)), resulting in the
narrower negative pressure region (Fig. 14 (b)). On the other hand, the vortex area for the flat wing stayed
comparatively near the wing surface, retaining the detrimental pressure area (Fig. 14 (a)).

In summary, a thorough investigation was conducted into the increase in average lift, focusing on two
distinguishable sections. The flow showcased near-constant features on the lower part of the wing, and
the theoretical concept of a ‘profiled wing’ applied to all scrutinized 𝜙 values, despite earlier research
predominantly encompassing smaller AoAs [25, 28]. Nevertheless, the complex behavior of vortices on the
upper surface was crucial to evaluating lift production. On occasions where the wing with corrugations showed
increased lift, the LEV persisted very close to the wing, requiring interference mitigation by the lambda vortex.
The corrugations disturbed the lambda vortex, entangling it in V-shaped regions. Further investigation into
the dynamics surrounding the leading edge is necessary, as outlined in the following subsection.
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3.3.5 Generation of low pressure region in vortex dynamics near the leading edge
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Figure 15: Representative snapshots of the flow field in the vicinity of the leading edge of the corrugated
wing (𝛼 = 1, 𝜙 = 35◦). Pressure fields at (a) 𝑡∗ = 1.80 and (b) 𝑡∗ = 2.15. Vorticity fields at (c) 𝑡∗ = 1.80 and
(d) 𝑡∗ = 2.15. Reprinted from Ref. [3].

This subsection explains the generation of mean low pressure in the V-shaped region resulting from the
collapse of the lambda vortex and LEV in the corrugated wing (refer to Fig. 13 (b)).

Let us compare the position of the low-pressure area at 𝑡∗ = 𝑡∗max (Figs. 8 (b) and (c)) with the mean fields
(Figs. 13 (a) and (b)). On the top side of the wing, the corrugated wing displays a distinct low-pressure region
in the first V-shaped region near the leading edge (Fig. 13 (b)). This low-pressure region is not present in the
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second V-shaped region (Fig. 13 (a)). On the other hand, the level wing exhibits a considerable region of low
pressure located at a specific distance from the leading edge. It is worth noting that the low-pressure region
on the wing is caused by the proximity of the vortex, as explained in Sec. 3.3.2 (Fig. 8 (b)), and it is not
visible in the mean-field (Fig. 13 (b)). On the contrary, the low-pressure region in the first V-shaped region
is only a snapshot when the maximum lift is achieved (Figs. 8 (b) and 9).

Figure 15 displays the flow fields of the corrugated wing (𝛼 = 1) at 𝑡∗ = 1.80 and 2.15, selected to evaluate
the wing performance near the leading edge in relation to the mean flow field. This evaluation aims to ensure
clarity about the two typical vortex dynamics outlined below.

Figures 15 (a) and (c) display the pressure and vorticity fields for 𝑡∗ = 1.80. A vortex with negative
polarity comes from the leading edge, and a secondary vortex with positive polarity forms due to the collapse
of the lambda vortex and sits between the wing and the vortex (indicated by the arrow in Fig. 15 (c)). This
leads to a low-pressure region emerging in the first V-shaped region (indicated by the arrow in Fig. 15 (a)).

Figures 15 (b) and (d) depict the pressure and vorticity, respectively, at the time 𝑡∗ = 2.15. Here, a
vortex with a positive sign experiences compression (Fig. 15 (d)), resulting in a low-speed area. Within the
leading-edge concavity, a positively signed vortex creates a dead-water region that undergoes transmission
and transfers negative pressure from the LEV to the wing surface (Fig. 15 (b)).

As previously discussed, the dynamics within the initial V-shaped region exhibit non-stationary behavior.
However, the interaction between round vortices, which display both positive and negative signs, leads to the
formation of a mean low-pressure region. The periodic generation of vortices with opposing signs is also
apparent in Figs. 7 and 11. This phenomenon persists even after temporal averaging, as shown in Fig. 13.

3.4 Summary
This chapter conducted a detailed analysis of the flow around a two-dimensional corrugated wing model
through direct numerical simulations at 𝑅𝑒 = 4000, comparing its performance with that of a flat wing.
Notably, the corrugated wing exhibited enhanced performance, particularly when the AoA exceeded 30◦.

The uneven structure of the corrugated wing induces higher lift force due to intricate flow patterns and
vortex dynamics. In this context, two mechanisms that enhance lift are explored, attributable to the uneven
structure of a singular corrugated wing, modeled after a dragonfly.

The first mechanism involves a decrease in pressure on the upper surface of the corrugated wing, attributed
to interactions among vortices disassociated from the leading edge. The detachment and formation of these
vortices result from the collapse of the lambda vortex.

The second mechanism entails the dynamic formation of a mean low-pressure region within the V-shaped
structure near the leading edge on the upper surface of the corrugated wing. In this scenario, the collapsed
lambda vortices and the LEV adhered to the V-shaped region near the leading edge create a negative pressure
area, resulting in the formation of an averaged low-pressure region. To the best of my knowledge, these
dynamic mechanisms have not been previously documented. The findings present a crucial foundation for
investigating the mechanisms of insect flight.
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Chapter 4

Vortex dynamics and lift enhancement:
difference among corrugated structures
and Reynolds numbers

This chapter is based on Ref. [37].

4.1 Introduction
Previous research [4] has established the occurrence of a secondary vortex, called the lambda vortex, in the
case of flat wings. On the other hand, corrugated wings demonstrate the collapse of the lambda vortex due to
uneven structures. This phenomenon enhances the wing performance of the corrugated wing, particularly in
terms of lift (Chapter 3).

However, in Chapter 3, only a single corrugated wing model at a single Reynolds number (𝑅𝑒 = 4000)
was analyzed. To investigate whether the correlation between the lambda vortex and lift enhancement is
universal, it is necessary to investigate other models at other Reynolds numbers. It is noteworthy that the
concavity of the corrugated structure in dragonflies’ corrugated wing depends on the selected cross-sectional
position (Chapter 1).

This chapter also examines the aerodynamic performance of translating two-dimensional corrugated wing
over a defined period. The study focuses on two corrugated wing models with different quantities of V-shaped
structures near the leading edge. The relationship between wing performance and lambda vortex behavior at
different Reynolds numbers is also investigated. The lambda vortex behavior, as discussed in Chapter 3, will
be shown as a crucial factor in evaluating and categorizing dynamic wing performance across various models.
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4.2 Method

4.2.1 Corrugated wing model

Figure 16: (a) Flat wing model (𝛼 = 0). (b) Corrugated wing model (𝛼 = 1). (c) Inverted corrugated wing
model (𝛼 = −1). Reprinted from Ref. [37].

Wing models are constructed using the methods described in 3.2.1. This chapter analyzes three different wing
model cases which are characterized by a structure parameter, 𝛼. A structure parameter, 𝛼, of −1, 0, and 1
corresponds to a flat wing (Fig. 16 (a)), a corrugated wing defined concerning Ref. [32] (Fig. 16 (b)), and an
inverted corrugated wing with a shape opposite to that of the corrugated wing model for 𝛼 = 1 (Fig. 16(c)).
A flat wing (𝛼 = 0) and a corrugated wing (𝛼 = 1) are the same as that in Chapter 3.

4.2.2 Numerical Simulation
The calculation methods are generally similar to those described in Chapter 3. The differences are described
below. The computational domain was established as [−10, 10] × [−10, 10], with the wing model centred at
(0, 0). The outer edges of the computational domain, except for the right-hand side (𝑥 = 10,−10 ≤ 𝑦 ≤ 10),
were designated as inflow boundaries, with u = 𝑼 (𝑡∗). The outflow conditions on the right side were applied
in the same way as described in Chapter 3. This investigation set the values of 𝜈 = 5× 10−4 or 1.3333× 10−3,
resulting in Reynolds numbers 𝑅𝑒 = 4000 or 1500, respectively. The time step Δ𝑡 was fixed at 4.0 × 10−5,
and the computations were carried out within the range 0 ≤ 𝑡∗ ≤ 4, where 𝑡∗ represents the dimensionless
time, i.e., 𝑡∗ = |𝑼 |𝑡/𝑐. The total number of spectral elements was 𝑁 = 1960. The number of points along the
edge of each element was 𝑁𝑝 = 19. To verify the calculation condition, please refer to Ref. [37].

The maximum and mean lift coefficients in the time interval [𝑎, 𝑏] were defined the same as Eq. 2,
however, Reynolds number is added to the argument. Thus, 𝐶𝐿,max (𝛼, 𝜙, 𝑅𝑒) and 𝐶𝐿,mean (𝛼, 𝜙, 𝑅𝑒) were
indicated, respectively. Relative differences are defined in the same i.e., Δmax (𝛼, 𝜙, 𝑅𝑒), Δmean (𝛼, 𝜙, 𝑅𝑒).
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4.3 Result and discussion

4.3.1 Wing performances of corrugated wings at 𝑅𝑒 = 1500 and 𝑅𝑒 = 4000

(a) (b)

Figure 17: (a) Δmax (𝛼, 𝜙, 𝑅𝑒) for 20◦ ≤ 𝜙 ≤ 45◦. The triangle and inverted triangle indicate 𝛼 = −1
and 𝛼 = 1, respectively. Red and blue symbols indicate 𝑅𝑒 = 1500 and 𝑅𝑒 = 4000, respectively. (b)
Δmean (𝛼, 𝜙, 𝑅𝑒) for 20◦ ≤ 𝜙 ≤ 45◦. Reprinted from Ref. [37].

This chapter aims to confirm the factors that enhance the performance of corrugated wings in comparison to
the flat wing. It is demonstrated that wing performance is not solely determined by the AoA, wing shape,
and Reynolds numbers. Fig. 17 (a) presents Δmax (𝛼, 𝜙, 𝑅𝑒). Based on Figure 17 (a), it can be observed that
Δmax (1, 𝜙, 4000) takes on negative values when 𝜙 is less than 30◦. This indicates that the performance of
the corrugated wing does not improve in this range. On the other hand, values of Δmax (1, 𝜙, 4000) become
positive for 𝜙 ≥ 30◦, indicating an enhanced wing performance. This leads to the wing’s transition occurring
at 𝜙 ' 30◦ (Fig. 6). Nevertheless, Δmax (−1, 𝜙, 4000) gives positive values for all 𝜙 calculated, except for the
narrow range of 32◦ ≤ 𝜙 ≤ 34◦, where slightly negative values are recorded (Fig. 6). With 𝑅𝑒 = 1500, the
behavior of Δmax differs significantly; both Δmax (±1, 𝜙, 1500) are positive, and no transition is observed.

Figure 17 (b) depicts Δmean (𝛼, 𝜙, 𝑅𝑒). It is observed that Δmean (1, 𝜙, 4000) is negative for 𝜙 ≤ 30◦ and
positive for 𝜙 > 30◦. These findings parallel those of Δmax (1, 𝜙, 4000). However, it is essential to note that
such consistency does not universally prevail.

Indeed, Δmean (−1, 𝜙, 4000) exhibits positive values for 𝜙 < 30◦ and negative values for 𝜙 ≥ 30◦.
Similarly, Δmean (−1, 𝜙, 1500) demonstrates positivity for 𝜙 ≤ 30◦ and negativity for 𝜙 > 30◦ (Fig. 17 (b)).
Consequently, the wing performance in these scenarios undergoes a transition around 𝜙 = 30◦ (Fig. 17 (b);
green line). It is noteworthy that the behaviors of Δmax (−1, 𝜙, 4000) and Δmax (−1, 𝜙, 1500) differ from those
of Δmean (−1, 𝜙, 4000) and Δmean (−1, 𝜙, 1500), as previously discussed. Moreover, the transition point closely
aligns with the case (𝛼, 𝑅𝑒) = (1, 4000), albeit with an opposite sign in Δmean.

4.3.2 Vorticity field around wings in the case 𝜙 = 25◦

The correlation between wing performance and the vortex dynamics surrounding the wings is shown by
examining the case with 𝜙 = 25◦ and 𝑅𝑒 = 4000 (Fig. 17; green lines in legend). Figures 18 (a-1), (a-2), and
(a-3) depict the vorticity fields at a specific time 𝑡∗ = 𝑡∗v when the characteristic vortex distribution becomes
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(b-1: 𝜶 = 𝟎 )
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(b-3: 𝜶 = −𝟏 )

(a-1: 𝜶 = 𝟎, 𝒕𝐯∗ = 𝟐. 𝟎𝟎 )

(a-2: 𝜶 = 𝟏, 𝒕𝐯∗ = 𝟏. 𝟗𝟎 )

(a-3: 𝜶 = −𝟏, 𝒕𝐯∗ = 𝟏. 𝟕𝟓 )

V1

V2

V3
V4

Figure 18: Vorticity fields for 𝜙 = 25◦ and 𝑅𝑒 = 4000. (a-1) Instantaneous field for the flat wing model
(𝛼 = 0) at 𝑡∗v = 2.00. (a-2) Instantaneous field for the corrugated wing model (𝛼 = 1) at 𝑡∗v = 1.90. (a-3)
Instantaneous field for the inverted corrugated wing model (𝛼 = −1) at 𝑡∗v = 1.75. (b-1) Mean field for the
flat wing model (𝛼 = 0). (b-2) Mean field for the corrugated wing model (𝛼 = 1). (b-3) Mean field for the
inverted corrugated wing model (𝛼 = −1). Reprinted from Ref. [37].
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evident. It is important to note that 𝑡∗max ≠ 𝑡∗v. Furthermore, the mean vorticity fields are illustrated in Figs.
18 (b-1), (b-2), and (b-3).

In the scenario depicted in Fig. 18 (a-2); 𝛼 = 1, the lambda vortex is positioned between two LEVs, as
indicated by the arrow, mirroring the arrangement observed in the case of the flat wing (𝛼 = 0). Both in the
corrugated wing (𝛼 = 1) and the case of the flat wing (𝛼 = 0), the LEVs V1 and V2, located closer to the
trailing edge, moved away from the wing due to the influence of the lambda vortex. As a result, the mean
vorticity field exhibited an elongated region with a negative sign in an oblique direction to the wing (Figs. 18
(b-1) and (b-2); indicated by yellow arrows). Consequently, the mean vorticity field exhibits a similarity to
that observed in the flat wing case. This is a similar result to the 𝛼 = 1, 𝜙 = 20◦ in the Chapter 3.

Figure 18 (a-3) presents the vorticity field surrounding the inverted corrugated wing (𝛼 = −1). At 𝑡∗ = 𝑡∗v,
two vortices with a negative sign are evident above the wing, but the lambda vortex loses its characteristic
shape (Figs. 18 (a-3) and (b-3); indicated by arrows). This is a similar result to the 𝛼 = 1, 𝜙 = 35◦ in the
Chapter 3.

These qualitative features were also observed in the case of 𝑅𝑒 = 1500 (data not shown). These results
are comparable to the results presented in Chapter 3. Thus, the correlation between vortex motion and the
enhancement of aerodynamic performance in the corrugated wing is independent of both the Reynolds number
and model geometry.

4.4 Summary
This chapter examined two types of corrugated wing models at two Reynolds number cases, 𝑅𝑒 = 1500 or
4000. When the maximum coefficient of lift (𝐶𝐿,max) for the corrugated wing exceeded that of the flat wing,
the collapse of the lambda vortex occurred on the corrugated structure. Consequently, split LEVs primarily
interacted among themselves, akin to the observations in Chapter 3. This vortex motion was observed to
enhance lift, irrespective of the specific corrugated structures and Reynolds numbers investigated.
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Chapter 5

Concluding remarks

5.1 Summary
This study focused on the uneven structure in corrugated wings and analyzed flow patterns obtained by direct
numerical simulation.

The analysis initially included a flow analysis around a triangular model with a bottom surface as the
simplest example of a corrugated structure (Chapter 2). An increase in the Reynolds number resulted in a
noticeable change in flow dynamics, especially at 𝑅𝑒 = 𝑂 (103). This led to a more pronounced manifestation
of vortex structures. The flow transition was also observed as the two models moved closer together and
became more complex uneven structures. These characteristics indicate that the flow around the corrugated
wing is dynamic and that it can affect the aerodynamic performance.

A flow analysis was conducted to compare the performance of a two-dimensional corrugated wing with
that of a flat wing at 𝑅𝑒 = 4000 (Chapter 3). The corrugated wing (𝛼 = 1; 𝛼 defines the shape of the
corrugated wing) exhibited superior aerodynamic performance to the flat wing at an AoA of 𝜙 > 30◦. The
lambda vortex collapsed on the corrugated wing, and the split LEV interacted with it, resulting in increased
lift. The relationship between the collapse of the lambda vortex and increased lift is supported by quantitative
indices.

The collapse of the lambda vortex has also been observed in the corrugated wing models with inverted
shape (𝛼 = −1) and at other Reynolds numbers (𝑅𝑒 = 1500), indicating a lift enhancement mechanism
(Chapter 4). The relationship by quantitative indices has been considered for other Reynolds numbers, with
generally consistent results (data not shown). Further details will be reported elsewhere.

5.2 Discussions
The relationship between lambda vortex motion and lift enhancement revealed in this study provides a basis
for future analysis of corrugated wings. This study has delineated certain characteristic dynamics associated
with lift enhancement in the corrugated wing, relying on a simplified model of the wing and its motion.
This approach stems from the complexity inherent in both the wing-shape details and vortex motion in the
realistic scenario of a flapping dragonfly’s wing. These simplifications intentionally omit details related to
three-dimensionality and intricate flapping motion. However, the suggested dynamics will be beneficial for
tackling more realistic models of a dragonfly’s corrugated wing. This is because these simplifications are
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based on fundamental dynamics associated with the LEV and uneven structures.
To better relate the present results to the flapping flight of insects, the potential for real-life dragonflies

to collapse lambda vortices should be considered. Previous research has suggested a correlation between the
static properties of corrugated wings and the confinement of vortices to a V-shaped region [2, 21, 28, 30, 33,
34]. Dragonfly wings contain neural pathways that are predominantly concentrated along the leading edge,
suggesting an ability to perceive flow information [53]. One possibility is that the undulating structure of
dragonfly wings may have a function in confining vortices within the indentations. In essence, dragonflies
may be able to fly by collapsing lambda vortex with their flapping motion. Furthermore, in future evolutionary
processes, dragonfly wings may undergo structural changes to more effectively disrupt lambda vortices.

Mechanisms described in this study hold promise for innovative wing-shape designs, especially in the low-
Reynolds-number regime associated with insect flight. This parallels the concept of passive drag reduction
in turbulent flow, where drag reduction of around 8% can be achieved by altering the surface shape [3, 54].
However, it is imperative to account for the influence of other parameters, such as the size of the V-shaped
structure. In practice, Chapter 4 examined the performance of two types of corrugated wing models. The
signs of the relative difference in 𝐶𝐿,max between the corrugated wing (𝛼 = 1) and the flat wing (𝛼 = 0),
Δmax (1, 𝜙, 𝑅𝑒), were negative for 𝜙 < 30◦ and 𝑅𝑒 = 4000 (Fig. 17 (a)). On the other hand, the signs of
Δmax (−1, 𝜙, 𝑅𝑒) were positive for most of the 𝜙 and Reynolds number investigated (Fig. 17 (a)). Therefore,
it is anticipated that the structural details of the model with 𝛼 = −1 exhibit favorable characteristics for
entrapping the lambda vortices. While the corrugated wing model with 𝛼 = −1 is an inversion of the wing
model with 𝛼 = 1, a notable difference lies in the number of V-shaped structures (concavity at the upper side
of the wing) in the model (Figs. 16 (b) and (c)). In the that cases with a negative sign of Δmax (1, 𝜙, 𝑅𝑒)
correspond to the eruption of the lambda vortex, consistently observed in the second V-shaped structure
counted from the leading edge, the presence of only one V-shaped structure may hold significance for the
overall vortex entrapment characteristics. The second V-shaped structure might facilitate the eruption of the
lambda vortex. In light of the explored parameters, a single V-shaped structure appears to be more effective
in suppressing the eruption of the lambda vortex. A more comprehensive characterization of the corrugated
wing can be achieved by observing the presented scenario under more different parameters, which will be
detailed in future works.

There were also new approaches in this analysis. This study focused on the spatiotemporal distribution
of vorticity and pressure in a specific region above the corrugated wing, establishing a correlation between
flow structures and the mechanism of lift enhancement (Chapter 3). This approach represents a novel method
for analyzing the flow around the corrugated wing. Traditionally, attention is given to the spatiotemporal
distribution of vorticity and pressure on the wing surface in the case of the flat wing [36]. However, to
account for the intricate structure of corrugated wings, it was necessary to select a region slightly away from
the wing surface. The results of this study indicate that it is not strictly necessary to focus solely on the
wing surface when correlating flow structures around the wing with the lift enhancement mechanism. This
suggests the potential for facilitating the analysis of the corrugated wing with complex structures. Further
detailed investigations on this aspect will be essential in future research.

5.3 Perspectives
The question of whether dragonflies actually manipulate flow is intriguing. This study has focused on
evaluating the dynamic characteristics, extracting a portion of the flapping motion, though not precisely
copying the real flapping motion. Flapping motions involve various elements, including translational and
rotational movements. It is interesting to investigate if significant vortex dynamics occur in these motions.
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And, it is important to examine whether the results obtained in this study are observable on wings replicating
the flapping motion. Similarly, understanding the wing movements required to induce the observed vortex
dynamics in this study is crucial. These investigations not only help us to understand insect flapping flight
but also pave the way for creating flapping robots that surpass insects in performance.

The results of the present study (especially in Chapter 3) need to be examined in a wider parameter range.
The significance of Reynolds number dependency cannot be overstated. The qualitative trends have been
consistently validated at Reynolds numbers of 𝑅𝑒 = 1500 and 4000 (Chapter 4). However, at 𝑅𝑒 = 1500,
incomplete collapses of the lambda vortex were noted, characterized by less pronounced structural changes
in coherent vortices compared to the cases at 𝑅𝑒 = 4000. This suggests that, at lower Reynolds numbers,
viscous effects might cause deviations in the vortex dynamics from the illustrated scenario. Future works
should provide a more comprehensive discussion of these observations.

This investigation utilized two-dimensional models. However, in the case of the three-dimensional nature
of insect flight aerodynamics, the applicability of these findings extends to such scenarios. Extrapolating these
results to a three-dimensional system holds the promise of yielding more practical insights into comprehending
insect flights and their potential industrial applications. The investigation of three-dimensional space will be
a central focus of my future research. Additionally, delving into the actual flapping motion would contribute
to a more nuanced understanding of corrugated wings.
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